The electronic structure of $\zeta$-BEDT-TTF·PF$_6$ a comparison of self-consistent field and Hubbard model analyses.$^{1}$

Ping Tang, N. A. W. Holzwarth, and Freddie R. Salsbury, Jr.

Department of Physics, Wake Forest University
Winston-Salem, NC, U. S. A.

The electronic structure of the organic charge-transfer salt $\zeta$-BEDT-TTF·PF$_6$ was studied using both density functional and Hartree-Fock theories. The results are in qualitative disagreement with experimental conductivity and optical measurements for the material$^2$ which suggest a Mott insulator behavior. We examine the Hubbard model for this system in an attempt to understand both the Mott insulating behavior and the failure of the self-consistent field methods to model it.

Studying the details of a Hubbard dimer model, we find that an important component of the analysis is the inclusion of more valence-bond than ionic character in the ground state wavefunction. The Hartree-Fock treatment includes too much ionic character which destabilizes the result. A spin density wave treatment reduces the ionic character, but also contaminates the wavefunction with terms having the incorrect total spin. It is also interesting to note that the one-electron density and therefore the density functional approach in its usual form is nearly blind to the valence-bond content of the wavefunction.

$^{1}$ Supported by NSF Grant No. DMR-0405456.