Dependence of anomalous Hall effect on spin-orbit coupling strength in bcc Fe

Xinjie Wang1, Jonathan Yates2,3, Ivo Souza2,3, and David Vanderbilt1

1Department of Physics and Astronomy, Rutgers University
Piscataway, NJ 08854-8019
2Department of Physics, University of California
Berkeley, CA 94720
3Materials Science Division, Lawrence Berkeley Laboratory
Berkeley, CA 94720

Recently, a first-principles calculation of the anomalous Hall conductivity (AHC) of Fe as a Brillouin-zone integral of the Berry curvature was carried out and found to be in reasonable agreement with experimental results.1 However, these authors observed extraordinarily strong and rapid variations of the Berry curvature with wavevector \(k \) in the vicinity of avoided crossings and near-degeneracies in reciprocal space. Since the AHC vanishes in the limit of zero spin-orbit (SO) coupling, it is interesting to understand the behavior of the AHC as the SO coupling strength is artificially varied. We investigate this question working in the context of a Wannier interpolation approach to the calculation of the bandstructure and the AHC. The SO coupling strength is varied by tuning the projectors and their coefficients in the fully relativistic norm-conserving pseudopotential, which takes the form of a spatially-dependent \(2 \times 2 \) matrix acting on spinor wavefunctions. In this way we separately control the strength \(\lambda_z \) of the spin-diagonal components and that of the spin-off-diagonal components \(\lambda_{xy} \) of the pseudopotential. The calculated AHC is found to be an odd function of \(\lambda_z \) and an even function of \(\lambda_{xy} \), with both linear and quadratic components playing a significant role in both cases. The existence of a contribution scaling as \(|\lambda_{xy}| \) is surprising from the viewpoint of conventional perturbation theory.