A First Principle Study of LaAlO$_3$/SrTiO$_3$
Heterointerfaces

Hanghui Chen1 and Sohrab Ismail-Beigi1,2

1Department of Physics, Yale University, New Haven, Connecticut, 06511, USA
2Department of Applied Physics, Yale University, New Haven, Connecticut, 06511, USA

In order to understand the origin of the intriguing high-mobility quasi two dimensional electron gas formed at LaAlO$_3$/SrTiO$_3$(001) heterointerfaces, we carry out first principle calculations on the electronic structure and properties of complementary interfaces. The intrinsic polar properties are investigated and the average electronic potential increase by each LaAlO$_3$ layer is calculated, which can account for the recent observed fact that the heterointerfaces are not metallic until the number of LaAlO$_3$ layers reaches a critical thickness. When the interface becomes metallic, the spatial distributions of mobile electrons and holes reveal a fundamental asymmetry between the n-type and p-type interfaces. A large cation-cation hopping matrix element which only exists at the n-type interface turns out to be the key reason for this asymmetry.