Double Excitations and Conical Intersections in Time-Dependent Density Functional Theory

Chaehyuk Ko, Benjamin G. Levine, Richard M. Martin, and Todd J. Martinez
Department of Chemistry, University of Illinois at Urbana-Champaign

Studying Photochemistry

Vertical Excitation Energies are Only the Beginning

• We examine important features of the potential energy surface (PES) including excited state minima, conical intersections, and barriers. We also run dynamical simulations.
• States of many different characters are important (singly excited, doubly excited, etc.).
• To study these systems we usually utilize multireference ab initio methods such as CASSCF, CASPT2, and MRCl. Accurate treatment of dynamical correlation is important, but very expensive.

TDDFT could provide an inexpensive, highly accurate alternative to multireference ab initio methods.

TDDFT in the Frank-Condon region

Ethylene Absorption Spectrum

• Absorption spectra are calculated from simulations of nuclear wavepacket dynamics.
• The PES is calculated on the fly at the B3LYP/6-31+G level of theory.
• Results of runs on the valence (N→N) and 3s Rydberg (N→R3s) states are shifted to match experimental excitation energies and summed according to their TDDFT oscillator strengths.

TDDFT can accurately reproduce the shape of singly excited potential energy surfaces in the Frank-Condon region.

Double Excited States of Butadiene

• The dark 2A1 state of butadiene is nearly degenerate to the bright 1B2 state at the Frank-Condon point.
• This dark state contains significant doubly excited character.

TDDFT does not capture the doubly excited character of this excited state.

TDDFT outside the Frank-Condon region

What is a Conical Intersection?

• A conical intersection is a point of true degeneracy between electronic states.
• Two conditions must be met for degeneracy therefore conical intersections exist not as single points but as N-2 dimensional seams (where N is the number of nuclear degrees of freedom).
• Normally we search for the minimum energy points along these seams (MECs).

Linear Water Intersection - TDDFT

- Degeneracy is lifted only in one direction. (1(R)=0 for all geometries because Briland’s theorem applies to the coupling between the DFT ground state and TDDFT excited states.)
- State characters cannot mix.
- Energy gap changes dramatically and nonlinearly in region surrounding intersection.
TDDFT fails to produce correctly shaped PESs in the region surrounding intersections involving DFT ground states.

Searching for MECs

• Excited state energy is optimized subject to the constraint that the energy gap is zero.
\[E(R) = E(R) + \lambda \Delta E(R) \]
• Function is smoothed to allow numerical differentiation.
\[\Delta E(R) = \frac{E(R+\Delta R) - E(R-\Delta R)}{2\Delta R} \]
• Function optimized with conjugate gradient method.
• Intersections are optimized at the trusted MS-CASPT2 level and compared with TDDFT results.

Linear Water Intersection – CASSCF – Everything an intersection should be

- Degeneracy is lifted in two independent directions.
- State characters mix as molecule moves ‘around’ intersection (follows red arrow).
- Energy gap varies linearly in region surrounding intersection.

Conclusions

• TDDFT accurately predicts the shape of singly excited states in the Frank-Condon region.
• TDDFT fails to accurately describe states with significant doubly excited character.
• TDDFT does predict the existence of intersections between states where they exist according to high level ab initio calculations.
• The dimensionality and shape of intersections between the DFT ground state and TDDFT excited states are pathological.

Future Work

• Investigate possible extensions and alternatives to TDDFT as accurate and low cost electronic structure method for the study of photochemistry.

Acknowledgement

This work is supported in part by the National Science Foundation under Award Number DMR-63 25839 ITR, via the Materials Computation Center at the University of Illinois at Urbana-Champaign.