1. Motivation

- Realistic simulation of exchange interaction in coupled QD devices
- Interplay between device parameters and many-body physics in coupled QD
- Computational support for interpretation of experimental data

2. Model

- High-resolution grid
 - 1000,000 - 700,000 mesh points
- Cylindrical grid
- Hexagonal grid

3. Flowchart

- Kohn-Sham Equation
- Poisson Equation
- Exchange-Correlation Potential
- Two-particle Wave Function Equation

4. Coupled Lateral QDs

- Kohn-Sham Diagrams
 - Non-localities

5. Triple LCVDs

- Split Gate Structure (Essing)
- Flowchart Diagram
- Electron Charge
 - Electron Charge
 - Potential Profile
 - Electron Charge
 - Potential Profile

Spintronics/Electronics in Quantum Dots
J. Kim1,2, D. Melnikov1,2, J.-P. Leburton1,2, D. Das2,3, and R. Martin2,3
1) Department of Electrical and Computer Engineering
2) Department of Physics
3) Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign
Urbana, IL 61801

Supported by the National Science Foundation under Award Number DMR-03 25939 ITR,
via the Materials Computation Center at the University of Illinois at Urbana-Champaign
Principal Investigators: Duane D. Johnson and Richard M. Martin