A New Model for Charge Distributions in Molecular Systems

Jiahao Chen, Todd J. Martínez

Department of Chemistry, Center for Advanced Theory and Molecular Simulation, Center for Biophysics and Computational Biology, Frederick T. Seitz Materials Research Laboratory, Beckman Institute for Advanced Science and Technology

Introduction
- Need electrode model for molecular modeling: Electron densities ≠ partial charges
- Parameters: Mulliken electronegativities, Per-Parr-Farrow hardnesses
- Popular and chemically intuitive, but has problems
- Objective: Fix Q Eq

What’s Wrong?
- No HOMO-LUMO band gap, metal bonding
- No difference between σ, π, metallic or ionic bonds
- No out-of-plane polarizability
- Physical difficulty in interpreting parameters, e.g. negative electron affinity of H

Our New Model, QTPIE
- Charge transfer postcess equilibrium
- Distance-dependent electronegativities
- Detailed balance

\[E = \sum q_i \left(1 + \frac{1}{2} \frac{\alpha}{\beta} \right) \]
\[q_i = \left(1 + \frac{1}{2} \frac{\alpha}{\beta} \right) \]
\[\beta = \sum q_i \left(1 + \frac{1}{2} \frac{\alpha}{\beta} \right) \]

\[H = \sum \alpha_{\text{pair}} + \sum \beta_{\text{pair}} - \sum \gamma_{\text{pair}} \]

NaCl Dissociation
- Q Eq: fractional charges at infinite separation limit
- QTPIE: (this work) corrected asymptotic limit, wrong decay behavior
- ab initio: decay behavior arises from nonadiabatic curve-crossing effects
- Experimental dipole moment used to fit parameters

Water Dissociation
- Pull one hydrogen (H1) off to infinity slowly
- Charge on H1 converges exponentially to zero far away
- Remaining hydrogen/radical retains polarization

Future work
- Study adiabatic dissociation of sodium chloride-water hexamer cluster
- Understand the physical basis of this model: exp. in statistical mechanics
- Develop connections to quantum-mechanical observables
- Explore relationships to ensemble density functional theory
- Construct new models based on Janak’s Theorem and its consequences
- Look into statistical mechanical treatment of multiple configurations

Acknowledgements
We thank the other members of the Martínez group for insightful discussions, particularly J. D. Cox, C. K. B. G. Levine, P. Blaž, J. and A. K. Thompson.

This work was supported by the National Science Foundation under Award No. DMR-03 25829 ITR, via the Materials Computation Center at the University of Illinois at Urbana-Champaign.