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1 Overview: MD vs. MC

Molecular dynamics (MD) simulations explicitly propogate the equations of motion
throught time (e.g., Verlet algorithm) and, thus, they follow the real dynamics of a
many-body system. However, time steps must be chosen small enough to address
correctly the physics at hand and large enough to span a large time interval (which is
often just pico-seconds, far from that to compare to experiments). Such restrictions
on computational time limit the scope of dynamical simulations involving interacting
particles, molecules, etc. In addition, as system complexity increases, there can be
substantial decrease of system sizes and of real time evolution. System complexity
can arise from may sources, e.g. gas-surface or condensed phases, which involve
direction dependent, many-body interactions. In particular, MD is unable to perform
simulations over long times due to the required repeated evaluations of potential and
derivatives of potentials (potential-energy surface information). This may be partly
overcome by so-called Hyperdynamics methods; nonetheless, it still consititutes a
significant limitation.

Note on Time Scales in MD: High-frequency motions will determine the
integration time step that must be used. For small time steps, low-frequency
events cannot be sampled in reasonable computational time. Thus, MD has
difficulty accomodating events that occurs with vastly different probabilities or
rates.

Direct Monte Carlo (MC) simulation are a quasi-random, i.e. non-deterministic,
approach to time evolution. In other words, MC methods evolve according to a
stochastic algorithm, so as to explore the entire phase space (possible accessible states)
of the system. Such stochastic attempts at changing the configurations usually have
nothing to do with the underlying energy barriers inhibiting (or favoring) change of
state (or motion). The MC methods follow a Markov process to evolve a system
towards equilibrium, regardless of pathway. For example, the standard Metropolis
MC alogrithm makes all transitions of the system to states of lower or equal energy
with probability of unity, regardless of the barrier to access this state, the process
required or the transition rate. Hence, MC moves based on the Metroplis algorithm
cannot be interpreted dynamically as a process that simulates random motion in
time! Nonetheless, MC methods do generate states that are correlated — each con-
figuration is correlated because it is produced in a sequential Markov chain process.
At present, all practical sampling methods produce correlated configurations (which
is also why you use auto-correlation times to remove some clearly wrong correlations
during analysis of MC data).

As for the case of diffusion, notice that there is a need for a relation to a real-time



process, which is not necessarily the same as a simulation time, depending on the MC
Algorithm used (see later). The real time evolution is required to characterize the
system, such as the diffusion constant. Most MC papers report everything in Monte
Carlo Step (MCS) being one unit of simulation time. A MCS unit has different
values depending on the problem, and it is not necessarily related directly to (real)
experimental time.

Note on Time Scales in MC (The BIG Point): If, and only if, the cor-
relations between these quasi-random states in the MC can be interpreted as
dynamical correlations in a stochastic sense, can a kinetic interpretation of MC
be made; that is, states represent actual motion of the system — not just sampling
of the ensemble. If this is the case, then the expectation value can be calculated
as time averages! And, importantly, a connection can be made between simula-
tion time, tg;,, and real time, t,, rather than just quoting the simulation time in
terms of MC Steps (MCS), as often done. (More on this later.)

Kinetic Monte Carlo (KMC, sometimes called Dynamic MC, and not to be
confused with Diffusion MC), in contrast, is meant to address (roughly speaking)
materials-related problems whose physical outcomes are very much governed by the
energy barriers between various possible states, or local configurations of the system.
The rates for these physics-based transitions control the dynamics. KMC is meant
to have a direct relationship to real time, rather than MCS. It also follows that
KMC does not require potential derivatives, giving it a distinct advantage over MD
methods.

Note on Time Scales in KMC: Events with largest rates will dominate the
simulation, while low-rate (small probability of occurance) will be rare. Some-
times such differences in rates can be overcome by ignoring “fast events”; in which
case the KMC simulation will have events of similar order.

Obvious examples where KMC is needed: diffusion of an adatom species at the
surface of a crystal or a concentration profile inside a bulk material. Each depends
on the diffusion barriers associated with the local bonding (chemical environment)
and position of other adatoms, and interaction with the substrate or bulk atoms. In
these situations, the transition probabilities must occur so that the transition rates
are established in terms of models for the rates of microscopic events comprising the
overall process. As discussed by Fichthorn and Weinberg [8], when the transition
probabilities are formulated as physical-based rates within a Poisson Process, a defi-
nite (or unambiguous) relationship can be established between a MC time-step (MCS)
and transition rates, if there is a “dynamical hierarchy” established for the possible
transitions. Simply stated, a “dynamical hierarchy” requires that there is a spectrum
of transition probabilities (when made relative to the maximum rate process) such
that the maximum probability is one. Fichthorn and Weinberg [8] concluded that iff



1. a so-called “dynamical hierarchy” is established for the transition probabilities
which obeys detailed balance criterion;

2. time increments for each successful event are calculated properly (as we will
discuss); and

3. independence of each possible events in system can be achieved,

then MC methods simulate a Poisson Process and both static and dynamic prop-
erties of Hamiltonian may be obtained and interpreted consistently. Not all choices
of transition probabilities, however, can satisfy these criteria, as exemplified by Kang
and Weingberg [12] and Ray and Baetzold [17](and discussed briefly later).

What is dynamical hierarchy? For example, in a simplistic adsorption-
desorption of a “atom” at a surface, which we return to again, a transition rates
for adsoprtion at any site 7, W 4;, and for desorption, W p;, of one type of molecule
at a surface will be proportional to the overall rates for these events, r4 and rp
and the site-dependent coverage, if for nothing else than intuitively. The prob-
abilities for these events would be P4 = r4/R, where R=r4 + rp, and similarly
for desorption. An order for these probabilities, or dynamical heirarchy, can be
created most easily by defining W;= 7; /7,4, This means, if r4 > rp, that W,=1
and Wp = rp/ra. Thus, W4 > W, a heirarchy exist [8]. This generalizes for
more processes. You can be begin to intuit that time will be reflected in these
rates, for the more probable the less time passes before the event occurs.

Recall that a number of definitions of transition probabilities will give detailed
balance. As such, an additional criteria is required so that the transition prob-
abilities reflect unique transition rates, and, hence, simulate the dynamical phe-
nomena within the model. It is the formulation of a dyamical heirarchy for the
transition rates that is the additional criteria, see Ref. [8] for more discussion.)

1.1 Synopsis of KMC

Thus, main difference in KMC is to evolve a system using a stochoastic (or random-
walk) algorithm that directly takes into account the physical energy barriers that
govern the evolution of a system and that translate to a real time scale (t,, rather
than just reporting some simulation time (tg,). Importantly, the KMC time for
a given step will be scaled by the average time required to observe the particular
stochastic event chosen to occur that time step. Thus, each KMC time step will have
widely different magnitudes (sometime by orders of magnitude) depending on event,
temperatures, barrier changes, and so on. Notably, KMC simulations are usually on
a lattice (or ordered mesh) as many problems, such as surface diffusion, can always
be mapped to an effective lattice.



Technically, independent events, such as in adhesion within a low-flux atmosphere,
can be consider Poisson processes which have certain transition probabilities associ-
ated with them. Each of the possible transition probabilities depend upon configu-
ration and environment, and evolve as a function of time. It is the up-date per time
step of these transition probabilities that become the time consuming porition of
any Kinetic Monte Carlo. Basically, three criterion are needed to simulate a Poisson
Process:

1. transitions must satisfy detailed balance,
2. there is a proper correspondence between tg;,, and t,, and
3. the events comprising the sequence of processes are independent.

It can be shown that any set of Poisson Processes, (or, based on a dynamical interpre-
tation, any Monte Carlo calculations), are governed by a so-called Master Equation
which encompasses all possible transitions allowed from a given set of configurations.
As such, KMC allows simulation of non-equilibrium processes, not just simulation of
equilibrium averages as typical from Monte Carlo.

1.2 KMC Problems and Algorithms

Generally speaking, every simulation method has two key components: the physical
problem and the algorithm (and data structure) to solve the model or equations rep-
resenting that problem. It is important to keep in mind that for any simulation the
efficiency of the algorithm may be more important than the physical model. For KMC,
this is also true and there have been, and continue to be, research into developing
efficient algorithms for updates of the stochastic rates each time step. These methods,
e.g., "n-fold-way”, binary-tree, and K-level search algorithms, and so on, combined
with clever organization of data can speed up simulations by orders of magnitude,
allowing significant improvement in statistics. We discuss briefly the important algo-
rithm and data structures for KMC in a later section. Here we just cursorially state
a few example areas that KMC have addressed. (Note that the references are listed
in alphabetical order, hence, the references are not labelled sequentially.)

The paper of Fichthorn and Weinberg [8] is a very good intoduction to the fun-
damental underpinnings to KMC. For the effects within the simulation regarding
physical energy barriers and stochoastic-based algorithms, as well as the connection
of t, and tg,, see Kang and Weinberg [12]. Clark et al. [5] have discussed a hy-
brid method that combines methodologies (MD and KMC) to address processes with
substantially varying rates, in their case Chemical Vapor Depositon (CVD).

Probably, although I have performed no exhaustive search, one of the first ma-
terials simulations using KMC for studies of surface diffusivity is that by Reed and
Ehrlich at the University of Illinois [18]. This paper is probably not as well known
because Reed and Ehrlich did not give the method a fancy name, like Kinetic Monte



Carlo. Since that time there have been numerous publications in physics, chemistry,
biology, surface science, materials science, etc., using the KMC approach. These
include topics and physical processes such as:

—_

. surface diffusion (e.g. [18, 17]),
2. MBE (molecular beam epitaxy) growth (e.g. [15]),

CVD (chemical vapor deposition) growth (e.g. [5]),

= W

vacancy diffusion in alloys (e.g. [1, 2]),
compositional patterning in alloys driven by irraditation (e.g. [6]),
polymers: topological constraints vs. entanglements (e.g. [16]),

coarsening of domain evolution (e.g.[11]), and

® N o o

dislocation motion (e.g. [14]).

(N.B. Although I am familiar with some of these these items, they are not listed as
endorsement or tmportance of work. They are provided as examples from different
areas.)

Note that, for instance, in thin-film growth there are multi-events occuring with
varying time scales, e.g., deposition ~ 1 monolayer/sec or hopping ~ 1 atom/site/sec.
Each problem may have multiple processes with different rates, and, you need to know
what are the (relative) rates of each. There are difficulties inherent. For reconstruc-
tion, one needs to keep track of top atom and its bonding partners, dimer bond
energies, dimer-dimer energy (e.g., does it prefer rows, not random?). The basic idea
— describe system with a set of equations in terms of rates of reaction; iteratively solve
equation in time; and, use data from a few atomistic calculations (or experiment or
phenomenology). We will see this in our example problem of adsorption-desorption.
Such Kinetic Rate Equation methods provide a simple means to describe a wide va-
riety of systems, but one gives up spatial resolution of lattice MC, yet gains ability
to model larger systems.

KMC may be used to study non-equilibrium situations, which may perhaps be best
developed within a so-called Master-Equation Approach. For example, for studying
an order-disorder transition in an Ising-type alloy on a lattice, KMC via a Master
Equation approach has been used by Haider, Bellon, and Martin [10]. In this study, a
non-equilibrium phase transition were studied where there were two competing pro-
cesses: thermally-activated jumps and ballistic jumps, like those that occur under
irradiation (which we shall consider for homework). A mean-field approximation was
used for the kinetic equations for the evolution of the order parameter of interest,
in their case of binary alloy ordering it was long-range order. The validity of KMC
for non-equilibrium cases is guarenteed by establishing a “dynamical hierarchy” and
transition based on Poisson processes [8].



2 The Markovian Master Equation

As stated earlier, MC methods are correlated in that they are generate sequentially in
a Markov process. The time evolution of the probability density is given by a Marko-
vian Master Equation. This Master Equation for evolution of dynamical processes is
quite intuitive and is given by

% =Y W(oi = 0)P(0i,t) = Y_W(op — 0;)Pos,t) . 1)

g Ji

Here o, and o are the successive (e.g., intial and final) states of the system, usually
a set of 3-D vector for all M particles. P(o,t) is the probability that the system is
in state o at time ¢, and W (o, — oy) is the transition probability per unit time that
the system will undergo a transition from state o; to 0. (Sometime W;; is explicitly
given as wr~!, where 7 is a characteristic MCS and w is a probability. Note that
in Markov processes typically >5; W;; = 1 so that the total probability of doing an
event (or not) is 100%). Generally, KMC can be regarded as algorithms that numer-
ically solve the Eq. (1) by choosing randomly among various possible transitions and
accepting (or rejecting) particular transitions with appropriate probabilities. Upon
each successful transition (or, in some cases, each attempted transition), time is in-
cremented in varying values 7 (in standard MC these typically are integral values
of MCS). The time scale is incorporated via the transition rates (discussed in the
next Section). But, importantly, these rates must be determined by some method,
such as phenomenological arguments, experiment, or MD simluations, for they are
not intrinisic to the KMC method.

It is noteworthy that each possible transition rate for an event depends upon
configuration and environment and evolve as a function of time. (For example, the
simple adsorption-adsorption model discussed later, the fractional surface coverage
evolves in time and affects the rate of adsorption and desorption at each time-step.
Hence, the UPDATE per TIME-STEP of the transition rates is the time-consuming
portion of KMC. These issues also highlight the importance of data structure, search
and update algorithms in the KMC methods, which are discussed later.

Fichthorn and Weinberg [8] have discussed that KMC formulated as a set of
(independent) Poisson processes is valid for non-equilibrium Monte Carlo simulations
if the transition rates satisfy the “dynamical hierarchy” criterion (or scaled rates, such
that maximum probabilities are 1) mentioned earlier and these transition probabilities
(based on the rates) obey detailed balance (or microscopic reversibility).

2.1 Detailed Balance

Note that at steady-state (not necessarily equilibrium) the L.H.S. of Eq. (1) is zero
and the sum of all transitions into a particular state o equals the sum of all transi-
tions out of the state. You must be careful to ensure this if using phenomenological
arguments (which can be done by requiring detailed balance). Although not actually
guaranteed to give solution of the Master Equation at any given time, detailed-balance



criterion, i.e.,

W(o; = o5)P(0i,t =00) = W(o; — 0;)P(oy, t =00) (2)
must be imposed so that the MC transition probabilities are consistent with the
Boltzmann distribution,

¢—BH ()

P(o,t =00) = 7 (3)

expected at thermal equilibrium (steady state). The detailed-balance criterion is
clearly much more strict here than is required. However, as in the Metropolis algo-
rithm, it was used in order to require no knowledge of the transition matrix in the
Random Walk, and to guarantee Boltzmann-like behavior. There are some cases of
driven systems, such as under irradiation, where the detailed-balance criterion cannot
be obeyed while solving the Master Equation, see, e.g., the Refs. [1, 2, 10].

So, generally speaking, the choice of transition probabilities in MC simulations can
affect the ratio of time scales [12], and gives a temperature dependence for the time
scales. Most notably, under non-equilibrium situations the time scales for different
transition probabilities (i.e., different types of MC simulations) results in non-linear
time scales between these different MC methods. In addition, other important
quantities are affected, such as the growth exponents and the diffusion coefficients,
especially at low temperatures. For example, using the Kawasaki dynamics within
Monte Carlo (where two ”atoms” are swapped simultaneously so as to maintain sto-
ichiometry, or number of spins), energy barriers are taking into account BUT there
can NOT be a correspondence between MC time and real time for most physical
processes - not unless there is a single rate operable in the physics under consider-
ation [12, 17]. In other words, there can sometimes be a dynamical hierarchy for
simple cases; but, the transition probabilities for Kawasaki dynamics cannot be gen-
eralized for complex potentials to produce a “dynamical heirarchy”, so time (diffusion
constants, etc.) must be carefully considered due to the non-linear ratio of time scales.

2.2 Possible Choices for W(o; — oy)

Let AE = H(oy) — H(0;). We have mentioned 3 choices, which are representative.
(Here I follow ideas discussed by Kang and Weinberg [12].)

2.2.1 Metropolis Walk

wp(os = 05) { e BAE for AE >0

W (o; — Uf) = R for AE<0 )

For Metropolis, 7 is the usual MCS. Note, again, that the acceptance of all states
that lower energy is why Metropolis algorithm does not express the real dynamics
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Figure 1: Example for barrier between two sites ¢ and j with energy AE between
minima and additional € barrier. Note to hop from 7 to 7 would cost more energy than
j to i, which is an example of microscopic reversibility without equal probability.

of system. Another way to view this is that, unlike MD which diffuses through
phase space based on real potential barriers and transitions, Metropolis based MC
samples phase randomly — jumping here and their regardless of barriers required to
reach a particular lower-energy minimum. In addition, this algorithm for reaching
equililbrium clearly does not allow one to establish a dynamical hierarchy for the
transition rates.

2.2.2 Kawasaki Dynamics

In Kawasaki dynamics two particles, or two spins, etc., are exchanged simultaneously
so as to conserve particle (spin) number, which yields a factor of 2.

_wilog—=op) e PRE/2
Wi(oi — of) = jn e BAE/2 | oBAE/2 7 (5)

For a surface diffusion, for example, the attempt frequency 7 = e#9(") /u where Q is
the average energy barrier a particle must jump and it is T dependent because o; is.
The frequency, v, of frustrated translation motion (parallel) on surface. Typically, in
Kawasaki dynamics, 7 is taken as unit of time and the () dependence is lost.

2.2.3 Thermally-Excited Process (barrier controlled)

; —
Wa(oi — ;) = M _ o PEN0107) _ g-BletAE)

) (6)

where the barrier depends on initial and final positions. That is, it is not symmetric
(e.g., Wg(o; — 0;) = e77%) but does obey microscopic reversibility or detailed bal-
ance. Figure 1 shows the example barrier. Here, 7 is simply 1/v and wg is a physical
quantity: the probability of success for thermally excited barrier crossing for average
time 7.



2.2.4 A Comparison of Probabilities

For a single barrier jump, one can show (see Figure 1 for definition of energies) that
wi (i — j) = Awg(i — j), where

BAB/2+5/e
T eBAE/2 & o BAE[2 (7)

In an interacting lattice-gas model, the difference in energy for each pair of sites
will depend on the local configuration around the pair of sites. So, each type of
neighborhood will have a specific value of A. When you have no additional interaction
in the lattice-gas, i.e. no dependence on other neighbors and so forth, then there is
only one value of A. As a result, one can use Kawasaki dynamics and still obtain
real time. For Kawasaki dynamics, the real time is t, = A7S/N; whereas, for kinetic

version with excitation barriers, real time is ¢, = 7S/N, where S is the number of
MCS.

The only reason this may be important is if we consider normalizing the Thermal
Excited transition probabilities with respect to hopping forward and backwards. We
find that

wg(i = )
wp(i—j)+twe(j —i

) =wk(i—j) . (8)

Thus Kawasaki dynamics renormalizes the probabilities of barrier crossings so that
wig(i = j) + wg(j — i) = 1. It follows immediately that for barriers where wg(i —
j)+wgr(j — 1) < 1 the hopping rates are increased and, where the sum is > 1, the rates
are decreased. Because of this renormalization, Kawasaki dynamics requires shorter
computational times for processes where wg are very small. When wg are small, a
hop has to be attempted many times before it is successful and computer time can
be prohibitive. But, again, this depends also on algorithm used in simulation. For
thermally excited KMC case using n-fold-way algorithm, this advantage of Kawasaki
dynamics is no longer an issue. On may, however, wish to utilize the advantage of
Kawasaki dynamics for maintaining stochiometry because it swaps two things at a
time. This may be incorporated into thermal KMC approach too.
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3 Poisson Processes and Real Time

3.1 Poisson Statistics

If one adopts a dynamical interpretation of Monte Carlo with a perspective that we
will resolve time such that events never occur simultaneously, then our MC algorithm
must establish a chronological sequence of distinct events that are separated by various
intervening times. Because the microscopic dynamics giving the exact times are
not modelled directly, the events and associated times must be constructed from
appropriately weighted probability distributions of all possible outcomes. This course-
graining of time and events, with its inherent expectations, assumes that each event,
1, can be characterized by an average transtion rate, r;. Given this, it is assumed
that any particular transition which is possible at ¢ can again be possible at some
later time ¢ + At with a uniform probability based on its rate and is independent of
previous events. This is, by definition, a Poisson process and is given by the Poisson
distribution, i.e.
A\

Pl = e e o)
where n is a random variable counting the number of events ¢ which have occured
within time ¢. Notice the expected number of events occuring within a time ¢ is
< mn; >= r;t, which recovers the average occurance rate of the process. It can be shown
that the Poisson process is consistent with the Master Equation (N.G. van Kampen,
Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1990).

A useful feature of the Poisson process is that an ensemble of independent Poisson
processes will behave as one, large Poisson process. Thus, the statistical properties of
the ensemble may be formulated in terms of the dynamics of the individual processes.
For example, if there are two types of events with rates r; and re, then the total
number of events of both types (n = n; + ng) that occur in time ¢ is a Poisson
distribution with a total rate of R=r; + ry. (For N types of events, R = ¥~ | r; and
n =Y~ n;) And, it follows that

P(n) = — e ™ . (10)

These ideas and developments of Poisson statistics may be found in W. Feller, An
Introduction to Probability Theory and Its Applications (Wiley, New York, 1975);
E. Cinlar, An Introduction to Stochastic Processes (Prentice-Hall, Englewood Cliffs,
1975); and, H. Stark and J.W. Woods, Probability, Random Processes, and Estimation
Theory for Engineers (Prentice-Hall, Englewood Cliffs, 1986).

3.2 Mean Time between Events and Real Time

Mean Time: An important additional attribute of the Poisson process is that the
probability density of time ¢ between successive events is

P(t) = Re | (11)
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From this probability density, the mean time between successive events is < t >=
1/R. In a non-stationary situation (evolving towards equilibrium) all still holds but
the rates are time dependent, see below.

Real Time via MC: If a system with processes under study can be cast as a
set of independent events with known rates, then the time between events has an
expotential distribution (Eq. 11) that can be sampled to determine the time that it
takes for an event to occur. To see this from Eq. (11), note that the time to an event
is

T(r) = | "dfReR =1 ¢ BT (12)
0

which lies between [0,1]. So, a random variable U = e~ #" is uniformly distributed
between [0,1], and this relation allows us to obtain the real time, 7(in units of MCS),

between successive events:

—InU
T =
R
This random sampling of the Poisson time distribution for each cho-

sen event ensures that a direct and unambiguous relationship between
MCS and real time step is established.

Real Time for Event Occurance . (13)

Time in the General Case: Note that the basic ideas leading to the Poisson
distribution of times and events are equally applicable to systems which are non-
stationary and evolving towards equilibrium. The non-stationary Poisson process has
overall rates that are a function of time. As a result, if the MC algorithm is made to
simulate the Poisson process, then the relationship between MC time and real time
can be given a firm basis in both static and dynamic situations. For the general case
of N species (e.g. [8]), k events are characterized by the rates {r} = {ry,ro,..., 7},
which are consistent with average dynamic barriers arising from the potential energy
surface. The N species can partition among various possible transition events as
{n} = {nq,na,...,nx}, where n; is the number of species capable of undergoing a
transition with a rate r; and N=Y"%_, n,. If a sufficiently large system is used to achieve
independence of the various events, then the MC algorithm effectively simulates the
Poisson process and the passage of real time can be maintained in terms of {r} and
{n}. For each trial 7 in which an event is realized, the time should be updated with
an increment 7; selected from an exponential distribution with R; = Ele n;r;.

Appendix: More Formal Derivation of Unambiguous Time

Note that X (¢) = 1 — T'(¢) is the time for an event not to occur. The Func-
tional Inverse of X (¢), i.e. X (), gives a relation of time to sampling distribu-
tion. And, clearly, X '(7) = InX(7), so InX (1) = —R7. As X(7) is a random
number between [0,1], let it be U, a psuedo-random number from a uniform dis-
tribution. This gives the results for real time, 7, (in units of MCS) given in Eq.
13 and guarentees the Poisson distribution. See Appendix of M.P. Allen and D.J.
Tildesley, Computer Simulation of Liquids (Oxford Press, 1987).
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Appendix: Derivation of Poisson distribution
Let us follow radioactivity example taken from M.L. Boas, Mathematical Meth-
ods in the Physical Sciences 2nd Edition (Wiley, 1983). Consider an event such
as radioactive particle emission. We count the particles emitted during our ob-
servation. Assume that the average count rate does not decrease during our
observation (i.e., it is less than 1/2-life of substance).

Probability 1 particle is emitted during a small time interval At is pAt =
constant, if At is short enough so that the probability of two particles being
emitted is negligible. Let P,(¢) be the probability of n counts in time interval
t + At. For n > 0, this is sum of probabilities of two mutually exclusive events:

1. “n+ 0 particles in t, 0 in At”

2. “n —1 particles in t, 1 in At”. Therefore,

P,(t+ At) = P,(t)Py(At) + P, 1(t)P1(At) (14)
Pi(At) = pAt (1 particle in this time)
Py(At) = 1-—pAt (0 particle in this time) . Thus,
)

P,(t+ At) = P,(t)[1 — pAt] + P,_1(t)[pAt]. (15)
For At — 0, Eq. 15 re-arranges to

dP,(t)
dt

= 1(Poa(t) = Pa(?)). (16)

For n = 0, Eq. 16 simplifies since the only possible event is “no particle in
t, no particles in At”; so, dPy(t)/dt = —uPy(t) and Py(t) = e ", because the
probability that no particle is emitted during a zero time interval is Py(0) = 1.
Substituting this result into Eq. 16 gives P;(t) = ute #*. Continued subsitution
gives Py(t), Ps(t), ..., Py(t), where P,(t) is found to be Eq. 10. With ¢t = 1, n is
the counts per unit time, y =<n >.

Example 1: Consider 1800 radiation counts over 10 hours.

Question: During how many 1-minute intervals should we expect to observe no
particles, 1 particle, etc.? We have < n >= pu = 1800 counts/(10 hrs * 60 min)
= 3 counts/min. From the Poisson distribution,

n

3
P, =—e 3 and, hence, Py=¢ *=0.05. (17)
n!

In other words, no particles in about 5% of the 600 1-minute intervals, or 30
1-minute intervals.
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Example 2: Approximate binomial distribution

Question: If n = 1000 people select a random number between 1 and 500, what
is probability that 3 people select the number 297

Normally we would use the binomial distribution to find this with probability
p =1/500 and n=1000. That is,

1 ! 1 3 4 997
009 (—) (—99) — 0.1806 .
3!997! \500 500

But we can make an excellent approximate to the binomial distribution by using
the Poisson distribution, which is much easier to evaluate. This is only good for
a large n and small np =< n >. Let p << 1 and np << n such that n — oo,
p — 0 and np =< n >= constant. From values given above, < n >= np =
1000(1/500) = 2, we find that

<n>)" 2)3
Pln=3<n>=2) = #6_00 - %6_2 —0.1804 .
n! !

The Poisson distribution is indeed a very good approximation.

3.3 Adsorption-Desorption in Lattice Gas Model
A simple example following Fichthorn and Weinberg [8].

Consider adsorption of a gas-phase species A with a solid, single-crystalline sur-
face. Equilibrium occurs when chemical potentials of gas-phase and chemisorbed A
are equal. Equilibrium is established from a kinetic point of view when the net rate
of chemisorption of gas-phase A is equal to net rate of desorption of A to gas-phase.

Analytic Solution - Using the simple lattice-gas model, we can assume adsorbed
molecules do not interact and each molecule requires one site for adsorption. In
addition, we assume the molecules arrive at surface at random, uncorrelated times
and can be characterized by an average rate r4. A similar situation applies to atoms
chemisorbed on the surface so that all microscopic influences induce a desorption
which occurs with an average rate rp. Thus, this kinetically maintained balance

follows o
= ral=0) =0 . (18)

where 6 is the fractional surface coverage of A (here the inital condition is no coverage
or #(t=0)=0). So the obvious solution of the above equation is

TA _ ra
0 t) = 1—e (TA_'—TD)t —t—=00 ) 19
*) rA—i-rD( ) =t TA+TD (19)

where the last equality shows the equilibrium coverage in terms of rate arising from
microscopic phenomena, as well as detailed balance. It should be obvious that the
coverage 6 plays the same role as probability.
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KMC Algorithm - In the flowchart (Fig 2) of the adsorption-desorption the tran-
sition probabilities W4 and Wp are chosen to obey detailed balance because they are
chosen at random and independently such that a successful adsorption is W4 (1 — 6;)
and desorption is Wp#,;. Thus, the total probability of success per trial i is W4 (1 —
;) + Wpb;) < 1, where 0; = M;/N for M; occupied sites out of N. Detailed balance is
mathematically guaranteed because for T trials of adsorption events the probability
is

Plu) = (o) VAl = 007 [1 = Wal —0))" ™

so that average expected adsorption events in T trials is
<Ny >= WA(l — Oi)T , (20)

with similar result for < np >. Therefore, when steady-state is attained, i.e. when
< nyg >=<np >, we have W4(1—0s5) = Wpb,,, which is detailed balance! The actual
rate to be used at each time-step is r4; = 74(1 —6;) for adsorption and rp; = rpb; for
desorption. Clearly, at each accepted event the rates are updated (but in this case it
is a trivial update). Notice also in the flowchart that at each trial when some event
happens, either desorption or adsorption, the increment of time is different for each
MCS and determined from sampling randomly the Poisson time-distribution, where
R; = ra; + rp;. This may be viewed in the appendix where a code is reproduced
which gives the results of simple model and it follows the flowchart in Fig 2. In this
code, the acceptance and rejection method is clear as is the sampling of the Poisson
distribution in time. Notably, if 7! is the attempt frequency, then the real time for
1 MCS = 7/N, where N is the total number of particles and assuming that each
particle is excited only once.

Following this KMC algorithm, we find the results in Fig. 3. Notice that the
analytic and KMC results agree very well and reach steady-state (although with
fluctuations) in the same real time. The code to derive these results is given in
Appendix (or download). You may see the flowchart is followed in the code and that
Time is incremented according to the Poisson distribution. Take the code and alter
the time increment (e.g., make it the same quasi-random number that decides on
the event, adsorption or desorption), you will see that the theory curve and KMC
simulation will not agree! Note that the simple code adnd problem does not require
the “n-fold-way” and fancy data structures because it is so fast, even for modest size
lattices (4002400).
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Flowhart for Adsorption-Desorption KMC Model

Select a
Random Site

N
Generate | . Y
Rin (0,1) €——< Occupied? > —p| Generate
: Rin (01)
Remove Y
species  [€— : v N
from Lattice Add species < @

l To Lattice

v

t=t +t

A4

< T=T+1 [«

T=T+] f—

t=t +1

!

Figure 2: Flowchart from simple lattice-gas from Ref. [8] showing how real time is
incremented (with varying amounts of time depending on the transition rates in a
Poisson process) only when transition occurs. For complex cases, the efficiency of this
approach can be highly improved by using a residence-time algorithm.
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Results for Adsorption-Desorption Model
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FIG. 2. The transient solution of Eq. (12) for the initial condition of an
empty surface [ #(7 = 0) = 0] provided by both the analytical form of Eq.
(13) and the Monte Carlo algorithm of Fig. | with 7, = 1.0 (site s)~ ' and
rp = 2.0 (site 3)~' (W, = 1/2 and Wp, = 1). The inset depicts the rate of
adsorption measured from the Monte Carlo simulation at steady-state and
the continuum steady-state rate.

Figure 3: KMC results for simple adsorption-desorption lattice-gas model (analytic
vs. KMC) [8]. A code for re-producing their results can be downloaded.
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3.4 The KMC Bottom Line

KMC simulations exhibit rate changes with each sampling because the configuration
has changed (e.g., coverage or barriers); the possible events change each MCS; and,
the elapsed time since the last event is adjusted depending on the probability of
the transition. For KMC, the time increment must be scaled by the average time
between successful events in the conventional MC scheme, which, as we have seen,
is given by a Poisson distribution from the time may be sampled each time step. In
general, you can make set up the KMC such that every trial some event happens
(there are no wasted MCS), if improved algorithms and data structures are used (see
below). Conventional MC simluation time is incremented by constant amount after
each attempted event, whether or not event was successful.
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4 Algorithms for “Faster” MC

In terms of algorithms, Kinetic or equilibrium Monte Carlo simulations of a system
of size M is based on the so-called “n-fold-way” by Bortz, Kalos, and Liebowitz [4]
(or, in more modern references, the “residence-time algorithm”). Such an algorithm
scales as O(M'/?) (see below). More recently, these have been supplanted by improved
algorithms that scale as O(logsM) or O(M'/X) that use clever data structures and
K-level searches, e.g., [15, 7, 19, 3]. Keep in mind that efficient algorithms and data
strucutres can be just as important as the physical problem, speeding up simulations
by orders of magnitude. Hence, in the following, I cover a few of the important
algorithmic ideas for performing KMC type calculations.

4.1 MC for Barriers: n-fold-way

In the case of surface diffusion, for example, using the Wg or wg distribution, one
requires many attempts before a surface atom hop is successful to a neighboring site.
In such a case, which occur at low T, MC should not be done by picking particle
at random. Rather, a better approach is as follows (see, e.g., Ref. [3]). Let M be
the number of possible MC events (e.g. adsorption, hops, or desorption), and let
r; be the rate for the i event. The total rate (as before) is R = M, r;. For a
proper simulation, the " event should occur with probability, P, = r;/R, as should
be obvious. (Keep in mind that in standard MC, the {r;} are transition probabilities,
W;, not rates.) We then have the following proceedure:

1. GROUP all possible events according {r;} (or Wg),

2. GET a uniform quasi-random number U € [0, 1] so that UR € [0, R).

3. FIND the particular event according to relative rates (or relative probability in
MC):

v—1 v
Z r; <UR < Z Ty .
i=1 i=1
(Note that the, by dividing by R, you are using Probabilities in uniform quasi-
random number between [0,1).)
4. CARRY out the event v, which was selected at random.

5. UPDATE those r; that have changed as a result of event v; update R and any
data structures being used.

6. INCREMENT TIME by 7 from the Poisson distribution.

Steps 2,4, and 6 are independent of M. Steps 3 and 5 are time consuming.
Depending on the data structure needed for the search algorithm, step 5 may or may
not grow with M. For example, if a simple linear search method is used then steps 3
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scales as O(M) and step 5 scales at most as O(M). That is, this is a linear-scaling
method. This algorithm for MC simulation determines the probability of success of
an event before the event is picked (rather than after). It was first developed by
Bortz, Kalos and Lebowitz [4] and is commonly referred to as the n-fold-way, or
restdence-time algorithm.

4.2 Binning Methods

The Binning method proposed by Maksym [15] allows a search to be made over partial
sums of rates (or probabilities). Choose sums containing ¢ rates, such that there are
M /g partial sums given by
O _ S~ .
57 = Z ri j=1,...M/g . (21)
i=1+(j—1)g

Now we have a 2-Level (binary chopping) search in Step 3, as suggest by the super-
script on the partial sum, S, where K=2. (i) Search for the correct bin (an O(M/g)
time cost) to find the type of event, and, once the type of event is found, (ii) Search
within a bin or group (an O(g) time cost) to find the site for event. Updating in Step
5 is independent, of M. Minimizing with respect to g (bin sizes) leads to O(M/?):
The time for update of the group is o M/g, while the site search is « g. The total
time is then T = aM /g + bg, where a and b are constants. Clearly, by minimizing

w.r.t. g, we get optimal group size g = y/aM /b and optimal time 7" = 2v/abM. Hence
the O(M*'/?) scaling for K=2 Binning Searches.

This method was generalized to a K-Level search by Blue, Beichl, and Sulllivan
[3]. For K=2, it is the method of Maksym [15]. Higher-levels of binning are defined
recursively, namely,

S = S §ED =1 MR k=3, K . (22)

J
i=1+(j—1)g

Minimizing time for searches yields g is O(M'¥) and the total time is O(K M)
for step 3, whereas step 5 is O(K) because K partial sums need to be updated. Of
course, there is more storage for data, being O(M*~VE + M=K 4 4 MVK),

For a fixed M, the best time can be achieved by largest K that gives only g = 2
terms in each partial sum, i.e. 2 = MY/X or K = log, M. This is a binary tree search
and both step 3 and 5 are O(logoM). Storage space is then O(M). Please see Ref.[3]
for algorithm for recursive tree searches.

The results of such a K-level simulation for Nz /N epitaxial growth was given by
Blue et al. [3]. It is reproduced here for convenience., see Fig. 4 The substantial
reduction in MC time versus system size is apparent. The binary-tree search method
was originally proposed by Wong and Easton [19] and is equivalent to K=5, although
for larger system sizes K may have to be increased to continue this trend.

20



1o¥
[

10¢

Sieylatlon Time per Evanl {pa}

1a' tas
1af 104 1o¥ 104
H [Simyigtlon 3ize N hy N)

FIG. 1. Log-log pior of timic per event for different searc!
schemes. O, K=2; O, K=} A, K=4, 7, K=5: <, binary tree

Figure 4: From Ref. [3], note the log-log plot shows the dramatic reduction in CPU
time. The binary-tree search algorithm (curve approaching the bottom K=5 curve) is
an efficient way to organize and search data structure within KMC algorithm [15, 7, 4],

e.g., “n-fold-way”.

4.3 Example for K=2: MBE growth

Let us make a connection to previous model and scaling discussed above using
Maksym’s discussion of MBE growth. In this MBE growth model there are adso-
prtion (a), hopping (h) and desorption (d) events possible, similar to the simple
model discussed earlier. Recall that we should select time, type of event, and site of
event beforehand. For M surface sites, we have, as before, the total rate

M
i=1
Again time increment will be from this rate, 7 = —InU/R. The type and site of

event are selected from the conditional probabilities found from the total rates of
adsorption, hopping, or desorption, i.e.

M M M
i=1 =1 i=1

Thus their probabilities are A/R, H/R, and D/R. Similarly, the conditional probabil-
ities for event to occur at a specific site ¢ are a;/R, h;/R, and d;/R.
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The proceedure outlined in the last section can be numerically done as follows.
Pick a second random number U, € [0,1]. The type of event is chosen as:

1. ARRIVAL if RU, < A.
2. HOPPING if A < RU, < H.
3. DESORB if RU, > H.
After type of event is determined, the site 7 of event is chosen as, for example:
1. If ARRIVAL, RU, > Y07} a;.
2. If HOPPING, RU; — A > Y075 h;.

3. IF DESORB, RU, — (A + H) > Y7} d.

J:

This method was first discussed actually by Ref. [7].

The data search is be done as K=2 Level search (binary chopping) to find the type
of event. Once the type of event is found, a search to find the site can be performed
within that event group. As given above, the time for update of the group is &< M/g,
while the site search is & g. The total time is then T = aM/g + bg, so that the

optimal group size and time are g = (/aM/b and time T = 2v/abM, respectively.
Hence the O(M?'/?) scaling mentioned in the beginning.

Maksym [15] exemplified this on a 1002100 lattice by plotting Time per Event
in milli-seconds versus Logarithm Base 10 of Group Size. He found a factor of 100
reduction even for this small system size. The K-level version is even more efficient,
as seen in Figure above.

In closing this section, it is worth mentioning that Hassold and Holmes [11] has
developed the n-fold-way algorithm for domain growth in materials based upon a
Pott’s Model (an Ising Model with N different spin orientations). In such a model,
each spin flip alters the domain structure. In section C of their paper they discuss how
to efficiently select flips based on their relative probabilities. This requires setting up
the algorithm outlined above for the n-fold-way, but it is helpful to see it applied to
different models. They provide section of coding to see the method and update at
work. You may also compare this to 2-D vacancy diffusion in a binary alloy with and
without ballistic jumps, as given in Homework.
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5 Beware of Approximations to Master Equations

Haider, Bellon and Martin [10] discuss several aspect of KMC for driven alloy systems.
In particular, they discuss the effects of ballistics atomic jump (as perhaps obtained
under irradiation, in addition to the usual thermal jumps already discussed. Within
a very simple alloy model (using mean-field free energies, etc.) they discuss how a
kinetic model and a thermodynamic model can be made to obtain the roughly same
results. In other words, in the infinite time limit, kinetic equilibrium yields the the
thermodynamic expectation, even in the case of ballistic jumps.

This result is obtained, however, only when the probability distributions are
sharply peaked and the deviations from the average state are very small. Hence,
it is clear this result does not have to be generally true. In fact, it is known not to
be true in general. For example, in 1-dimension, the exact solution of the Master
Equation is known. By Taylor’s series expansion of the Master Eqs. (both P(x +
€, t) and W(x + € — x, t)) about such a sharply peaked distribution centered at x
and truncating to first-order in ¢, one obtains the well-known Fokker-Planck equa-
tion. The Fokker-Planck equation does not converge to exact solution for large but
finite system, as might be expected. In multidimensions, the Fokker-Planck equation
does not even fulfill detailed balance, or also the condition of zero-probability flux.
(N.B. For a 1-D random walker, or single particle experiencing white (or Gaussian
distributed) noise, The Fokker-Planck equation does provide an exact solution to the
Master Equation, or Langevin equation. But, with more than 1 particle, or colored
noise, or multi-dimensions, this is not the case. So that is why the caution for the
user to beware.)

This occurs because P(x) oc e"V¥(*) where ¢ is an intensive quantity for a system
of N particles. Thus, a Taylor’s series expansion of the Master Eq. yields

Plate) =Y~ (c-v)' Pla) . (25)

Surprisingly, if you consider each term, they have contributions of O(NY), so the
series does not converge. Hence, by truncating to any order in €, you have thrown
out equally important terms.

Kubo et al. [13] that one must handle ill-convergent functionals with care. Con-
sider expanding intensive variable about the extremal state z, where x + € is the final
state not far away from z,

o0 1 "
Ba+d =3 — (e 9)"6l) . (26)
n=0 """
Putting this into Master Eq. gives
%ﬁ’t) =Y W —z+e) [ee-wb(x) — 1] ) (27)
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By performing expansion in this manner, one can show that the Master Eq. (using this
Kubo method) agrees with the thermodynamic approach except for term of O(N™').
You can show that if you just expand P(x) in Master Eq. then the approaches agree
only in the vicinity of the extrema of P(x).

In actual (binary A-B) alloy problems, the probability could be directly related
to variable of interest. For example, as related to a Homework problem, P could be
site concentration of A atoms, i.e., how much A atoms are on given sublattice. This
depends on time, thermal history, local environment (the local barriers to diffusion
change), and so on. Thus, the Master Equation provides the evolution of the site con-
centration given the transition probabilities. Additional events can be incorporated
which affect this site concentration. Bellon et al. include ballistic jumps as cause by
irradition, for example. (See Homework KMC code.)

Copyright by Duane Johnson May 2001

Note to the consumer:

These notes were created as an overview and introduction to concepts involved in
Kinetic Monte Carlo. They are, in some sense, a distillation of many papers, and a
means to point the interested to references that may be useful, or to more in-depth
information. Invariably, while preparing these notes, errors or unclear statements may
have been unintentionally created. As always, use with care (don’t believe everything
you read, unless you sorted it out for yourself!); nonetheless, they should be helpful
in getting started.

Duane Johnson
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