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Scientific and engineering simulations require the solution of 
(many) very large, sparse, linear systems.

The matrices arise from finite element/volume discretization of 
partial differential or integral equations (and other areas) 

describing the physical behavior of complex systems.

Accurate solution requires millions of unknowns.

Time-dependent nonlinear problem: Solve a nonlinear system each 
timestep, which (Newton iteration) requires many linear systems to 
be solved.

Very large optimization problems: each iteration requires the 

solution of a linear system.

New fields of application: Financial modeling, Econometry, 
Biology.

Large Sparse Linear Systems
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Consider N x N matrix with k nonzeros/row (average), k^N:

direct solver (LU): work: O(N
3
) storage: O(N

2
)

idem for band matrix: work: O(b
2
N) storage: O(bN)

2D: b = O(N
1/2
): work: O(N

2
) storage: O(N

3/2
)

3D: b = O(N
2/3
): work: O(N

7/3
) storage: O(N

5/3
)

sparse matrix % vector:work: 2Nk storage: Nk

For large problems direct methods are impossible; even for 

moderate problems they are much more expensive than 

iterative methods (if they converge).

Why iterative solvers?

©2001 Eric de Sturler

Consider N x N matrix with k nonzeros/row (average), k^N:

Iterative methods; convergence in m iterations:

typically m^N (independent of 2D, 3D, ... problem),

m depends on characteristics of problem rather than size,

in general m increases only as a moderate function of N,

for several problem classes constant m algorithms are 

known (multigrid O(N) work (optimal), multilevel O(1) 

iterations),

Krylov subspace methods convergence in m [ N steps (in 

exact arithmetic).

Why iterative solvers?
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System of nonlinear equations: f(x) = 0
Rewrite as , and iterate  (fixed-point iteration)x = F(x) x i+1 = F(x i)

Converges if  and  Lip. cont. in neighborhood of solution✣(∫FT) < 1 ∫F
T

Linear system: Ax = b
Matrix splitting: [P + (A − P)]x = bw Px = (P − A)x + b w

x = (I − P−1A)x + P−1b
Iterate: x i+1 = (I − P−1A)x i + P

−1b
Converges if ✣(I − P−1A) < 1

Methods: Jacobi iteration, Gauss-Seidel, (S)SOR, ...

Fixed-point: x = (I − P−1A)x + P−1bw P−1Ax = P−1b
Fixed-point is solution of the preconditioned system: P−1Ax = P−1b

Basic Iterative Methods (1)

©2001 Eric de Sturler

x i+1 = (I − P−1
A)x i + P

−1
b = x i + P

−1
b − P

−1
Ax i

Linear System: Prec. system: Ax = b P
−1
Ax = P

−1
b

Residual: Prec. residual: r i = b −Ax i r̃ i = P
−1
b − P−1

Ax i

x i+1 = x i + r̃ i u x i+1 = x0 + r̃0 + r̃1 +£ + r̃i

Update x i+1 − x0 = r̃0 + r̃1 +£ + r̃i

r̃ i+1 = P
−1
b − P

−1
Ax i+1 = P

−1
b − P−1

Ax i − P
−1
Ar̃ i = r̃i − P

−1
Ar̃ i

r̃ i+1 = (I − P−1A)r̃i = (I − P−1A) i+1r̃0

Krylovr̃ i c span{r̃0,P−1
Ar̃0,¢, (P−1

A) ir̃0} h K
i+1(P−1

A, r̃0)
subspace

x i − x0 c span{r̃0, r̃1,¢, r̃ i−1} = K
i(P−1

A, r̃0)

Basic Iterative Methods (2)
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Solution to : Error: Ax = b x̂ ei = x̂ − x i

Residual and error: ri = b −Ax i = Ax̂ − Ax i = Aei ( r̃ i = P
−1
Ae i)

Theorem:  is a fixed point of  iffx̂ xi+1 = (I − P−1A)x i +P
−1b

 is solution of x̂ P−1Ax = P−1b (g Ax = b)
Proof: x = (I − P−1A)x + P−1b = x − P−1Ax +P−1bw

P−1Ax = P−1b

ei+1 = x̂ − x i+1 = (I − P−1A)x̂ + P−1b − (I − P−1A)xi − P
−1b

= (I − P−1A)ei

 and ei+1 = (I −P−1A)ei = (I − P−1A)
i+1

e0 r̃ i+1 = (I − P
−1
A)

i+1
r̃0

ei+1✌ span e0,P
−1Ae0, (P

−1A)
2
e0 ,¢, (P−1A)

i+1
e0

ei+1✌ span e0, r̃0,P
−1Ar̃0,¢, (P−1A)

i
r̃0

Basic Iterative Methods (3)
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Assume that in ,  is an explicitly preconditioned matrixAx = b A

From original system  we derive preconditioned systemKu = f

P−1Ku = P−1f

or KP−1u = f

or  and P1

−1KP2
−1ũ = P1

−1f P2
−1ũ = u

Iteration becomes

xi+1 = (I − A)xi + b = xi + (b − Axi )

xi+1 = xi + r i

Simple way to improve the iteration.

Is there a better update in same direction?

 best ?xi+1 = xi + ✍ i(b − Axi ) ✍ i

Methods based on Projection (1)
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First question: Best in what sense?

a) minimum residual in 2-norm:

xi+1 = x i + ✍i(b −Axi ) e r i+1 = r i − ✍ iAri

minimum : find point in  closest to æri+1æ2 span Ari r i

Orthogonal projection of  on r i span Ar i
Orthogonal in corresponding inner product: …x, y 2 = yHx

✍ i : AriΩ r i −Ar i w …ri − ✍ iAri ,Ari 2 = 0

…r i ,Ar i 2 − ✍ i…Ari ,Ari 2 = 0 w ✍ i =
…ri,Ar i 2
…Ari,Ari  2

Orthomin(1)xi+1 = x i +
…r i,Ari 2
…Ar i,Ari  2

r i e r i+1 = r i −
…ri,Ari 2
…Ari,Ari  2

Ari

Methods based on Projection (2)
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First question: Best in what sense?

b) minimum error in A-norm if A is Hermitian positive definite:

x i+1 = x i + ✍i(b −Ax i ) e ei+1 = e i − ✍ iri

minimum : find point in  closest to  (in A-norm)æei+1æA span r i ei

Orthogonal projection of  on ei span r i
Orthogonal in corresponding inner product: …x, y A = yHAx

✍ i : r iΩA e i − ✍ iri w …ei − ✍ ir i, ri  A = 0

…r i,Ae i  2 − ✍ i…r i,Ar i  2 = 0 w ✍ i =

…r i ,ri  2
…r i,Ari  2

 (steepest descent)x i+1 = x i +
…r i,ri  2
…ri ,Ari  2

r i e r i+1 = ri −
…ri ,r i  2
…ri ,Ari  2

Ari

Note that we do not need to know error to minimize it in A-norm

Methods Based on Projection (9)
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Steepest descent because of relation to quadratic problem:

 for symmetric positive definite (SPD) f(x) =
1

2
xTAx − bTx + c A

, fastest decrease in direction of negativef(x + ✒p) = f(x) + ✒(Ax − b)Tp
gradient: residual

Note that quadratic problem has same solution; 

minimum if  for any direction  f(x + ✒p) = f(x) p

(note that stationary point must be minimum)

Hence, ; his implies ≤p : (Ax − b)Tp = 0 Ax − b = 0

Why does  SPD prove  is a minimum of  if ?A x f(x) Ax − b = 0

Compare with classification of stationary point general problem.

Methods Based on Projection (10)
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Note the following properties of Orthomin(1) and Steepest Descent:

Orthomin(1):  with  r i+1 = r i − ✍ iAr i ✍ i =

…ri ,Ari  

…Ar i,Ari  

…r i+1,Ar i   = …ri,Ar i  − ✍ i…Ar i,Ari  = 0

r i+1 z Ar i

Steepest Descent:  with  r i+1 = r i − ✍ iAr i ✍i =

…ri ,r i 2
…r i,Ari  2

…r i+1, r i   = …r i, ri  − ✍i…Ar i, ri   = …r i, r i   − ✍ i…r i,Ar i  = 0

r i+1 z r i

What can we say about  in the steepest descent case?✍ i

(  is HPD)A

Methods Based on Projection (12)
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We will use the Jacobi iteration, a basic iteration with  theP
−1

inverse of the diagonal of the matrix , and Orthomin(1) on aA

simple PDE on the unit square, discretized on a  grid.10 % 10

The PDE is  with Direchlet boundary−uxx − uyy + rux − ruy = 0

conditions  on the south and east boundary, and  on theu = 0 u = 1

west and north boundary.

In the first problem we take , in the second problem we taker = 0

r = 40.

Orthomin(1) vs Jacobi iteration

©2001 Eric de Sturler
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Basic iterations generate (preconditioned) Krylov subspaces:

xi − x0✌K
i(A, r0) = span r0,Ar0 ,A

2
r0,¢,A

i−1
r0

ri✌K
i+1(A, r0) = span r0,Ar0,A

2
r0,¢,A

i
r0

Note that Orthomin(1) and steepest descent generate

approximations and residuals from these same spaces.

1. Orthomin(1)xi+1 = x i +
…r i,Ari  2

…Ar i,Ari  2
ri e ri+1 = ri −

…ri,Ari  2

…Ar i,Ari  2
Ari

2.  (steepest descent)xi+1 = x i +
…r i,ri  2

…ri,Ari  2
ri e ri+1 = ri −

…ri,r i  2

…ri,Ari  2
Ari

These two methods ‘improve’ convergence using 1-dimensional

minimization. Hence, these methods have also been called

accelerators. 

The obvious question arises whether we can extend the idea and

find the best approximation over a larger space; for example the

entire subspace generated so far.

Optimal Projection Methods
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Minimize the 2-norm of the residual:

Find  is minimum, and set zi ✌K
i(A, r0) : æb −A(x0 + z i)æ2 xi = x0 + zi

Theorem: We obtain the minimum for  if zi b −A(x0 + zi) ΩAK
i(A, r0)

Proof: Note that  minimum is equivalent to æb − A(x0 + zi)æ2

 minimum. Let  such that  især0 − Azi)æ2 ẑ✌K i(A, r0) ær0 −Aẑæ2

minimum. Then  must be a stationary point of the functionẑ
. f(z) = ær0 − Azæ2

2

Hence for any unit vector  we must have : p✌Ki(A, r0) fp(ẑ) = 0

lim
✒✌‘, ✒t0

f(ẑ+✒p)−f(ẑ)
✒ = 0 g

lim
✒t0

ær0−Aẑ−✒pæ2
2−ær0−Aẑæ2

2

✒ = lim
✒t0

−✒pHAH(r0−Aẑ)−✒(r0−Aẑ)
HAp+✒2æApæ2

2

✒ = 0g

 for any unit . This means pHAH(r0 − Aẑ) + (r0 − Aẑ)
HAp = 0 p✌K i(A, r0)

 for any unit  (why?), and so, by definition,(r0 − Aẑ)
HAp = 0 p✌K i(A, r0)

.(r0 −Aẑ)ΩAK
i(A, r0)

Optimal Projection Methods
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So, to find optimal approximation ( ) we try to find æriæ2 z i✌K
i(A, r0)

such that :   r0 −AziΩAK
i(A, r0) z i✌K

i(A, r0) e zi = ✟
j=0

i−1

A jr0� j+1

So,  approximates Azi = ✟
j=1

i

A jr0� j = [Ar0 A2r0 A3r0 £ A ir0 ]� r0

We can rewrite problem in least squares form:
[Ar0 A2r0 A3r0 £ A ir0]� l r0 h K� l r0

This can be solved using

a) normal equations (accuracy problems)

b) QR decomposition

We have (min. 2-norm) unique decomposition: r0 = f1 + f2
such that  and K� = f1 f2Ω range(K)

Solve: , where  and  upper triangular.Qn%iRi%i = K QHQ = I R

, , and f2 = (I −QQH)r0 f1 = r0 − f2 = QQHr0 � = R−1QHf1 = R−1QHr0
zi = [r0 A1r0 A2r0 £ A i−1r0]�

Optimal Projection Methods
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Iteration-wise the problem is solved in three steps:

1) Extend the Krylov spaces  and  by adding theKi(A, r0) AKi(A, r0)

respective next vectors  and  (only 1 matvec)A ir0 A i+1r0

2) Compute orthogonal basis for : QR-decomp. of AK i(A, r0) K

3) Project  (orthog) onto  and solve the small problem r0 AKi(A, r0)

. Note that this problem is only  irrespective ofR� = f1 = QHr0 i % i
the actual size of the problem (say ).n % n

We would like to carry out these steps efficiently.

The GCR method (Generalized Conjugate Residuals) illustrates

these steps well

Optimal Projection Methods
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GCR:Ax = b

Choose  (e.g. ), and  x0 x0 = 0 tol

r0 = b − Ax0; i = 0;

while  doæriæ2 > tol

 adds search vector to i = i + 1; ri−1 K i−1(A, r0)

 extends ui = ri−1; ci = Au i; Ari−1 AK i−1(A, r0)

for  doj = 1, i − 1

Orthog.  against previous  andui = u i − u jcj
Hci; ci c j

update  such that  maintainedci = ci − c jc j
Hc i; ui Aui = ci

end do
Normalize; end QR decompositionui = u i/æciæ2; ci = c i/æc iæ2;

Project new  out of residual andxi = x i−1 + uici
Hr i−1; ci

update solution accordinglyri = ri−1 − cici
Hri−1;

end do Note that  for riΩcj j [ i

What can go wrong with this algorithm?

GCR
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Recapitulation of GCR; after iterations:m

, , for ui✌K
i(A, r0) c i✌K

i(A,Ar0) i = 1¢m

, for ri✌K
i+1(A, r0) = span{r0, r1,¢, ri} i = 0¢m

Let Um = [u1 u2 £ um]; Cm = [c1 c2 £ cm]; AUm = Cm; Cm
HCm = I

range(Um) = Km(A, r0)

; minimum obtained for ærmæ2 = min ær0 − Azæ : z✌ range(Um) zm

; set .r0 − AzmΩCm e Cm
& (r0 − Azm) = 0 zm = Um�

 and .Cm
Hr0 − Cm

HCm� = 0e � = Cm
Hr0 zm = UmCm

Hr0 = A−1CmCm
Hr0

rm = r0 − AUmCm
Hr0 = r0 − CmCm

Hr0 = (I − CmCm
H)r0

Note that  is a decomposition on orthog. basis.r0 = rm + ✟
j=1

m

c jc j
Hr0

GCR
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First the GMRES method generates an orthogonal basis for the

Krylov space :Km+1(A, r0)

Verify that the (Arnoldi) algorithmv1 = r0/ær0æ2;

for generates the following recurrence:k = 1 : m,

ṽk+1 = Avk;

for .j = 1 : k, AVm = Vm+1Hm+1,m

h j,k = v j
Hṽk+1;

What does  look like?ṽk+1 = ṽk+1 − h j,kvk; Hm+1,m

end

Prove  is orthogonal.hk+1,k = æṽk+1æ2; Vm+1

vk+1 = ṽk+1/hk+1,k;

end Note .Hm+1,m = Vm+1
H AVm

 and . So bothrange(Vm) = Km(A, r0) range(Vm+1) = Km+1(A, r0)

 and  from GCR contained in .range(Um) range(Cm) range(Vm+1)

GMRES
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So we have generated the Krylov subspace (step 1), and we have

an orthogonal basis for it (step 2, more or less). However, we do not

have an orthogonal basis for . (why not?)Km(A,Ar0) = range(Cm)

Step 3 is the orthogonal projection of the residual on 

 and computing the update to theKm(A,Ar0) = range(Cm)

approximate solution from .Km(A, r0) = range(Um)

Obviously we don’t want to orthogonalize  as well.Km(A,Ar0)

QR-decomposition  (m Givens rotations), H
m

hHm+1,m = Qm+1R
m

where  is upper triangular and has last row entirely zero.R
m

So we can drop last row of  and last column of  giving:R
m

Qm+1

. (dimensions?)H
m

= Qm+1R
m

= Q
m

Rm

GMRES
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Using this QR-decomposition we have a QR-decomp. of :AVm

;  is unitary and  is uppertri.AVm = Vm+1Hm = Vm+1Q
m

Rm Vm+1Q
m

Rm

So for the cost of  Givens rotations we get the orthogonal basis form

 implicitly, since .Km(A, r0) range(AVm) = Km(A,Ar0)

New residual and approximate solution:

rm = I − (Vm+1Q
m

)(Vm+1Q
m

)H r0 =r0 −Vm+1Q
m

Q
m

HVm+1

H r0 =

(note .)r0 −Vm+1Q
m

RmRm
−1Q

m

H´1ær0æ2 v1 = r0/ær0æ2

r0 −Vm+1H
m
Rm

−1Q
m

H´1ær0æ2

and

xm = x0 + A−1(rm − r0) = x0 +VmRm
−1Q

m

H´1ær0æ2

GMRES
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Comparing with GCR, we see that apart from scaling each column

with a unit scalar:

 and  (note the relation )Cm = Vm+1Q
m

Um = VmRm
−1 AUm = Cm

The solution to the least squares problem (  in GCR) is given by�

Q
m

HVm+1

H r0 = Q
m

H´1ær0æ2

Note that  is the left inverse of . Rm
−1Q

m

H Hm

So, multiplying an equation  from the left by  will giveHmy l f Rm
−1Q

m

H

the least squares solution: .y = Rm
−1Q

m

Hf

GMRES
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Alternative derivation:

We have generated the recurrence AVm = Vm+1H
m

Now solve ; write min{ær0 − Azæ2 : z✌K
m(A, r0)} z = Vmy

Minimize  over all m-vectors ær0 − AVmyæ2 y

Now substitute for  and . r0 = Vm+1´1ær0æ2 AVmy = Vm+1H
m

y

So we minimize

ær0 − AVmyæ2 = Vm+1´1ær0æ2 − Vm+1H
m

y
2
= ´1ær0æ2 −H

m

y
2

So we must solve an  least squares problemm + 1 %m

We will exploit the structure of  toHm

1. do this efficiently

2. compute the residual norm without the residual

GMRES

 

CRCD_01a.PRZ 27-28



©2001 Eric de Sturler

By construction has the following structureHm

 (Upper Hessenberg)Hm =

h1,1 h1,2 h1,3 £ h1,m−1 h1,m

h2,1 h2,2 h2,3 h2,m−1 h1,m

h3,2 h3,3 § §

h4,3 • hm−1,m−1 hm−1,m

• hm,m−1 hm,m

hm+1,m

Cheapest QR decomp. is by Givens rotations to zero lower diagonal.

G1
H
Hm =

c1 s1

−s1 c1

Im−1

=

& & £ &

0 & £ &

h3,2 £ h3,m

• §

GMRES
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Next step we compute:

G2
HG1

HHm =

1

c2 s2
−s2 c2

I

& & & £ &

0 & & £ &

h3,2 h3,3 £ h3,m

h4,3 £ h4,m

• §

=

& & & £ &

0 & & £ &

0 & £ &

h4,3 £ hm,3

• §

After  Givens rotations:m

Gm
H£G1

HHm = Qm+1
H H

m
=

r1,1 £ r1,m
0 r2,2

0 r3,3 §

§ 0 •

• rm,m
0 £ 0

= R
m

GMRES
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So the least squares problem

ym = arg min ´1ær0æ2 −H
m
y

2
: y✌Šm

can be solved by multiplying  from left by :H
m
y l ´1ær0æ2 Rm

−1Q
m

H

ym = Rm
−1Q

m

H´1ær0æ2

In practice:

We stepwise compute  and Gi

H(Gi−1

H £G1

HH i) Gi

H(Gi−1

H £G1

H´1ær0æ2)

This means updating  with new column, carry out previousHi−1

Givens rotations on new column. 

Compute new Givens rotation and update  and right hand side (ofH i

small least squares problem): G i

H(Gi−1

H £G1

H´1ær0æ2)

GMRES
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Least squares system looks like . R
i
yi = Q i+1

H ´1ær0æ2

We may assume  has no zeros on diagonal (see later)R
i

Since bottom row of  is zero we can only solve for R
i

(Qi+1

H ´1ær0æ2)1¢i

(first  coeff.s)i

This is exactly what we do in: get  by solving yi Riyi = Q
i

H´1ær0æ2

Note from derivation that norm residual from LS problem is norm

actual residual:  (  since it changes with ):æriæ2 = q̃i+1
H ´1 ær0æ2 q̃i+1 i

ær0 − AVmyæ2 = Vm+1´1ær0æ2 −Vm+1H
m
y

2
= ´1ær0æ2 −H

m
y

2

This way we can monitor convergence without actually computing

updates to solution and residual (cheap).

GMRES
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GMRES: Ax = b

choose  (e.g. ) and x0 x0 = 0 tol

 r0 = b −Ax0; k = 0; v1 = r0/ær0æ2;

while ærkæ2 > tol

k = k + 1;

ṽk+1 = Avk;

for j = 1 : k,

 h j,k = v j
Hṽk+1; ṽk+1 = ṽk+1 − h j,kvk;

end
 hk+1,k = æṽk+1æ2; vk+1 = ṽk+1/hk+1,k;

update QR-dec: Hk = Qk+1R
k

ærkæ2 = q̃k+1
H ´1 ær0æ2

end

yk = Rk
−1Q

k

H´1ær0æ2; xk = x0 + Vkyk;

 (or simply )rk = r0 − Vk+1H
k
yk = Vk+1 I −Q

k
Q

k

H ´1ær0æ2; rk = b − Axk

GMRES

©2001 Eric de Sturler

0 20 40 60 80 100 120

-12

-10

-8

-6

-4

-2

0

2

GMRES

log10|r|2

Problem 1

Orthomin(1)

GMRES(20) GMRES(10)

GMRES

 

CRCD_01a.PRZ 33-34



©2001 Eric de Sturler

0 20 40 60 80 100 120 140 160

-12

-10

-8

-6

-4

-2

0

2

GMRES

# iterations

log10|r|2

Problem 2

Orthomin(1)

GMRES

©2001 Eric de Sturler

0 20 40 60 80 100 120 140 160

-12

-10

-8

-6

-4

-2

0

2

GMRES

# iterations

log10|r|2

Problem 2

Orthomin(1)

GMRES(20) GMRES(10)

GMRES

 

CRCD_01a.PRZ 35-36



©2001 Eric de Sturler

Complex Givens rotations:

, G =

c s

−s c
GHG =

c −s

s c

c s

−s c
=

cc + ss cs − cs

sc − sc ss + cc
=

1 0

0 1

Verify . So,  is unitary.GGH
= I G

Givens rotation so that  where .
c s

−s c

x

y
=

x̃

0
x̃ =

x

y
2

What degrees of freedom (assuming same purpose) in ?G

How can we use those degrees of freedom?

What properties of  can we ensure?G

Givens rotations (1)

©2001 Eric de Sturler

Computing complex Givens rotations:

c s

−s c

x

y
=

x̃

0

Note that if we make  unitary, then making the second equationG

hold automatically makes the first hold. So with requirement of G

unitary, only one of the equations is essential.

Second equation: .c
2
+ s

2
= 1

 (if ) or  (if ).−sx + cy = 0w c = s
x
y y ! 0 −sx + cy = 0w s = c

y

x x ! 0

For numerical accuracy it is not a good idea to divide a large

number by a small one.

Givens rotations (2)
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y = 0 d c = 1; s = 0;

y m x d

z̃ = x/y; z = z̃ ;

  c = z s d c
2
+ s

2
= z

2
s

2
+ s

2
= 1 e s = (z2 + 1)−1/2

Now we choose . c = z s ✌‘

From  we see that .c = c = s
x
y arg s = − arg

x
y

So we set s = (z2 + 1)−1/2(z/z̃)

y < x d

z̃ = y/x; z = z̃ ;

  s = z c d c
2
+ s

2
= c

2
+ z

2
c

2
= 1 e c = (z2 + 1)−1/2

Now we choose .c = (z2 + 1)−1/2✌‘

Following  we set .s =
y

xc s = z̃c

Givens rotations (3)
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