Krylov subspace methods

Introduction

Eric de Sturler Department of Computer Science University of Illinois at Urbana-Champaign sturler@cs.uiuc.edu 🖄 www-faculty.cs.uiuc.edu/sturler

©2001 Eric de Sturler

Large Sparse Linear Systems Scientific and engineering simulations require the solution of (many) very large, sparse, linear systems. The matrices arise from finite element/volume discretization of partial differential or integral equations (and other areas) describing the physical behavior of complex systems. Accurate solution requires millions of unknowns. Time-dependent nonlinear problem: Solve a nonlinear system each timestep, which (Newton iteration) requires many linear systems to be solved. Very large optimization problems: each iteration requires the solution of a linear system. New fields of application: Financial modeling, Econometry, Biology.

Why iterative solvers?

≺ direct solver (LU):	work: O(N ³)	storage: O(N ²)
≺ idem for band matrix:	work: O(b ² N)	storage: O(bN)
X 2D: $b = O(N^{1/2})$:	work: O(N ²)	storage: O(N ^{3/2})
X 3D: $b = O(N^{2/3})$:	work: O(N ^{7/3})	storage: O(N ^{5/3})
\mathbf{X} sparse matrix $ imes$ vector: v	work: 2Nk st	orage: Nk
For large problems direct moderate problems they iterative methods (if they	methods are imp are much more e converge).	possible; even for expensive than

Basic Iterative Methods (1)

System of nonlinear equations: f(x) = 0Rewrite as x = F(x), and iterate $x_{i+1} = F(x_i)$ (fixed-point iteration) Converges if $\rho(\nabla F^T) < 1$ and ∇F^T Lip. cont. in neighborhood of solution

Linear system: Ax = bMatrix splitting: $[P + (A - P)]x = b \Leftrightarrow Px = (P - A)x + b \Leftrightarrow$ $x = (I - P^{-1}A)x + P^{-1}b$ Iterate: $x_{i+1} = (I - P^{-1}A)x_i + P^{-1}b$ Converges if $\rho(I - P^{-1}A) < 1$

Methods: Jacobi iteration, Gauss-Seidel, (S)SOR, ...

Fixed-point: $x = (I - P^{-1}A)x + P^{-1}b \iff P^{-1}Ax = P^{-1}b$ Fixed-point is solution of the preconditioned system: $P^{-1}Ax = P^{-1}b$

©2001 Eric de Sturler

Basic Iterative Methods (2) $\begin{aligned}
x_{i+1} &= (l - P^{-1}A)x_i + P^{-1}b = x_i + P^{-1}b - P^{-1}Ax_i \\
\text{Linear System: } Ax &= b \\
\text{Residual: } r_i &= b - Ax_i \\
x_{i+1} &= x_i + \tilde{r}_i \Rightarrow x_{i+1} = x_0 + \tilde{r}_0 + \tilde{r}_1 + \dots + \tilde{r}_i \\
\text{Lydate } x_{i+1} - x_0 &= \tilde{r}_0 + \tilde{r}_1 + \dots + \tilde{r}_i \\
\hat{r}_{i+1} &= P^{-1}b - P^{-1}Ax_{i+1} = P^{-1}b - P^{-1}Ax_i - P^{-1}A\tilde{r}_i = \tilde{r}_i - P^{-1}A\tilde{r}_i \\
\tilde{r}_{i+1} &= (l - P^{-1}A)\tilde{r}_i = (l - P^{-1}A)^{i+1}\tilde{r}_0 \\
\hat{r}_i &\in \text{span}\{\tilde{r}_0, P^{-1}A\tilde{r}_0, \dots, (P^{-1}A)^{i}\tilde{r}_0\} &= K^{i+1}(P^{-1}A, \tilde{r}_0) \\
Krylov \\
subspace \\
x_i - x_0 &\in \text{span}\{\tilde{r}_0, \tilde{r}_1, \dots, \tilde{r}_{i-1}\} = K^i(P^{-1}A, \tilde{r}_0)
\end{aligned}$

Basic Iterative Methods (3)

Solution to $Ax = b: \hat{x}$ Error: $e_i = \hat{x} - x_i$ Residual and error: $r_i = b - Ax_i = A\hat{x} - Ax_i = Ae_i$ $(\bar{r}_i = P^{-1}Ae_i)$ Theorem: \hat{x} is a fixed point of $x_{i+1} = (I - P^{-1}A)x_i + P^{-1}b$ iff \hat{x} is solution of $P^{-1}Ax = P^{-1}b$ ($\Leftrightarrow Ax = b$) Proof: $x = (I - P^{-1}A)x + P^{-1}b = x - P^{-1}Ax + P^{-1}b \Leftrightarrow P^{-1}Ax = P^{-1}b$ $e_{i+1} = \hat{x} - x_{i+1} = (I - P^{-1}A)\hat{x} + P^{-1}b - (I - P^{-1}A)x_i - P^{-1}b$ $= (I - P^{-1}A)e_i$ $e_{i+1} = (I - P^{-1}A)e_i = (I - P^{-1}A)^{i+1}e_0$ and $\bar{r}_{i+1} = (I - P^{-1}A)^{i+1}\bar{r}_0$ $e_{i+1} \in \text{span} \{e_0, P^{-1}Ae_0, (P^{-1}A)^2e_0, ..., (P^{-1}A)^{i+1}e_0\}$ $e_{i+1} \in \text{span} \{e_0, \tilde{r}_0, P^{-1}A\tilde{r}_0, ..., (P^{-1}A)^i\tilde{r}_0\}$

Methods based on Projection (1) Assume that in Ax = b, A is an explicitly preconditioned matrix From original system Ku = f we derive preconditioned system $P^{-1}Ku = P^{-1}f$ or $KP^{-1}u = f$ or $P_1^{-1}KP_2^{-1}\tilde{u} = P_1^{-1}f$ and $P_2^{-1}\tilde{u} = u$ Iteration becomes $x_{i+1} = (I - A)x_i + b = x_i + (b - Ax_i)$ $x_{i+1} = x_i + r_i$ Simple way to improve the iteration. Is there a better update in same direction? $x_{i+1} = x_i + a_i(b - Ax_i)$ best a_i ?

Methods Based on Projection (9)

First question: Best in what sense? b) minimum error in A-norm if A is Hermitian positive definite: $x_{i+1} = x_i + a_i(b - Ax_i) \Rightarrow e_{i+1} = e_i - a_i r_i$

minimum $||e_{i+1}||_A$: find point in span $\{r_i\}$ closest to e_i (in A-norm)

Orthogonal projection of e_i on span $\{r_i\}$ Orthogonal in corresponding inner product: $\langle x, y \rangle_A = y^H A x$

 $a_i: \mathbf{r}_i \perp_A \mathbf{e}_i - a_i \mathbf{r}_i \quad \iff \quad \langle \mathbf{e}_i - a_i \mathbf{r}_i, \mathbf{r}_i \rangle_A = \mathbf{0}$

 $\langle \mathbf{r}_i, A\mathbf{e}_i \rangle_2 - a_i \langle \mathbf{r}_i, A\mathbf{r}_i \rangle_2 = 0 \quad \iff \quad a_i = \frac{\langle \mathbf{r}_i, \mathbf{r}_i \rangle_2}{\langle \mathbf{r}_i, A\mathbf{r}_i \rangle_2}$

$$x_{i+1} = x_i + \frac{\langle r_i, r_i \rangle_2}{\langle r_i, Ar_i \rangle_2} r_i \quad \Rightarrow \quad r_{i+1} = r_i - \frac{\langle r_i, r_i \rangle_2}{\langle r_i, Ar_i \rangle_2} Ar_i$$
 (steepest descent)

Note that we do not need to know error to minimize it in A-norm

Methods Based on Projection (10)

Steepest descent because of relation to quadratic problem:

 $f(x) = \frac{1}{2}x^{T}Ax - b^{T}x + c$ for symmetric positive definite (SPD) A

 $f(x + \varepsilon p) = f(x) + \varepsilon (Ax - b)^T p$, fastest decrease in direction of negative gradient: residual

Note that quadratic problem has same solution; minimum if $f(x + \varepsilon p) = f(x)$ for any direction p(note that stationary point must be minimum)

Hence, $\forall p : (Ax - b)^T p = 0$; his implies Ax - b = 0

Why does A SPD prove x is a minimum of f(x) if Ax - b = 0?

Compare with classification of stationary point general problem.

©2001 Eric de Sturler

Orthomin(1) vs Jacobi iteration

We will use the Jacobi iteration, a basic iteration with P^{-1} the inverse of the diagonal of the matrix A, and Orthomin(1) on a simple PDE on the unit square, discretized on a 10×10 grid.

The PDE is $-u_{xx} - u_{yy} + ru_x - ru_y = 0$ with Direchlet boundary conditions u = 0 on the south and east boundary, and u = 1 on the west and north boundary.

In the first problem we take r = 0, in the second problem we take r = 40.

<section-header><text><equation-block><text><text><equation-block><equation-block><text>

Optimal Projection Methods

Minimize the 2-norm of the residual: Find $z_i \in K^i(A, r_0)$: $||b - A(x_0 + z_i)||_2$ is minimum, and set $x_i = x_0 + z_i$ Theorem: We obtain the minimum for z_i if $b - A(x_0 + z_i) \perp AK^i(A, r_0)$ Proof: Note that $||b - A(x_0 + z_i)||_2$ minimum is equivalent to $||r_0 - Az_i)||_2$ minimum. Let $\hat{z} \in K^i(A, r_0)$ such that $||r_0 - A\hat{z}||_2$ is minimum. Then \hat{z} must be a stationary point of the function $f(z) = ||r_0 - Az||_2^2$. Hence for any unit vector $p \in K^i(A, r_0)$ we must have $f_p(\hat{z}) = 0$: $\lim_{e \in \mathbb{N}, e \to 0} \frac{f(\hat{z} + ep) - f(\hat{z})}{e} = 0 \Leftrightarrow$ $\lim_{e \to 0} \frac{||r_0 - A\hat{z} - ep||_2^2 - ||r_0 - A\hat{z}||_2^2}{e} = \lim_{e \to 0} \frac{-ep^H A^H(r_0 - A\hat{z}) - e(r_0 - A\hat{z})^H Ap + e^2 ||Ap||_2^2}{e} = 0 \Leftrightarrow$ $p^H A^H(r_0 - A\hat{z}) + (r_0 - A\hat{z})^H Ap = 0$ for any unit $p \in K^i(A, r_0)$. This means $(r_0 - A\hat{z})^H Ap = 0$ for any unit $p \in K^i(A, r_0)$ (why?), and so, by definition, $(r_0 - A\hat{z}) \perp AK^i(A, r_0)$.

<section-header><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Optimal Projection Methods

Iteration-wise the problem is solved in three steps:

- 1) Extend the Krylov spaces $K^i(A, r_0)$ and $AK^i(A, r_0)$ by adding the respective next vectors $A^i r_0$ and $A^{i+1}r_0$ (only 1 matvec)
- 2) Compute orthogonal basis for $AK^{i}(A, r_{0})$: QR-decomp. of K
- 3) Project r_0 (orthog) onto $AK^i(A, r_0)$ and solve the small problem $R\zeta = f_1 = Q^H r_0$. Note that this problem is only $i \times i$ irrespective of the actual size of the problem (say $n \times n$).

We would like to carry out these steps efficiently. The GCR method (Generalized Conjugate Residuals) illustrates these steps well

©2001 Eric de Sturler

GCR GCR: Ax = bChoose x_0 (e.g. $x_0 = 0$), and *tol* $r_0 = b - Ax_0; i = 0;$ while $\|\mathbf{r}_i\|_2 > tol$ do r_{i-1} adds search vector to $K^{i-1}(A, r_0)$ i = i + 1; Ar_{i-1} extends $AK^{i-1}(A, r_0)$ $u_i = r_{i-1}; c_i = Au_i;$ for i = 1, i - 1 do $u_i = u_i - u_i c_i^H c_i;$ Orthog. c_i against previous c_i and $c_i = c_i - c_j c_i^H c_i;$ update u_i such that $Au_i = c_i$ maintained end do $u_i = u_i / \|c_i\|_2$; $c_i = c_i / \|c_i\|_2$; Normalize; end QR decomposition $x_i = x_{i-1} + u_i c_i^H r_{i-1};$ Project new *c_i* out of residual and $r_i = r_{i-1} - c_i c_i^H r_{i-1};$ update solution accordingly end do Note that $r_i \perp c_j$ for $j \leq i$

What can go wrong with this algorithm?

GCR

GMRES

First the GMRES method generates an orthogonal basis for the Krylov space $K^{m+1}(A, r_0)$:

Verify that the (Arnoldi) algorithm $v_1 = r_0 / \|r_0\|_2;$ for k = 1 : m, generates the following recurrence: $\tilde{v}_{k+1} = A v_k;$ for j = 1 : k, $AV_m = V_{m+1}H_{m+1,m}.$ $h_{j,k} = v_i^H \tilde{v}_{k+1};$ $\tilde{v}_{k+1} = \tilde{v}_{k+1} - h_{j,k} v_k;$ What does $H_{m+1,m}$ look like? end $h_{k+1,k} = \|\tilde{v}_{k+1}\|_2;$ Prove V_{m+1} is orthogonal. $v_{k+1} = \tilde{v}_{k+1}/h_{k+1,k};$ Note $H_{m+1,m} = V_{m+1}^H A V_m$. end $\operatorname{range}(V_m) = K^m(A, r_0)$ and $\operatorname{range}(V_{m+1}) = K^{m+1}(A, r_0)$. So both

range(U_m) and range(C_m) from GCR contained in range(V_{m+1}).

So we have generated the Krylov subspace (step 1), and we have an orthogonal basis for it (step 2, more or less). However, we do not have an orthogonal basis for $K^m(A, Ar_0) = \text{range}(C_m)$. (why not?)

Step 3 is the orthogonal projection of the residual on $K^m(A, Ar_0) = \operatorname{range}(C_m)$ and computing the update to the approximate solution from $K^m(A, r_0) = \operatorname{range}(U_m)$.

Obviously we don't want to orthogonalize $K^m(A, Ar_0)$ as well.

QR-decomposition $\underline{H}_m \equiv H_{m+1,m} = Q_{m+1}\underline{R}_m$ (m Givens rotations), where \underline{R}_m is upper triangular and has last row entirely zero.

So we can drop last row of \underline{R}_m and last column of Q_{m+1} giving:

 $\underline{H}_{m} = Q_{m+1}\underline{R}_{m} = \underline{Q}_{m}R_{m}$. (dimensions?)

©2001 Eric de Sturler

GMRES

Using this QR-decomposition we have a QR-decomp. of AV_m :

 $AV_m = V_{m+1}\underline{H}_m = \left(V_{m+1}\underline{Q}_m\right)R_m; V_{m+1}\underline{Q}_m$ is unitary and R_m is uppertri.

So for the cost of *m* Givens rotations we get the orthogonal basis for $K^m(A, r_0)$ implicitly, since range $(AV_m) = K^m(A, Ar_0)$.

New residual and approximate solution:

$$\boldsymbol{r}_{m} = \left(\boldsymbol{I} - (\boldsymbol{V}_{m+1}\underline{\boldsymbol{Q}}_{m})(\boldsymbol{V}_{m+1}\underline{\boldsymbol{Q}}_{m})^{H}\right)\boldsymbol{r}_{0} = \boldsymbol{r}_{0} - \boldsymbol{V}_{m+1}\underline{\boldsymbol{Q}}_{m}\underline{\boldsymbol{Q}}_{m}^{H}\boldsymbol{V}_{m+1}^{H}\boldsymbol{r}_{0} =$$

 $r_{0} - V_{m+1} \underline{Q}_{m} R_{m} R_{m}^{-1} \underline{Q}_{m}^{H} \ell_{1} \| r_{0} \|_{2}$ (note $v_{1} = r_{0} / \| r_{0} \|_{2}$.) $r_{0} - V_{m+1} \underline{H}_{m} R_{m}^{-1} \underline{Q}_{m}^{H} \ell_{1} \| r_{0} \|_{2}$

and

$$x_m = x_0 + A^{-1}(r_m - r_0) = x_0 + V_m R_m^{-1} \underline{Q}_m^{-1} \|r_0\|_2$$

©2001 Eric de Sturler

CRCD_01a.PRZ 25-26

Comparing with GCR, we see that apart from scaling each column with a unit scalar:

$$C_m = V_{m+1}\underline{Q}_m$$
 and $U_m = V_m R_m^{-1}$ (note the relation $AU_m = C_m$)

The solution to the least squares problem (ζ in GCR) is given by

 $\underline{Q}_{m}^{H}V_{m+1}^{H}r_{0}=\underline{Q}_{m}^{H}\ell_{1}\|r_{0}\|_{2}$

Note that $R_m^{-1}\underline{Q}_m^H$ is the left inverse of \underline{H}_m . So, multiplying an equation $\underline{H}_m y \approx f$ from the left by $R_m^{-1}\underline{Q}_m^H$ will give the least squares solution: $y = R_m^{-1} \underline{Q}_m^H f$.

©2001 Eric de Sturler

GMRES Alternative derivation: We have generated the recurrence $AV_m = V_{m+1}\underline{H}_m$ Now solve $\min\{||r_0 - Az||_2 : z \in K^m(A, r_0)\}$; write $z = V_m y$ Minimize $||r_0 - AV_m y||_2$ over all m-vectors y Now substitute for $r_0 = V_{m+1}\ell_1 ||r_0||_2$ and $AV_m y = V_{m+1}\underline{H}_{m-y}$. So we minimize $\|r_{0} - AV_{my}\|_{2} = \|V_{m+1}\ell_{1}\|r_{0}\|_{2} - V_{m+1}\underline{H}_{my}\|_{2} = \|\ell_{1}\|r_{0}\|_{2} - \underline{H}_{my}\|_{2}$ So we must solve an $m + 1 \times m$ least squares problem We will exploit the structure of H_m to 1. do this efficiently 2. compute the residual norm without the residual ©2001 Eric de Sturler

So the least squares problem $y_{m} = \arg \min \left\{ \left\| \ell_{1} \| r_{0} \|_{2} - \underline{H}_{m} y \right\|_{2} : y \in \mathbb{C}^{m} \right\}$ can be solved by multiplying $\underline{H}_{m} y \approx \ell_{1} \| r_{0} \|_{2}$ from left by $R_{m}^{-1} \underline{Q}_{m}^{H}$: $y_{m} = R_{m}^{-1} \underline{Q}_{m}^{H} \ell_{1} \| r_{0} \|_{2}$ In practice: We stepwise compute $G_{i}^{H} (G_{i-1}^{H} \cdots G_{1}^{H} \underline{H}_{i})$ and $G_{i}^{H} (G_{i-1}^{H} \cdots G_{1}^{H} \ell_{1} \| r_{0} \|_{2})$ This means updating \underline{H}_{i-1} with new column, carry out previous Givens rotations on new column. Compute new Givens rotation and update \underline{H}_{i} and right hand side (of small least squares problem): $G_{i}^{H} (G_{i-1}^{H} \cdots G_{1}^{H} \ell_{1} \| r_{0} \|_{2})$

©2001 Eric de Sturler

GMRES

Least squares system looks like $\underline{R}_{i}y_{i} = Q_{i+1}^{H}\ell_{1}||r_{0}||_{2}$. We may assume \underline{R}_{i} has no zeros on diagonal (see later)

Since bottom row of \underline{R}_i is zero we can only solve for $(\underline{Q}_{i+1}^H \ell_1 || r_0 ||_2)_{1...i}$ (first *i* coeff.s)

This is exactly what we do in: get y_i by solving $R_i y_i = \underline{Q}_i^H \ell_1 ||r_0||_2$

Note from derivation that norm residual from LS problem is norm actual residual: $||r_i||_2 = |\tilde{q}_{i+1}^H \ell_1| ||r_0||_2$ (\tilde{q}_{i+1} since it changes with *i*):

$$\|r_{0} - AV_{m}y\|_{2} = \|V_{m+1}\ell_{1}\|r_{0}\|_{2} - V_{m+1}\underline{H}_{m}y\|_{2} = \|\ell_{1}\|r_{0}\|_{2} - \underline{H}_{m}y\|_{2}$$

This way we can monitor convergence without actually computing updates to solution and residual (cheap).

Givens rotations (3)

 $y = 0 \to c = 1; s = 0;$ $|y| \ge |x| \to \tilde{z} = x/y; \ z = |\tilde{z}|; \\ |c| = z|s| \to |c|^2 + |s|^2 = z^2|s|^2 + |s|^2 = 1 \Rightarrow |s| = (z^2 + 1)^{-1/2}$ Now we choose $c = z|s| \in \mathbb{R}$. From $\bar{c} = c = s\frac{x}{y}$ we see that $\arg s = -\arg \frac{x}{y}$. So we set $s = (z^2 + 1)^{-1/2}(z/\tilde{z})$ $|y| < |x| \to \tilde{z} = y/x; \ z = |\tilde{z}|; \\ |s| = z|c| \to |c|^2 + |s|^2 = |c|^2 + z^2|c|^2 = 1 \Rightarrow |c| = (z^2 + 1)^{-1/2}$ Now we choose $c = (z^2 + 1)^{-1/2} \in \mathbb{R}$. Following $s = \frac{y}{x}\bar{c}$ we set $s = \tilde{z}c$.