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Large Sparse Linear Systems

X Scientific and engineering simulations require the solution of
(many) very large, sparse, linear systems.

X The matrices arise from finite element/volume discretization of
partial differential or integral equations (and other areas)
describing the physical behavior of complex systems.

X Accurate solution requires millions of unknowns.

X Time-dependent nonlinear problem: Solve a nonlinear system each
timestep, which (Newton iteration) requires many linear systems to
be solved.

X Very large optimization problems: each iteration requires the
solution of a linear system.

X New fields of application: Financial modeling, Econometry,
Biology.
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W}ly iterative solvers?

Consider N x N matrix with k nonzeros/row (average), k<N:

X direct solver (LU): work: O(N’)  storage: O(N?)
X idem for band matrix: work: O(b’N) storage: O(bN)
X 2D: b = O(N"): work: O(N?)  storage: O(N*?)
X 3D: b = O(N*): work: O(N"?)  storage: O(N°”)
X sparse matrix x vector: work: 2Nk storage: Nk

For large problems direct methods are impossible; even for
moderate problems they are much more expensive than
iterative methods (if they converge).

©2001 Eric de Sturler

W}ly iterative solvers?

Consider N x N matrix with k nonzeros/row (average), k<N:

Iterative methods; convergence in m iterations:

X typically m<N (independent of 2D, 3D, ... problem),

X m depends on characteristics of problem rather than size,
X in general m increases only as a moderate function of N,

X for several problem classes constant m algorithms are
known (multigrid O(N) work (optimal), multilevel O(1)
iterations),

X Krylov subspace methods convergence in m < N steps (in
exact arithmetic).

©2001 Eric de Sturler

CRCD_01a.PRZ 3-4




Basic Iterative Methods (1)

System of nonlinear equations: f(x) =0
Rewrite as x = F(x), and iterate x;1 = F(x;) (fixed-point iteration)
Converges if p(VFT) <1 and VFT Lip. cont. in neighborhood of solution

Linear system: Ax = b

Matrix splitting: [P+ (A -P)lx=b <= Px=P-Ax +b <=
x=0l-P'Ax+P'b

Iterate: x;41 = (I—P_lA)x,' +P7'b

Converges if p(I —P'4) <1

Methods: Jacobi iteration, Gauss-Seidel, (S)SOR, ...

Fixed-point: x = (| —P'A)x + P'b = P'Ax =P7'b
Fixed-point is solution of the preconditioned system: P~ 4Ax = P'b
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Basic [terative Methods (2)

xin = =P AW + P 'b =x; + P'b— P Ax;

Linear System: A4x =5 Prec. system: P~'4x=P'b
Residual: r; =b — Ax; Prec. residual: 7, = P~'b — P71 Ax;

Xifl =Xi+Fi = Xipl=XxXo+Fo+71+ " +7i
Updatex,.i —xo =70 +71+ " +7;

Firt =P7'b — P Axjs1 = P'b — P Ax; — P A7 = 7 — P AF;
Fii=I—-PA)F = (I-P'A)™7

7i € span{fo, P Aro, ..., (P7'A)7o} = K (P71 A,7)) Krylov
subspace
X; —X0 € span{fo, 71, ...,Fi1} = K'(P~1A, 7o)
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Basic Iterative Methods 3)

Solution to Ax =b: ¢ Error: €; =X —X;
Residual and error: r; = b — Ax; = AX— Ax; =Ae; (Fi =P 'Ae)

Theorem: X is a fixed point of X;,1 = (I—P_IA).X?,' +P1p i
X is solution of P 1Ax =P~ 1p (& Ax=D>)
Proof: x=(I-P'A)x+P b =x-P'Ax+P b =
P1Ax=P'b
eis1=X—xip1=T-P1A+Pb-(I-P'A)x;— P b
=(I-P1A)e;
ein1 =[P 'A)e; = (I-P'A)"*"eq and fiy = (1- P1A)* 17,

eiespanfeo, P~ Aeo, (P1A) ey, ..., (P"'A) ey }
esespanieq, fo, P1Afo, ..., (P1A)'Fo )
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Methods based on Projection (1)

Assume that in Ax = b, A is an explicitly preconditioned matrix

From original system Ku = f we derive preconditioned system
P'Ku=Pf

or KPlu=f

or P{'KP3Yi=P7'fand P;Yi=u

Iteration becomes

Xin=I—-Axi+b=x;+ (b -Axi)

Xitl = Xi +Fi

Simple way to improve the iteration.
Is there a better update in same direction?

xin = xi +ai(b — Ax;) best ¢;?
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Methods based on Projection (2)

First question: Best in what sense?

a) minimum residual in 2-norm:
xit1 =Xi +0i(b—Ax;) = ria =ri—wArn

minimum [/r;41 [ ,: find point in span{Ar;} closest to r;

Orthogonal projection of r; on span{Ar;}
Orthogonal in corresponding inner product: (x,y , = y%x

ai: Arilri—Ari < {ri—aiAri,Ari ,=0

{ri,Ar; 5
ri,Ar; ,—ai{Ari,Ar; ,=0 < q;= TAr AT 5

(rpAr; 5 {ri,Ar; 5 .
Xit1 =Xi +mri = rip =r; —mAri Orthomln(])
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Methods Based on Projection (9)

First question: Best in what sense?
b) minimum error in A-norm if A is Hermitian positive definite:
xi1 =xi +ailb—Axi) = e =ei—airi

minimum | e;,1 || 4: find point in span{r;} closest to ¢; (in A-norm)

Orthogonal projection of ¢; on span{r;}
Orthogonal in corresponding inner product: (x,y 4 = y7Ax

ai:rilaei—airi < f(ei—airiri 4=0

(riri 2
(ri,Ae; ,—airi,Ar; ,=0 < q;= Tdrs

L rarig o i )
Xit =Xi+ 70T = Tl =Fi—7 o~ ZAr, (steepest descent)

Note that we do not need to know error to minimize it in A-norm
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Methods Based on Projection (10)

Steepest descent because of relation to quadratic problem:

f(x) = 3xTAx —bTx + ¢ for symmetric positive definite (SPD) A

flx +ep) = flx) + e(Ax — b)Tp, fastest decrease in direction of negative
gradient: residual

Note that quadratic problem has same solution;

minimum if f(x + ¢p) = f(x) for any direction p

(note that stationary point must be minimum)

Hence, Vp : (Ax —b)"p = 0; his implies Ax —b =0

Why does A SPD prove X is a minimum of f(x) if Ax—b =0?

Compare with classification of stationary point general problem.
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Methods Based on Projection (12)

Note the following properties of Orthomin(1) and Steepest Descent:

Orthomin(1): riyy =ri — a;Ar; with g; = %

(ris1, Ari =<ri,Ari —aiAri,Ar; =0
ris1 LAr;

(riri o

Steepest Descent: ri.1 =r; — aiAr; with a; = A
l i 2

(riv,ri =(ri,ri —ailAri,ri ={ri,ri —ailri,Ari =0
rivgt Lri

What can we say about ¢; in the steepest descent case?
(A is HPD)
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Ort}lomin(l) Vs Jacol)i iteration

r = 40.

We will use the Jacobi iteration, a basic iteration with P! the
inverse of the diagonal of the matrix A, and Orthomin(1) on a
simple PDE on the unit square, discretized on a 10 x 10 grid.

The PDE is —ux: — uyy + rux — ru, = 0 with Direchlet boundary
conditions u = 0 on the south and east boundary, and u = 1 on the

west and north boundary.

In the first problem we take r = 0, in the second problem we take
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Ort}lomin(l) Vs Jacol)i iteration
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Ort}lomin(l) Vs Jacol)i iteration
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Ort}lomin(l) Vs Jacol)i iteration
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Eigenvalues of Test Problems
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Optimal Projection Methods

Basic iterations generate (preconditioned) Krylov subspaces:
xi — x0eK'(A, ro) = span{ro,Aro,A%ro, ..., A" ro}
rieK*\(A, ro) = span{ro, Aro,A%ro, ...,A'ro}

Note that Orthomin(1) and steepest descent generate
approximations and residuals from these same spaces.

{riAr; (ri,Ar; .
1. Xip1 =x; + <A;i,A;i22 ri > rid=ri _—<A;,~,A;,~Zz Ar; Orthomin(1)
. (risti 2 . o {riri 2 .
2. X1 = X; YA, i P T =ri— ZAr, (steepest descent)

These two methods ‘improve’ convergence using 1-dimensional
minimization. Hence, these methods have also been called
accelerators.

The obvious question arises whether we can extend the idea and
find the best approximation over a larger space; for example the
entire subspace generated so far.
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Optimal Projection Methods

Minimize the 2-norm of the residual:
Find z; eK'(A,70) : IIb —A(x0 +2:) ||, is minimum, and set x; = x¢ +z;

Theorem: We obtain the minimum for z; if b — A(xo +z;) LAK' (A, r0)
Proof: Note that ||b — A(xo +2zi) [, minimum is equivalent to
|ro — Az;) Il , minimum. Let 2cK?(A, ro) such that [[ro —AZ|l, is
minimum. Then 7 must be a stationary point of the function
f@ =llro—Azll3.
Hence for any unit vector peK'(A, ro) we must have f,(2) =0:

lim MR g

eelR, e—0

. lrg=Az—ep 1 3-1lro-Azll13 .
lim — 22— _ lim

e—0 e—0

—ept A (rg-A2)—e(ro-A2)" Ap+e* | Ap |13
&

=0

pHAH o — A2) + (ro — AT Ap = 0 for any unit peK'(A, ro). This means
(ro—AZ)HAp = 0 for any unit peK'(A, ro) (why?), and so, by definition,
(ro —A2) LAK'(A, ro).
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Optimal Projection Methods

So, to find optimal approximation (||7; || ;) we try to find z;eK'(A,ro)
, . -1
such that ro — Az; LAK'(A,ro): zieK'(A,ro0) = 2z = %A]roé:j.H
J=

So, Az; = ilAfron =[Arg A%rg A%rg -+ A'rol{ approximates ro
Jj=

We can rewrite problem in least squares form:
[Aro A2r0 A3r0 A’ro]Czro = KCzro

This can be solved using
a) normal equations (accuracy problems)
b) OR decomposition

We have (min. 2-norm) unique decomposition: ro = fi +f2

such that K{ = f; and f, 1 range(K)

Solve: 0™R™ =K, where Q"0 =T and R upper triangular.
J2=T-00ro, fi =ro—f2=00"ro, and { =R™'Q"f1 =R7'Q"ro
zi=lro A'ro A%ro -+ A7'rol¢
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Optimal Projection Methods

Iteration-wise the problem is solved in three steps:

1) Extend the Krylov spaces K'(A,ro) and AK'(A,ro) by adding the
respective next vectors A’rg and A**'rg (only 1 matvec)

2) Compute orthogonal basis for AK?(A, ro): QR-decomp. of K

3) Project ro (orthog) onto AK'(A, r¢) and solve the small problem
R( =f1 = Q"r¢. Note that this problem is only i x i irrespective of
the actual size of the problem (say n xn).

We would like to carry out these steps efficiently.

The GCR method (Generalized Conjugate Residuals) illustrates
these steps well
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GCR

GCR:Ax=b
Choose x (e.g. xo = 0), and tol

ro=b—Axo;i=0;
while [[r; ||, > tol do

i=i+1; ri-1 adds search vector to K'"1(A, ro)
Ui =ri_1;¢i = Aug; Ari_1 extends AK""1(A, ro)
forj=1,i—-1do

Ui =U; —lle]HCi; Orthog. c; against previous ¢j and

ci =ci—cjcllcis update u; such that Au; = ¢; maintained
end do
ui =ui/lleillz; ci =cillleill ;; Normalize; end QR decomposition
Xi =Xi1+ u,-cflr,-_l; Project new c; out of residual and
ri=rio1 —ciclrig; update solution accordingly

end do Note that r; icj forj <i

What can go wrong with this algorithm?
©2001 Eric de Sturler
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GCR

Recapitulation of GCR; after m iterations:

u;eKi(A,ro), cicK'(A,Arg), fori=1...m
rieK*1(A,ro) = span{ro,ri1,...,ri}, fori =0...m

Let Up =luiuz - uml; Cm=lcicz - cml; AUn=Cn; CHC, =1
range(Un) = K™(A, ro)

|7m I, = min{ |lro — Az|l : zerange(U,,)}; minimum obtained for z,,

ro—AzmlCn = Cph(ro—Azm) =0; set z,, = Un(.
CHro—CHCw(=0> (=CHro and 7, = Uy Clirg = A71C,CHro.

rm=ro—AUnCHro =ro— CnClro = I - C,CH)ro
it

m
Note that ro=r, + _Zlcjcj ro is a decomposition on orthog. basis.
J=
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GMRES

First the GMRES method generates an orthogonal basis for the
Krylov space K™(A, ro):

vi=rof/llroll5; Verify that the (Arnoldi) algorithm
fork=1:m, generates the following recurrence:
Vi+1 = AVi;
forj=1:k, AV =VpiaHpam.
ik =vVku;
Vis1 = Vi1 — Hjvis What does H .1, look like?
end
hicig = 19k 1l 23 Prove V.1 is orthogonal.
Viert = Viert /i 1.4c5
end Note H i1 m = VE, AV ,,.

range(Vm) = K™(A,ro) and range(V 1) = K™ (A, ro). So both
range(U,,) and range(C,,) from GCR contained in range(Vp.1).
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GMRES

So we have generated the Krylov subspace (step 1), and we have

an orthogonal basis for it (step 2, more or less). However, we do not
have an orthogonal basis for K™ (A,Aro) = range(C,,). (why not?)
Step 3 is the orthogonal projection of the residual on

K™(A,Aro) = range(Cr) and computing the update to the
approximate solution from K™ (A, r¢) = range(U ).

Obviously we don’t want to orthogonalize K™ (A, Aro) as well.

QR-decomposition I;Im =Hupiim = Qmﬂ]_em (m Givens rotations),

where R is upper triangular and has last row entirely zero.
So we can drop last row of R and last column of Q4 giving:

H =0wuR =0 Rn. (dimensions?)
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GMRES

Using this QR-decomposition we have a QR-decomp. of AV ,:
AVu=VuuHn = (Vm_ﬂg ij; Vm+12 is unitary and R, is uppertri.

So for the cost of m Givens rotations we get the orthogonal basis for
K™(A,ro) implicitly, since range(AV,,) = K™(A,Aro).

New residual and approximate solution:
'm= (I_ (Vm+lgm)(vm+12m)H]r0 =ro— Vm+12mQZV£,I+1rO =

ro—VmiQ RaRZ'Q™0ilroll, (note vy =ro/lroll;.)
ro— Vm+1I;ImR;112H@1 lroll,

and
Xm =X0+ A (rm —ro) =x0+VaR;10M 1 Iroll,
-—m
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GMRES

Comparing with GCR, we see that apart from scaling each column
with a unit scalar:

Cn=Vm1Q and U, =Vy,R,! (note the relation AU, = Cy,)
—im
The solution to the least squares problem ({ in GCR) is given by
OIVH ro =0y llroll,
—im —m

Note that R;!Q™ is the left inverse of H,,.
—m
So, multiplying an equation H,,y ~ f from the left by R,,!0*! will give
—m

the least squares solution: y = R;!Q"'f.
—m
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GMRES

Alternative derivation:

We have generated the recurrence AV, = VmuH

Now solve min{|ro— Azl , : zeK™(A,ro)}; write z=V,y
Minimize [|ro — AV .yl , over all m-vectors y

Now substitute for ro = V1101 lroll, and AV,,y = ViaH y.
So we minimize

Iro—AVuylly = [Vinsatilrolls = ViarH, y || = |[txlroll,—H ]|,

So we must solve an m + 1 x m least squares problem
We will exploit the structure of H,, to

1. do this efficiently
2. compute the residual norm without the residual
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GMRES

By construction H,, has the following structure

[ hithi2hiz - himt him
h1 has has hom1 him
H, - hi h33 ‘ : :
- hsz " hmam1 hmim
’ hm,m—l hm,m
hm+1,m -

(Upper Hessenberg)

Cheapest QR decomp. is by Givens rotations to zero lower diagonal.

_ x* ¥ *
Cl sl 0 % .. %
H -
Gll;lmz —51 C1 = .
Lo hs»
e
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GMRES

Next step we compute:

* * *
1 _ 0 x %
c2 S
GG H = 202 h3z h3sz
—52 C2
I "y
After m Givens rotations:
[ rya
0 ra»
0 r33
GgG{II;Im = Qr}nl+11;1m = : 0 .
L 0

h43

* * % % *
* 0 x x *
ham | = 0 x - x
ham haz =" hmga
I'im
=R
—m
I'm,m
0
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GMRES

So the least squares problem

yu = arg min{||ts o, ~H _y||, : yeCm}

can be solved by multiplying H y~ (1 Ilroll, from left by R,!Q*:
—m
ym =R;10M 1 lroll,
—m

In practice:

We stepwise compute G(GH,---G"H;) and GH(GH,---Gti11Iro |l ,)
This means updating H;_; with new column, carry out previous
Givens rotations on new column.

Compute new Givens rotation and update H; and right hand side (of

small least squares problem): GH(GH,-- G, ro |l ,)
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GMRES

Least squares system looks like Ryi= O 01lroll,.
We may assume R, has no zeros on diagonal (see later)

Since bottom row of R. is zero we can only solve for (O, 011lroll)1..

(first i coeff.s)

This is exactly what we do in: get y; by solving R;y; = 0™(1 Iroll,
1

Note from derivation that norm residual from LS problem is norm
actual residual: [[r; ||, =g, 011lIroll, (Gi+1 since it changes with i):

Iro—AVuyly = | Vinataliro s = Vi H y ||, = | tallroll .= H, v,

This way we can monitor convergence without actually computing
updates to solution and residual (cheap).
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CRCD_01a.PRZ 31-32




GMRES

GMRES: Ax=b
choose x¢ (e.g. xo = 0) and fol

ro=b-Axo; k=0; vi=ro/llroll
while 7|l , > tol
k=k+1;
Vi1 = Avis
forj=1:k,
hjj = vIVkias Vit = Vi — hjves
end
hiceik = 19k 25 Vit = Prat /hrsnis
update QR-dec: Hy, = Qk+1Bk
el 5 =gk talllroll,
end
Yk = R;lgf& lrollss xk =x0+ Viyss

re=ro—ViuH,yr= Vk+1(1—2kgf]@1 [roll5; (or simply ri =b — Axx)
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Problem 1
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Givens rotations (1)

Complex Givens rotations:

G- Cs_,GHG: CS|f cS|_|cc+Sscs—cs| _ 10
-scC sc )\ -scC SC —SC sS +cC 01

Verify GG =1. So, G is unitary.

Givens rotation so that[ ¢ S_J(xJ :[fJ where || = H[x]
—sc )Ly 0 y

What degrees of freedom (assuming same purpose) in G?

2

How can we use those degrees of freedom?
What properties of G can we ensure?
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Givens rotations (2)

Computing complex Givens rotations:

cs|x| (X
-sc)ly) L0
Note that if we make G unitary, then making the second equation

hold automatically makes the first hold. So with requirement of G
unitary, only one of the equations is essential.

(o]

Second equation: |¢|*+[s|*=1.
—sx+y=0=c=s5 (ify=0) or —sx+y=0 = s=¢7 (if x=0).

For numerical accuracy it is not a good idea to divide a large
number by a small one.
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Givens rotations (3)

y=0-c=1;5=0;

Iyl >Ix| >
Z=xly; z=zl;
lel =zlsl > lel* +1s1* =z2s1* +1s1* =1 = |s| = @2+ 1)2

Now we choose ¢ = 7|s|eR.
From ¢ = ¢ =53 we see that args = —arg7.
So weset s = (z2+1)712(z/2)

Iyl <lx| -

Z=ylx; z=1zl;

sl =zlcl - lel® +1s1* =lel* + 22cl? =1 = lel = (2 + 1) 712
Now we choose ¢ = (z* + 1) 2eR.

Following s = 2C we set s = 7c.
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