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Krylov subspace methods

Convergence of CG, MINRES, and 
GMRES
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Consider the CG residual and from that the CG error.

CG:  where rm = b −A(x0 + zm) = r0 −Azm zm c Km(A, r0 )

This gives polynomial rm = r0 −APm−1(A)r0 = (I −APm−1(A))r0

Multiplying by  gives A−1 em = A−1rm = (I −APm−1(A))e0

Let  be the residual polynomial. Rm(A) = (I −APm−1(A))

Then we get a bound for the error: æemæA [ æRm(A)æ2æe0æA

Let  then  and so A = V✆VH Ak = V✆kVH Rm(A) = VRm(✆)V
H

Since  is a diagonal matrix, we have , and✆ Rm(✆) = diag(Rm(✘i ))

æRm(A)æ2 = æRm(✆)æ2 =max✘ ic✘(A)
Rm(✘i )

As we do not know the eigenvalues we make a final simplification

, where max✘ ic✘(A)
Rm(✘i ) [maxa[✘[b Rm(✘) ✘(A) _ [a,b]
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Now we would like to find a bound on maxa[✘[b Rm(✘)
From the optimality of CG we know that 

 æRm(A)A
1/2
e0æ2 [ æR̃m(A)A

1/2
e0æ2

for any other residual polynomial,  , of the degree .R̃m(.) m

One way to get a bound is to pick a particular polynomial for which

we can easily compute the norm and which is know to be small.

One useful candidate is the (best) minimax polynomial over the

interval that contains the eigenvalues. These are so-called

Chebyshev polynomials. We consider other choices later.

What keeps us from taking zero polynomial, or what is residual

polynomial? Our choices must satisfy a normalization:

We have Rm(✘) = (1 − ✘Pm−1(✘))u Rm(0) = 1

min
P✌✝m

0
max
✘c[a,b]

P(✘)
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We know from approximation theory that such a polynomial must be
equioscillating. That is obtain alternatingly  maxima and minima that
are equal in absolute value. We also know it is unique.

One equioscillating function is , but is it a polynomial?cosm✕

The answer is yes; it is a polynomial in .cos ✕

Let  , for  and  (pv), with  cos✕ = x 0 [ ✕ [ ✜ ✕ = arccos x −1 [ x [ 1

 for Tm(x) = cos(m arccos x) −1 [ x [ 1

Obviously , attained at  interior points and .max Tm(x) = 1 m !1

Outside interval , we have .−1 [ x [ 1 Tm(x) = cosh(mcosh−1
x)

In order to get minimax polynomial over required interval we use
(linear polynomial) function

, t(x) =
2x−b−a

b−a

which maps  to  where Chebyshev pol. is defined.[a,b] [−1, 1]

Convergence bounds for CG
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This gives the function , which is equioscillating but notTm(w(x))

normalized over the interval . We normalize this function by[a,b]

dividing by  (a scalar constant):Tm(w(0))

.T̂m(x) =
Tm(w(x))

Tm(w(0))
=

Tm

2x−b−a

b−a

Tm −
b+a

b−a

Since  we get max
xc[a,b]

Tm(x) = 1 max
xc[a,b]

T̂m(x) = Tm(w(0))
−1

How large is ?Tm(w(0))

Outside interval , we have .−1 [ x [ 1 Tm(x) = cosh(mcosh−1x)

Let and . Then .y = e✎ x = 1
2
(y + y−1 ) Tm(x) =

1
2
(ym + y−m)

Now  defined by . Take solution .y y2 − 2xy + 1 = 0 y m 1

 (note since , )y = −x − x2 − 1 b > a > 0 −
b+a

b−a
< 0
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We have . Take  and .x = w(0) = −
b+a

b−a
b = ✘max a = ✘min

 x = −
b+a

b−a
= −

b+a

a

b−a

a

−1
= −

b

a + 1
b

a − 1
−1

= −
✗+1
✗−1

  is condition number of . From  we get✗ =
b

a A y = −x − x2 − 1

 y =
✗+1
✗−1 −

✗
2
+2✗+1

✗
2−2✗+1 −

✗
2
−2✗+1

✗
2−2✗+1

1/2
=

✗+1
✗−1 −

4 ✗
2

(✗−1)
2

1/2

 , and so y =
✗+1
✗−1 −

2 ✗

✗−1 =
✗

2
−2 ✗ +1

( ✗ +1)( ✗−1)
=

✗−1

✗+1

 Tm(−
b+a

b−a
) = 1

2

✗−1

✗+1

m

+
✗−1

✗+1

−m

[
1
2

✗−1

✗+1

−m

 Result:  max
xc[a,b]

T̂m(x) = Tm(w(0))
−1

[ 2
✗−1

✗+1

m

æemæA [ æRm
(A)e0æA [ æT̂m

(A)e0æA [ 2
✗ −1

✗ +1

m

æe0æA
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Consider case where one eigenvalue  much larger than others.✘n

Construct better polynomial than  using thisTk

2✘−✘n−✘1

✘n−✘1
/Tk

−✘n−✘1

✘n−✘1

information.

For example, “polynomial that is zero at extreme eigenvalue and

lower degree Chebyshev over other eigenvalues”.

pk(z) = Tk

2✘−✘n−1−✘1

✘n−1−✘1
/Tk

−✘n−1−✘1

✘n−1−✘1

✘n−✘

✘n

Clearly  and , pk(✘n) = 0 |pk(✘ i)| < |Tk

2✘i−✘n−1−✘1

✘n−1−✘1
/Tk

−✘n−1−✘1

✘n−1−✘1
| i < n

So, new bound , where ,
æekæA
æe0æA

[ 2
✗n−1 −1

✗n−1 +1

k−1

✗n−1 =
✘n−1

✘1

versus old bound: , where .
æekæA

æe0æA
[ 2

✗n −1

✗n +1

k

✗n =
✘n

✘1
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Clearly, the trick can be applied if we have multiple outlying

eigenvalues (large ones and small ones).

The same convergence bounds obtained for the error in CG can be

obtained for the residual in MINRES if  is HPD, since we bound theA

same polynomial.

MINRES: , where .
ærkæ2

ær0æ2

[ 2
✗n −1

✗n +1

k

✗n =
✘n

✘1

However, if  is Hermitian but not definite (MINRES) we need toA

find a (Chebyshev) polynomial that is small on both sides of the
origin. This is much harder, which has a significant effect on the

convergence (bound).

Convergence bounds for MINRES
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Let  be Hermitian and let , where A ✘(A) _ [a,b] 4 [c, d]

 and .a < b < 0 < c < d b − a = d − c

We need a polynomial that is small over both these intervals.

We proceed more or less the same way as for CG: we construct a

polynomial  that maps both intervals into  and define theq [−1, 1]

Chebyshev polynomial in terms of .q

We take  (2nd degree polynomial)q(z) = 1 +
2(z−b)(z−c)

ad−bc

Check that  maps  into  (draw ).q(z) [a,b] 4 [c, d] [−1, 1] q

How would you compute  for more general ?q(z) [a, b] 4 [c, d]

Now we take , where  (integral part).pk(z) = T l(q(z))/T l(q(0)) l = [k/2]

Note that we have Chebyshev polynomials of half the degree we

had in the definite case. 
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To compute we need to compute .max pk(z) Tl(q(0))

We have .q(0) = 1 +
2bc
ad−bc

=
ad+bc

ad−bc

Set  then .✙ =
ad+bc

ad−bc
= 1

2
(y + y−1) T l

(✙) =
1
2
(y l + y−l )

Solve ✙ =
1
2
(y + y−1) g

1
2y

2 − ✙y +
1
2 = 0 (y ! 0)

 (solution are each other’s inverse, so same result)y = ✙ ! ✙
2 − 1

y = ad+bc

ad−bc
+

(ad+bc)2

(ad−bc)2
−

(ad−bc)2

(ad−bc)2
= ad+bc

ad−bc
+ 4adbc

(ad−bc)2
= ad+bc

ad−bc
+

2 adbc

ad−bc
g

y =
( ad + bc )2

( ad+ bc )( ad− bc )
=

( ad+ bc )

( ad− bc )

Bound: .
ærkæ2
ær0æ2

[
ad − bc

ad + bc

[k/2]

Convergence bounds for MINRES



©2001 Eric de Sturler

Let  be Hermitian and let , where A ✘(A) _ [a,b] 4 [c,d]

 and .a < b < 0 < c < d b − a = d − c

Bound for MINRES:
ærkæ2
ær0æ2

[ 2
ad − bc

ad + bc

[k/2]

In the case that  and  (symmetric w.r.t. the origin), we a = −d b = −c

can simplify bound further (but bound does not get better):

(note 
ærkæ2

ær0æ2
[ 2

d−c

d+c

[k/2]

= 2
d/c−1
d/c+1

[k/2]

✗ =
d

c )

In HPD case: . 
ærkæ2

ær0æ2
[ 2

✗ −1

✗ +1

k

So bound in indefinite case at iteration  is that of the definite casek

at iteration  for matrix with condition number .k/2 d
2/c2

Dramatic loss of convergence compared with definite case.
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If we know that  has only a few negative (positive) eigenvalues, weA

again can improve the bound significantly by taking product 

, where  on negative eigenvalues and  is scaledps(z)Tk−s(z) ps = 0 Tk−s

and shifted Chebyshev polynomial over positive eigenvalues.

Product must also satisfy our normalization: .ps(0)Tk−s(0) = 1

Let .✘1 < ✘2 < ✘3 < 0 < ✘4 <£ < ✘n

Possibility: p̃k(z) = (z − ✘1)(z − ✘2)(z − ✘3)Tk−3
2z−✘n−✘4
✘n−✘4

Normalize: pk(z) = p̃k(z)/p̃k(0)

pk(z) =
(z−✘1 )(z−✘2 )(z−✘3)

−✘1✘2✘3
Tk−3

2z−✘n−✘4
✘n−✘4

/Tk−3
−✘n−✘4

✘n−✘4

, where  and .pk(z) [ 2C3

✗4 −1

✗4 +1

k−3

C3 =
(✘n−✘1 )(✘n−✘2 )(✘n−✘3)

−✘1✘2✘3
✗4 =

✘n

✘4

Note that  may not be good for small .pk(z) k

Convergence bounds for MINRES
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We will now consider convergence bounds for non-Hermitian

problems solved by GMRES. This brings some important changes.
First of all,  may not be diagonalizable. In this case we have toA

take ploynomials over Jordan blocks into account.

Second, the eigenvectors (and proper vectors) of  may not beA

orthogonal.

Let’s assume  is diagonalizable: A A = V✆V−1

We still have 
ærkæ2 [min

pk
æVpk(✆)V

−1r0æ2 [ ✗(V)min
pk

æpk(✆)æ2
ær0æ2 e

ærkæ2/ær0æ2 [ ✗(V)min
pk

max
i

pk(✘i )

Clearly, usefulness of bounding  depends on .min
pk

max
i

pk(✘ i) ✗(V)

Sharp for normal , approach still useful if  almost normal (A A V

unitary).
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Now we must find polynomials that are small over a region in the

complex plane. More complicated than Hermitian case.

Generally we try to find ‘simple’ regions containing the eigenvalues,

and devise polynomial over such a region (e.g. circle or ellipse).

Eigenvalues in circle  not containing the origin with center C(c,✣) c

and radius :✣

minpk(0)=1 maxz✌C(c,✣) pk(z) =
✣

c

k

Obtained for polynomial pk(z) = ( z−c
0−c

)k = (1 − z/c)
k

c
ρ

Convergence bounds for GMRES
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Eigenvalues in ellipse  not containing the origin with center E(c, d,a)

, major semi-axis , and focal distance .c a d

, where .ærkæ2/ær0æ2 [ ✗(V)
Tk

(a/d)

Tk
(c/d)

Tk(z) = cosh k cosh−1
z

Tk
(a/d)

Tk
(c/d)

=

a/d+ (a/d)
2
−1

k

+ a/d+ (a/d)
2
−1

−k

c/d+ (c/d)2−1
k

+ c/d+ (c/d)2−1
−k l

a+ a
2
−d

2
k

c+ c2−d2
k

c
c+dc-d

c+ac-a
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Although the eigenvalues often give important information about

the convergence of GMRES, we have the following theorem that

states this is not generally the case.

Theorem:

Given any set of eigenvalues and any non-increasing convergence

curve, a matrix with those eigenvalues and a right hand side can be

constructed for which GMRES will display the prescribed

convergence curve.

So even with a ‘nice’ spectrum the convergence can be arbitrarily

poor. 

This does not have to the case. Nonnormal matrices are not

inherently bad.

Convergence bounds for GMRES
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Consider matrix 

A =

0 1

0 1

••

1

c0 c1 c2 £ cn−1

Eigenvalues are zeros of .p(✘) = ✘n
− cn−1✘

n−1
− cn−2✘

n−2
−£ − c0 = 0

Solving  gives no convergence till last step.Ax = ´1

Taking appropriate initial residual yields any convergence curve.

This matrix is rather special, but we get same behavior for any

unitarily similar matrix. Note that this matrix is reordered lower

triangular matrix, and any matrix is unitarily similar to some lower

triangular matrix (Schur decomposition).
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1: A=diag(1,2,3,...,100)
2: A=diag(-1,-100,1,2,...,49,52,53,...,100)
3: A=diag(-99,-97,...,-1,1,3,...,99)
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u=u
n

u=u
s

u=u
w u=u

eLu=f

Lu = −(pux )x − (quy )y + rux + suy + tu = f

Convection-Diffusion(-Reaction) Equation

Dirichlet boundary conditions

Model Problem
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