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Krylov subspace methods
 

Preconditioning
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The general idea behind preconditioning is that convergence of

some method for the linear system  can be improved byAx = b

applying the method to the preconditioned system

1)  orP
−1
Ax = P

−1
b

2)  orAP
−1
x̃ = b and x = P

−1
x̃

3) .P1

−1
AP2

−1
x̃ = P1

−1
b and x = P2

−1
x̃

Although this is not really necessary, one easy way to think about

preconditioning is that if

 (case 1 and 2) or  (case 3) then the preconditionedP l A P1P2 l A

system is close to the identity (in some appropriate sense) and

convergence will be rapid.

Preconditioning
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For non-Hermitian problems the Krylov method can be applied

immediately to the preconditioned problem.

For Hermitian problems and corresponding solvers the
preconditioned system must also be Hermitian (positive definite).

Two ways:

‘Symmetric’ preconditioning: ,P−1AP−Hx̃ = P−1b

Use inner product based on (HPD) preconditioner:  …x,y P = yHPx

 is Hermitian (self-adjoint) wrt this inner product.P−1A

.…P−1Ax, y P = yHPP−1Ax = yHAHx = yHAHP−HPHx = …x,P−1Ay P

Now apply CG to  but use P-inner product.P−1A

Preconditioned Krylov methods
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One way to derive preconditioners is to use basic iterative methods

(fixed point methods).

Consider  and use matrix splitting:Ax = b

A =M −NtMxk+1 = Nxk + bw xk+1 =M
−1
Nxk +M

−1
b

Converges iff  ✣(M−1
N) < 1

Fixpoint: x = M
−1
Nx +M

−1
b w (I −M−1

N)x = M
−1
b

 is preconditioned matrix.(I −M−1
N) =M

−1
A

 is preconditioned system(I −M−1
N)x =M

−1
Ax = M

−1
b

Preconditioners from splittings
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Some well-known choices for :M

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 (block) JacobiM = diag(A11,A22,A33)

 (block) Gauss-SeidelM =

A11

A21 A22

A31 A32 A33

 (block) SORM =

✬
−1A11

A21 ✬
−1A22

A31 A32 ✬
−1A33

xk+1
SOR = ✬xk+1

GS + (1 −✬)xk
SOR

Preconditioners from splittings
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Properly chosen  yields greatly improved convergence rate.✬

For example, for the Poisson equation  the convergence rate✁u = f

goes from  for  (Gauss-Seidel) to .1 −O(h2) ✬ = 1 1 −O(h)

For analysis see book.

For special problems SOR (as a method in itself) is still very popular.

For symmetric problems we need symmetric preconditioner:

M =

 
✬

2−✬

✬−1A11

A21 ✬−1A22

A31 A32 ✬
−1A33

A11

−1

A22
−1

A33

−2

✬−1A11 A12 A13

✬−1A22 A23

✬
−1A33

(block) SSOR

Preconditioners from splittings
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If  is HPD and A

. A =

In1
A12 £ A1m

A12

H In2 §

§ • Am−1m

A1m

H £ Am−1m

H
Inm

Then  for all nonsingular, block-diagonal ✗(A) [ m. minD ✗(DH
AD) D

(with same block sizes as ) and  is the number of diagonal blocksA m

in .A

Diagonal Preconditioning
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# iterations (matvecs)

log10|r|2

p=q=1; r=s=70; h=1/ 31;

us = 0; uw =0; un = 1; ue = 1;

#matvec time (s)

gmres 30 3.57

gmres(10) 40 0.5

qmr 66 0.38

bicg 66 0.28

bicgstab 50 0.33

Unpreconditioned Convergence
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Diagonal Preconditioning
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# iterations (matvecs)

log10|r|2

p=1; q=10; r=20; s=-5; h=1/ 51;

us = 0; uw =0; un = 1; ue = 1;

#matvec time (s)

gmres 220 55.8

qmr 492 5.98

bicg 494 4.34

bicgstab 324 4.40

cgs 338 3.46CGS

Unpreconditioned
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# iterations (matvecs)

log10|r|2

p=1; q=10; r=20; s=-5; h=1/ 51;

us = 0; uw =0; un = 1; ue = 1; #matvec time (s)

gmres 220 55.8

gmres(25) 282 11.7

gmres(5) 1004 23.4

GMRES(25)

BiCGSTAB

GMRES(5)

Unpreconditioned
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An important class of preconditioners is the one based on

incomplete decompositions.

Consider the linear system .Ax = b

We carry out an LU decomposition (for example). However, at every
point where we introduce an non-zero coefficient in  we ignore it.A

Let . This gives, , which is a matrix splitting.R = LU −A A = LU −R

Clearly we won’t get the exact LU decomposition this way, but it

turns out that for M-matrices this splitting has nice properties.

Incomplete Decompositions
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Theorem:

Let  be an M-matrix. Then for every subset  of off-diagonalA P

indices, there exists a lower triangular matrix  with unit diagonalL

and an upper triangular matrix  such that , and  if U A = LU − R l ij = 0

,  if , and  if . The factors  and (i, j)✌P uij = 0 (i, j)✌P r ij = 0 (i, j) " P L U

are unique and  is a regular splitting.A = LU − R

Proof: (see book)

If  is a symmetric M-matrix and  then we have anA (j, i)✌Pw (i, j)✌P

incomplete Cholesky decomposition  which is a regularA = LLT
− R

splitting.

The incomplete decompositions can be used as preconditioners. If

we allow no fill-in we call the preconditioners ILU(0), IC(0)

respectively.

Incomplete Decompositions
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For hard problems it may be useful to allow more fill-in (non-zeros

in  or  that are zeros in ). L U A

The corresponding preconditioners are referred to as ILU(k), IC(k),

where k indicates the level of fill-in allowed.

Level 1 fill-in is fill-in caused by non-zero coefficients of . Level 2A

fill-in is fill-in caused by the level 1 fill-in (that is by non-zeros not

originally in ), etc. A

Another variation of ILU is to use a drop tolerance. That is we only

allow fill-in if, in absolute sense, it is larger than the drop tolerance
times the norm of the column. The two approaches can also be

mixed.

Incomplete Decompositions
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The IC preconditioner tends to reduce the number of iterations

significantly. However, for the mesh width  going to zero, theh

condition number of an elliptic problem still behaves as , justO(h−2)

as for the unpreconditioned problem. Hence, the number of
iterations of CG still behaves as .O(h−1)

It turns out we can improve the condition number of the

preconditioned matrix by a factor of , that is it behaves as .h O(h)

Consequently, the number of iterations of CG behaves as .O(h−1/2)

For details see the book. This type of preconditioner is referred to as

MIC (or MILU) for Modified Incomplete Cholesky (or Modified ILU).

Often a parametrized form of is used, where based on the

parameter the preconditioner varies between IC (ILU) and MIC

(MILU).

Incomplete Decompositions
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MIC/MILU have about the same complexity to compute and to

apply as IC/MILU.

It is important to keep in mind that preconditioning introduces extra

costs:
1) the cost to compute the incomplete decomposition,

2) the cost to apply the preconditioner at each iteration.

The second is typically the most important. For example, ILU(0)
introduces floating point overhead equal to another matrix vector

product. In practice, especially on parallel (and vector) computers

the extra cost in runtime can be even worse, because the solution of

triangular systems is hard to parallelize (vectorize).

Hence, the preconditioner should reduce the number of iterations

sufficiently (and it usually does).

Incomplete Decompositions
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On parallel computers we often use incomplete block (diagonal)

decompositions. This decouples parts of the domain. Unfortunately,
this generally increases the number of iterations again, so that we

must look for some balance. A variety of strategies to prevent
deterioration of the number of iterations has been developed.

These are related to so-called domain decomposition based

preconditioners (next topic).

Nevertheless incomplete decompositions are the most popular

preconditioners today. Largely, because they can more or less be

used as black box preconditioners and are nevertheless very

effective for a wide range of problems.

Incomplete Decompositions
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GMRES

GMRES(5)

BiCGSTAB

CGS

BiCG

QMR

# iterations (matvecs)

log10|r|2

p=1; q=10; r=20; s=-5; h=1/ 51;

us = 0; uw =0; un = 1; ue = 1;

#matvec time (s)

gmres 47 5.83

qmr 101 3.95

bicg 101 3.52

bicgstab 64 2.58

cgs 70 2.41

gmres(5) 59 3.03

ILU(0) Preconditioner
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50x50 70 2.41

100x100 70 18.1

200x200 143 172

Convergence CGS for various h
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GMRES(m) after shifting spectrum


