
©2001 Eric de Sturler

Krylov subspace methods

Preconditioning

©2001 Eric de Sturler

The general idea behind preconditioning is that convergence of

some method for the linear system can be improved byAx = b

applying the method to the preconditioned system

1) orP
−1
Ax = P

−1
b

2) orAP
−1
x̃ = b and x = P

−1
x̃

3) .P1

−1
AP2

−1
x̃ = P1

−1
b and x = P2

−1
x̃

Although this is not really necessary, one easy way to think about

preconditioning is that if

 (case 1 and 2) or (case 3) then the preconditionedP l A P1P2 l A

system is close to the identity (in some appropriate sense) and

convergence will be rapid.

Preconditioning

©2001 Eric de Sturler

For non-Hermitian problems the Krylov method can be applied

immediately to the preconditioned problem.

For Hermitian problems and corresponding solvers the
preconditioned system must also be Hermitian (positive definite).

Two ways:

‘Symmetric’ preconditioning: ,P−1AP−Hx̃ = P−1b

Use inner product based on (HPD) preconditioner: …x,y P = yHPx

 is Hermitian (self-adjoint) wrt this inner product.P−1A

.…P−1Ax, y P = yHPP−1Ax = yHAHx = yHAHP−HPHx = …x,P−1Ay P

Now apply CG to but use P-inner product.P−1A

Preconditioned Krylov methods

©2001 Eric de Sturler

One way to derive preconditioners is to use basic iterative methods

(fixed point methods).

Consider and use matrix splitting:Ax = b

A =M −NtMxk+1 = Nxk + bw xk+1 =M
−1
Nxk +M

−1
b

Converges iff ✣(M−1
N) < 1

Fixpoint: x = M
−1
Nx +M

−1
b w (I −M−1

N)x = M
−1
b

 is preconditioned matrix.(I −M−1
N) =M

−1
A

 is preconditioned system(I −M−1
N)x =M

−1
Ax = M

−1
b

Preconditioners from splittings

©2001 Eric de Sturler

Some well-known choices for :M

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 (block) JacobiM = diag(A11,A22,A33)

 (block) Gauss-SeidelM =

A11

A21 A22

A31 A32 A33

 (block) SORM =

✬
−1A11

A21 ✬
−1A22

A31 A32 ✬
−1A33

xk+1
SOR = ✬xk+1

GS + (1 −✬)xk
SOR

Preconditioners from splittings

©2001 Eric de Sturler

Properly chosen yields greatly improved convergence rate.✬

For example, for the Poisson equation the convergence rate✁u = f

goes from for (Gauss-Seidel) to .1 −O(h2) ✬ = 1 1 −O(h)

For analysis see book.

For special problems SOR (as a method in itself) is still very popular.

For symmetric problems we need symmetric preconditioner:

M =

✬

2−✬

✬−1A11

A21 ✬−1A22

A31 A32 ✬
−1A33

A11

−1

A22
−1

A33

−2

✬−1A11 A12 A13

✬−1A22 A23

✬
−1A33

(block) SSOR

Preconditioners from splittings

©2001 Eric de Sturler

If is HPD and A

. A =

In1
A12 £ A1m

A12

H In2 §

§ • Am−1m

A1m

H £ Am−1m

H
Inm

Then for all nonsingular, block-diagonal ✗(A) [m. minD ✗(DH
AD) D

(with same block sizes as) and is the number of diagonal blocksA m

in .A

Diagonal Preconditioning

©2001 Eric de Sturler

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
- 9

- 8

- 7

- 6

- 5

- 4

- 3

- 2

- 1

0

BiCG

QMR

GMRES

GMRES(10)

BiCGSTAB

iterations (matvecs)

log10|r|2

p=q=1; r=s=70; h=1/ 31;

us = 0; uw =0; un = 1; ue = 1;

#matvec time (s)

gmres 30 3.57

gmres(10) 40 0.5

qmr 66 0.38

bicg 66 0.28

bicgstab 50 0.33

Unpreconditioned Convergence

©2001 Eric de Sturler

0 2 0 4 0 6 0 8 0
- 1 0

- 8

- 6

- 4

- 2

0

B i C G

B iC G S T A B

G M R E S (1 0)
G M R E S

Diagonal Preconditioning

©2001 Eric de Sturler

0 1 0 2 0 3 0 4 0 5 0
- 1 0

- 8

- 6

- 4

- 2

0

BICG

BiCGSTAB
GMRES

GMRES(10)

Tridiagonal Preconditioner

©2001 Eric de Sturler

0 10 0 2 0 0 3 0 0 4 00 5 00
- 8

- 6

- 4

- 2

0

2

4

6

8

BiCG

QMR
GMRES

BiCGSTAB

iterations (matvecs)

log10|r|2

p=1; q=10; r=20; s=-5; h=1/ 51;

us = 0; uw =0; un = 1; ue = 1;

#matvec time (s)

gmres 220 55.8

qmr 492 5.98

bicg 494 4.34

bicgstab 324 4.40

cgs 338 3.46CGS

Unpreconditioned

©2001 Eric de Sturler

0 2 0 0 4 00 60 0 80 0 1 00 0 12 00
- 8

- 6

- 4

- 2

0

2

GMRES

iterations (matvecs)

log10|r|2

p=1; q=10; r=20; s=-5; h=1/ 51;

us = 0; uw =0; un = 1; ue = 1; #matvec time (s)

gmres 220 55.8

gmres(25) 282 11.7

gmres(5) 1004 23.4

GMRES(25)

BiCGSTAB

GMRES(5)

Unpreconditioned

©2001 Eric de Sturler

An important class of preconditioners is the one based on

incomplete decompositions.

Consider the linear system .Ax = b

We carry out an LU decomposition (for example). However, at every
point where we introduce an non-zero coefficient in we ignore it.A

Let . This gives, , which is a matrix splitting.R = LU −A A = LU −R

Clearly we won’t get the exact LU decomposition this way, but it

turns out that for M-matrices this splitting has nice properties.

Incomplete Decompositions

©2001 Eric de Sturler

Theorem:

Let be an M-matrix. Then for every subset of off-diagonalA P

indices, there exists a lower triangular matrix with unit diagonalL

and an upper triangular matrix such that , and if U A = LU − R l ij = 0

, if , and if . The factors and (i, j)✌P uij = 0 (i, j)✌P r ij = 0 (i, j) " P L U

are unique and is a regular splitting.A = LU − R

Proof: (see book)

If is a symmetric M-matrix and then we have anA (j, i)✌Pw (i, j)✌P

incomplete Cholesky decomposition which is a regularA = LLT
− R

splitting.

The incomplete decompositions can be used as preconditioners. If

we allow no fill-in we call the preconditioners ILU(0), IC(0)

respectively.

Incomplete Decompositions

©2001 Eric de Sturler

For hard problems it may be useful to allow more fill-in (non-zeros

in or that are zeros in). L U A

The corresponding preconditioners are referred to as ILU(k), IC(k),

where k indicates the level of fill-in allowed.

Level 1 fill-in is fill-in caused by non-zero coefficients of . Level 2A

fill-in is fill-in caused by the level 1 fill-in (that is by non-zeros not

originally in), etc. A

Another variation of ILU is to use a drop tolerance. That is we only

allow fill-in if, in absolute sense, it is larger than the drop tolerance
times the norm of the column. The two approaches can also be

mixed.

Incomplete Decompositions

©2001 Eric de Sturler

The IC preconditioner tends to reduce the number of iterations

significantly. However, for the mesh width going to zero, theh

condition number of an elliptic problem still behaves as , justO(h−2)

as for the unpreconditioned problem. Hence, the number of
iterations of CG still behaves as .O(h−1)

It turns out we can improve the condition number of the

preconditioned matrix by a factor of , that is it behaves as .h O(h)

Consequently, the number of iterations of CG behaves as .O(h−1/2)

For details see the book. This type of preconditioner is referred to as

MIC (or MILU) for Modified Incomplete Cholesky (or Modified ILU).

Often a parametrized form of is used, where based on the

parameter the preconditioner varies between IC (ILU) and MIC

(MILU).

Incomplete Decompositions

©2001 Eric de Sturler

MIC/MILU have about the same complexity to compute and to

apply as IC/MILU.

It is important to keep in mind that preconditioning introduces extra

costs:
1) the cost to compute the incomplete decomposition,

2) the cost to apply the preconditioner at each iteration.

The second is typically the most important. For example, ILU(0)
introduces floating point overhead equal to another matrix vector

product. In practice, especially on parallel (and vector) computers

the extra cost in runtime can be even worse, because the solution of

triangular systems is hard to parallelize (vectorize).

Hence, the preconditioner should reduce the number of iterations

sufficiently (and it usually does).

Incomplete Decompositions

©2001 Eric de Sturler

On parallel computers we often use incomplete block (diagonal)

decompositions. This decouples parts of the domain. Unfortunately,
this generally increases the number of iterations again, so that we

must look for some balance. A variety of strategies to prevent
deterioration of the number of iterations has been developed.

These are related to so-called domain decomposition based

preconditioners (next topic).

Nevertheless incomplete decompositions are the most popular

preconditioners today. Largely, because they can more or less be

used as black box preconditioners and are nevertheless very

effective for a wide range of problems.

Incomplete Decompositions

©2001 Eric de Sturler

0 20 40 60 80 100 120
-7

-6

-5

-4

-3

-2

-1

0

1

2

data 1

data 2

data 3

data 4

data 5

data 6

GMRES

GMRES(5)

BiCGSTAB

CGS

BiCG

QMR

iterations (matvecs)

log10|r|2

p=1; q=10; r=20; s=-5; h=1/ 51;

us = 0; uw =0; un = 1; ue = 1;

#matvec time (s)

gmres 47 5.83

qmr 101 3.95

bicg 101 3.52

bicgstab 64 2.58

cgs 70 2.41

gmres(5) 59 3.03

ILU(0) Preconditioner

©2001 Eric de Sturler

0 50 100 150
-8

-6

-4

-2

0

2

4

gmres

gmres(5)

bicgstab

cgs

bicg

MILU(0)

©2001 Eric de Sturler

0 50 1 00 15 0 20 0 2 5 0 3 00
- 8

- 6

- 4

- 2

0

2

4

6

50x50

100x100

200x200

#matvec time (s)

50x50 70 2.41

100x100 70 18.1

200x200 143 172

Convergence CGS for various h

©2001 Eric de Sturler

0 200 400 600 800 1000 1200

-8

-7

-6

-5

-4

-3

-2

-1

0 10

full

25
50100

120

iterations (matvecs)

log10|r|2

p=q=1; r=s=70; h=1/ 31;

us = 0; uw =0; un = 1; ue = 1;

A=A-3.65*I

GMRES(m) after shifting spectrum

