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Krylov subspace methods

Short Recurrence Methods for

Non-Hermitian Problems
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Krylov subspace methods

GMRES optimal in iterations but expensive in time and 

memory if many iterations requires. Main cost is keeping all 

vectors and complete orthogonalization.

Can we devise an optimal method with a short recurrence?

No, unless (non-Hermitian) matrix very special.

(Faber&Manteuffel result)

However, we can construct short recurrence methods 

that are very good in most cases. 
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Find approximation to  in  such that .b range(x) b − ✍xΩz

This gives  .zH(b − ✍x) = 0u ✍ =
zHb

zHx

If  no solution exists. zHx = 0

The quality of the approximation from an oblique projection depends

on the angle between the search space, , and the spacerange(x)

that defines the projection, .range(z)

b

x

z

αx

Oblique Projection
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Two types of Krylov subspace methods (general matrices):
1. Orthogonal projection methods: optimal, but expensive (GMRES).
2. Oblique projection methods: cheap, but often converge poorly.

a. economize on optimal methods (restart or truncate)
b. create different space (BiCG):

Ax1

x1

b

r1

Q̃

r2

Ax2

x2

span{Ab,A2
b,£,A

m
b}

span{b,Ab,£,A
m−1

b}

Solving Ax=b

span{b̃,A&b̃,£, (A& )m−1
b̃}

residual rk=b-Axk is measure for error

Krylov subspace methods
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In multiple dimensions the quality of the approximation from an
oblique projection depends on the canonical or principle angles

between search space and space that defines projection. The
residual from an oblique projection may be much larger than the  

optimal residual.

Result may be very poor if one or more angles near .✜/2

Linear system: , Ax = b

  and x c range(Vm) r = b − AVmyΩ range(Ṽm)

 Ṽm
H(b − AVmy) = 0 w Ṽm

HAVmy = Ṽm
Hb

Solve  system (small).m %m

Computation of , , and  using short recurrencesṼm
HAVmy Ṽm Vm

requires special choices for .Ṽm

Oblique projection
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In order to use a short recurrence we need to make special choices.

Given arbitrary  and  we generate two Krylov sequences:v1 ṽ1

 v i = Avi−1 −✟ j<i ✍ jv j /æ.æ c Ki(A, v1)

 ṽ i = AHṽ i−1 −✟ j<i ✍ jṽ j /æ.æ c K i(AH, ṽ1)

Neither the vectors  nor the vectors  are orthogonal.v i ṽ i
However,  for  and  by choice of  and .v i

Hṽ j = 0 i ! j v i
Hṽ i ! 0 ✍i ✍̃ i

We now have the following orthogonality results (analogous to CG):

  for  since , andAv iΩṽ j j < i − 1 (Av i )
H
ṽ j = v i

HAHṽ j = v i
H
✟k=1

j+1
✏kṽk

  for .AHṽ iΩv j j < i − 1

So we can generate two mutually orthogonal (≡ biorthogonal)

sequences of vectors using short recurrences. 

Note that in this case  is tridiagonal.Ṽ i
HAV i

Short recurrence methods: BiCG
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Solve choose choose Ax = b; x0 d r0 = b −Ax0; r̃0;

Iterate:

✑m = r̃
m

& rm, ✍m = r̃
m

& Arm/✑m, ✎m−1 = ✏m−1

✑m
✑
m−1

, ✏m = −✍m − ✎m−1.

  rm+1 = ✏
m

−1(Arm − ✍mrm − ✎m−1rm−1); ARm = Rm+1Tm;

  r̃m+1 = ✏m
−1(A& r̃m − ✍mr̃m − ✎m−1r̃m−1); A&R̃m = R̃m+1Tm;

  xm+1 = −
✍m
✏m xm −

✎m−1
✏m xm−1 − ✏

m

−1rm;

R̃m

& Rm = ✁m = diag(✑0, ✑1,… , ✑m−1);

xm+1 = x0 +Rmy d rm+1 = r0 − Rm+1Tmy; rm+1 z R̃m;

R̃m

& (r0 − ARmy) = 0 u ✑0e1 − ✁nTny = 0 u y = Tn

−1e1;

rm+1 = Rm+1(e1 − T
m

T
m

−1e1);

BiConjugate Gradient Method (3-term rec.)
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Using again an implicit decomposition of the tridiagonal matrix 

 we get a coupled two term recurrence that allows  usTk = LkDkUk

to discard old vectors.

 choose  and .x0 d r0 = b − Ax0;p0 = r0; r̃0 : r̃0
Hr0 ! 0 p̃0 = r̃0

For k = 1, 2,¢

✍k−1 =
r̃k−1
H rk−1

p̃
k−1

H Apk−1
; xk = xk−1 + ✍k−1pk−1;

rk = rk−1 − ✍k−1Apk−1; r̃k = r̃k−1 − ✍k−1A
Hp̃k−1;

✎k−1 =
r̃k
Hrk

r̃
k−1

H rk−1
;

pk = rk + ✎k−1pk; p̃k = r̃k + ✎k−1p̃k;
End

Drawbacks of BiCG?

BiConjugate Gradient Method
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number of iterations
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Some of the most popular methods today are derived from BiCG:

CGS, BiCGstab, TFQMR, QMR, ...

Convergence
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1. In general, method does not satisfy any (strict) minimization

property and hence may converge (very) erratically.

(In practice the method often converges surprisingly well -- this is

not a drawback--).

2. Two matvec.s per iteration, only one extends search space.

3. Need  which may be more expensive to work with  or may notA
H

even be available (matrix-free implementations)

4. Breaks down without finding solution:

a. , which means  is invariantr̃k = 0 K
k(AH, r̃k )

b. , where  and .r̃k
H
rk = 0 r̃k ! 0 rk ! 0

c.  singular (only for coupled 2-term recurrence)Tk

Short recurrence methods: BiCG
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If BiCG fails because  is singular, we may solve the systemTk

  in least squares sense:ær0æe1 − T
k

(k+1)%k

 rk = r0 − AVkyk = Vk+1 ær0æe1 − T
k
yk

 Minimize  as in GMRES (or MINRES).ær0æe1 − T
k
yk

2

Major difference:  is not (at all) orthogonal, hence not optimal.Vk+1

This least squares system always has a solution (removes one

breakdown condition).

Compared with GMRES we have .rk
Q

2
[ ✗(Vk+1 )ærk

Gæ2

Unfortunately there is no bound (in general) for .✗(Vk+1 )

Other drawbacks remain. How to get rid of the  part.AH

Short recurrence methods: QMR
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Cunning Plan (P. Sonneveld):

If we only need  for projection, then all we need are theK(AH, r̃0 )

inner products with the vectors  and .r̃ i p̃i

Since , we have r̃i = Ri(A
H )r̃0

 .r̃i
Hri = [Ri(A

H)r̃0]
H[Ri(A)r0 ] = r̃0

HRi

2(A)r0

Analogously, the other inner products are prod. polynomials in .A
If we can find (easy) recurrences to represent the products of

polynomials times a vector (like ), then we only need  andRi
2(A)r0 r̃0

we can discard the Krylov space generated with .AH

Moreover we now compute approximations from Krylov space 

 using  matvec.s. So , we no longer waste matvec.s.K2i(A, r0 ) 2 % i

Finally, if  small, then typically  much smaller.Ri(A)r0 Ri

2(A)r0
Unfortunately, when  large ...Ri(A)r0

Short recurrence methods: CGS
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Since CGS ‘squares the residual’ the residual may be large when 

 not small. In fact, even when  small,  mayRi(A)r0 R i(A)r0 R
i

2(A)r0
not be.

This may lead to very irregular (nervous) convergence behavior with
large peaks in the residual norm. This may ruin accuracy and

sometimes convergence.

Nevertheless, for a long time CGS was the method of choice for a
large class of problems. 

Instead of squaring the polynomial, to avoid large peaks in CGS

convergence, we may multiply by another polynomial:

 , rk = Mk(A)Rk(A)r0

where,  is used to improve convergence and avoid peaks.Mk

For example, one-step minimum residual polynomial. This yields the

BiCGStab (Stabilized) method. Currently among the most popular
Krylov methods with GMRES and TFQMR (QMR squared).

Lanczos product methods
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The Generalized Minimum Residual Method: GMRES

Arnoldi:
AV
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QR-decomp. H
m
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min 2rm26 ym = Rm

- 1Qm

*$e1;
(Least Squares)

GMRES:
select x0; r0 = b - Ax0; k = 0;
$ = 2r022; v1 = $ -1r0;

do
k = k+1;

vk+1 = Av k;
do i = 1,k

hi,k = vi
*vk+1;

vk+1 = vk+1 - hi,kvi;
enddo

hk+1,k = 2vk+122; vk+1 = vk+1/hk+1,k;

update QR-decomp. Hk = QkRk

if (2(I-QQk
*)$e122 #  eps) exit

enddo

yk = Rk
-1Qk

*$e1; xk = x0+Vkyk; 
rk = r0 - Vk+1Hkyk;

Drawbacks: 
Orthogonalization cost: O(Nm2); Memory requirements: O(Nm)
Remedy: Restart

Truncation for optimal methods


