
©2001 Eric de Sturler

Introduction to Multigrid

©2001 Eric de Sturler

Consider wave with wavenumber :k

 on grid u j,k
h
= sin

jk✜
n ✡

h

Consider same wave on the coarse grid (half the points), by simply

taking value at every other point:

 on grid .u j,k
2h

= u2j,k
h

= sin
2jk✜
n = sin

jk✜

n/2 ✡
2h

So kth mode on fine grid gives kth mode on coarse grid.

Should not be surprising since kth mode is wave with wavelenght ,2k
which does not depend on .n
Another way to see this is that we have half the number of points and

half the number of waves.

Waves on different grids

©2001 Eric de Sturler

The oscillatory waves on , which has points, are waves with✡
2h

n/2

wavenumbers .n/4 [k < n/2 − 1

Since wave number does not change, the modes with wavenumber

 become oscillatory. So half the smooth modes on n/4 [k < n/2 ✡
h

become oscillatory on . The other half remain smooth (but less✡
2h

smooth than before).

The oscillatory modes on the fine grid cannot be represented on the

coarse grid.

What happens to the oscillatory modes on when we go to ?✡
h

✡
2h

Why is this a problem for our solution algorithm?

Waves on different grids

©2001 Eric de Sturler

Given problem with with gives 33 grid points and .n = 32 j = 0¢32

We look at following waves on and : ✡
1/32

✡
1/16

1) k = 5, 14, 26

2) k = 5, 14, 30

Notice that

 is smooth on both grids (but less smooth on)k = 5 ✡
1/16

 is smooth on and becomes oscillatory on k = 14 ✡
1/32

✡
1/16

 are oscillatory on and become smooth on k = 26, 30 ✡
1/32

✡
1/16

The effect for is called aliasing: an oscillatory wave disguisesk = 26, 30

itself as a smooth one. In fact a wave with wavenumber k > n − 1

appears as a wave with wavenumber .k = 2n − k

There is no way to distinguish the two on the given grid.

Waves on different grids

©2001 Eric de Sturler

0 5 10 15 20 25 30 35
-1

-0.5

0

0.5

1

j

sin
jk✜
n

k1=5

k2=14

k3=26

n=32

Waves on different grids

©2001 Eric de Sturler

0 5 10 15 20
-1

-0.5

0

0.5

1

j

sin
jk✜

n/2

k1=5

k2=14

k3=26

n=16

Waves on different grids

©2001 Eric de Sturler

0 5 10 15 20 25 30 35
-1

-0.5

0

0.5

1

j

sin
jk✜
n

k1=5

k2=14

k3=30

n=32

Waves on different grids

©2001 Eric de Sturler

0 5 10 15 20
-1

-0.5

0

0.5

1

j

sin
jk✜

n/2

k1=5

k2=14

k3=30

n=16

Waves on different grids

©2001 Eric de Sturler

We saw that our basic iteration or relaxation methods are good in

damping the oscillatory components of the error. They are not effective
on the smooth modes.

So the idea is to use relaxation on the fine grid until oscillatory modes
are sufficiently reduced and convergence slows down.

Then we move to the coarse grid where the (fine grid) smooth modes

are more oscillatory and hence more effectively reduced by relaxation.

We saw that the very smooth modes () on the fine grid remaink < n/4

smooth on the coarse grid. Hence they will still be reduced slowly by

relaxation.

The natural answer to this is to move to the next coarser grid, etc.

Typically at some point a direct solver is used.

The basic MG idea

©2001 Eric de Sturler

Important question now is how do we move among the grids.

1) How do we use the solution from the coarser grids (that have

reduced or removed the smooth components of error) to get a better

solution on the fine grid?

2) How do we transfer the approximate solution from fine grid to

coarse grid and how do we derive the equations to solve on the

coarse grid?

Grid transfer and coarse grid eq.s

©2001 Eric de Sturler

Let’s derive equations for the coarse grid.

We want to compute a correction to the solution on the fine grid. That

means we must compute an approximation to the error.

The residual gives us an equation to compute the error: Ae = r

So we compute the residual at and map it to . This can be done✡
h

✡
2h

in many ways, but for the moment we stick to the simple trivial

injection we saw before: . This will provide our right hand side.r j
2h

= r2j
h

Again to keep things simple we assume that the coarse grid operator is

the coarse grid discretization of the PDE (basically same operator as on

the fine grid): (fine grid).A
2h

A
h

So we have the equation: A2h
e
2h

= r
2h

Grid transfer and coarse grid eq.s

©2001 Eric de Sturler

Suppose we find a satisfactory approximation to the error . How doe
2h

we use this to correct the fine grid approximation to the solution?

This operation is called interpolation or prolongation. Again many

possibilities exist. We will look at a simple one first. Clearly for the

points existing in both grids we can simply take the same values (just as

going from fine to coarse grid). For the intermediate points we use

linear interpolation. An important rationale for this is the following.

Assume the error on the fine grid is smooth. Further assume that we

have the exact coarse grid error on the coarse grid. Linear interpolation

of the coarse grid error on the fine grid will give a smooth function.

Hence we may assume we get a good approximation to the fine grid

error.

On the other hand if the fine grid error is oscillatory we cannot hope to

get a good approximation (hence should be smooth).e
h

Grid transfer and coarse grid eq.s

©2001 Eric de Sturler

The interpolation or prolongation operator is represented by .I2h
h

We will represent the restriction operator by .Ih
2h

Assume is even, () grid points, and we ignore the boundary pointsn n + 1

and assume zero (Dirichlet) boundary conditions. Then we need to map

from coarse grid points to fine grid points :1¢
n

2
− 1 1¢n − 1

I
2h
h : ‘

n

2
−1

d ‘
n−1

=
1

2

1

2

1 1

2

1

•

The operator takes the coarse grid value at even grid points and

averages values at neighboring points for the odd points. If we include

the points on the boundary it would copy the values (even points).

Grid transfer and coarse grid eq.s

©2001 Eric de Sturler

We will discuss two restriction operators: Ih
2h

Injection simply assigns the fine grid values to the corresponding coarse

grid variables:

Ih
2h
: ‘n−1 d ‘

n

2
−1

=

1 0 0 0 0

0 0 1 0 0 £

0 0 0 0 1

§ •

Another restriction operator is so-called full-weighting.

Here the values at the coarse grid points are taken as weighted
averages of their (immediate) neighbors. The full weighting operator is

a scaled transpose of the linear interpolation (prolongation) operator.

(compare with the domain decomposition operators)

Grid transfer and coarse grid eq.s

©2001 Eric de Sturler

Full weighting at gives for a coarse grid variable:

v j
2h

=
1

4
v
2j−1
h

+ 2v
2j
h
+ v

2j+1
h

Written as a matrix operator (for whole grid) this gives

Ih
2h : ‘n−1

d ‘
n

2
−1

=
1

4

1 2 1

1 2 1

•

Note that all these steps are very easy to implement as local operators

at each point.

Grid transfer and coarse grid eq.s

©2001 Eric de Sturler

We now have all the steps to put our first multigrid algorithms together.

Two grid algorithm: (on)Au = f ✡
h

: Do relaxations on starting with some initial guess✡
h k1

h Ahuh
= fh

rh = fh −Ahuh
; r2h = Ih

2hrh;

: Solve (directly) ✡
2h A2he2h = r2h

eh = I2h
h e2h; uh

= uh
+ eh;

: Do relaxations on starting with new .✡
h k2

h Ahuh
= fh uh

A direct solver is used for . Obviously for very large systemsA2he2h = r2h

this is not practical. However, the two grid algorithm is often used for

analysis.

An obvious alternative for a direct solver is to do another coarse grid

correction on and so on (CS students feel the recursion coming).✡
4h

2-Grid algorithm

©2001 Eric de Sturler

We may also use an iterative solver (another couple of relaxation

sweeps) on : . This can in fact already be surprisingly✡
2h

A
2h
e
2h

= r
2h

effective.

We typically use a direct solver at some level (when the number of

variables gets sufficiently small).

2-Grid algorithm

©2001 Eric de Sturler

V-cycle MG algorithm: (on)Au = f ✡
h

: Do relaxations on starting with some initial guess✡
h k1

h Ahuh
= fh

rh = fh −Ahuh
; f2h = Ih

2hrh;
: Do relaxations on starting with zero guess✡

2h k1
2h A2hu2h

= f2h

r2h = f2h − A2hu2h
; f4h = I2h

4hr2h;

and so on for coarser and coarser grids

: Solve (directly) (suff. iterations make direct solve)✡
Lh ALhuLh

= fLh;

e(L−1)h = ILh
(L−1)h

uLh
;

: ✡
(L−1)h u(L−1)h

= u (L−1)h
+ e(L−1)h;

Do relaxations on using new k2
(L−1)h

A(L−1)hu(L−1)h
= f(L−1)h u(L−1)h

and so on for finer and finer grids

:✡
h uh

= uh
+ eh;

Do relaxations on starting with new .k2
h Ahuh

= fh uh

V-cycle variations

©2001 Eric de Sturler

Let’s experiment:

V-cycle variations

©2001 Eric de Sturler

How to analyze smoothing behavior for more general problems and

relaxations: local mode (normal mode/Fourier) analysis.

In general computing eigenvectors/values is too hard (harder than

solvng a linear system)

The idea is to derive the smoothing factor from idealization of the

equations at a point (experiment to find worst point).

This separates the smoothing of the error from the other algorithmic

components. It also provides a optimal figure against which to compare

overall performance of algorithm.

Idealizations:

� Assume infinite domain
� Assume equations are same everywhere
� Assume relaxation scheme is linear process

Local mode analysis

©2001 Eric de Sturler

Error given by linear iteration: e(k+1) = Ge(k)

Now we assume the error consists of Fourier modes and we analyze

how relaxation acts on these modes (ideally no mixing of modes).

We should analyze the damping of the eigenvectors of the iteration

matrix. However, we assume that oscillating modes are approximately

eigenvectors (generally true); and apply smoothing analysis to these.

For discrete domain we have waves with wavenumber wj = sin
jk✜
n

.k = 1¢n
Now we replace by (continuous wavenumber) and consider waves k✜

n ✕

 with .w j = exp(©j✕) ✕ c (−✜,✜]

Values near correspond to low frequency waves; values of near ✕ 0 ✕

 correspond to high frequency waves.✜

Wavelength of mode is .✕
2✜h
✕

Local mode analysis

©2001 Eric de Sturler

Error at point at iteration : j k e j
(k)

= A(k) exp(©j✕), −✜ < ✕ [✜.

Goal is to find relation ,A(k + 1) = A(k)G(✕)

where is called the amplification factor (for mode)G(✕) ✕

This way we can analyze the convergence of the modes separately.

For convergence (of relaxation method) we need .G(✕) < 1 for all ✕

For MG only need damping of oscillatory modes: .G(✕) < 1,
✜

2 [✕ [✜

We define smoothing factor as .✙ = max ✜

2
[✕ [✜ G(✜)

(slowest damping of oscillatory modes)

Local mode analysis

©2001 Eric de Sturler

Consider one-dimensional equation −uxx + cu = f

Central finite differences gives: −v j−1 + (2 + h2c j)v j − v j+1 = h2f j

Jacobi: v j
(k+1)

=
1

2+h2cj
h2f j + v j−1

(k)
+ v j+1

(k)

weighted Jacoby: v j
(k+1)

=
✬

2+h2cj
h2f j + v j−1

(k)
+ v j+1

(k)
+ (1 −✬)v j

(k)

For the error we get:

e j
(k+1)

= u j − v j
(k+1)

= ✬u j −
✬

2+h2cj
h2f j + v j−1

(k)
+ v j+1

(k)
+ (1 −✬)u j − (1 −✬)v j

(k)

Since satisfies the equation we have u u j =
1

2+h2cj
(h2f j + u j−1 + u j+1)

1D Example: Jacobi

©2001 Eric de Sturler

Substituting in expression for error u j =
1

2+h2cj
(h2f j + u j−1 + u j+1)

ej
(k+1)

= ✬u j −
✬

2+h2cj
h2fj + v j−1

(k)
+ v j+1

(k)
+ (1 −✬)u j − (1 −✬)v j

(k)

gives

ej
(k+1)

=
✬

2+h2cj
(h2f j + u j−1 + u j+1) −

✬

2+h2cj
h2f j + v j−1

(k)
+ v j+1

(k)
+ (1 − ✬)e j

(k)

and finally

ej
(k+1)

=
✬

2+h2cj
e j−1
(k)

+ ej+1
(k)

+ (1 −✬)e j
(k)

1D Example: Jacobi

©2001 Eric de Sturler

Now substitute for and simplify expressionA(k) exp(©j✕) ej
(k)

First we assume .c = 0

 becomesej
(k+1)

=
✬

2 ej−1
(k)

+ e j+1
(k)

+ (1 − ✬)ej
(k)

A(k + 1) exp(©j✕) =

✬

2
(A(k) exp(©(j − 1)✕) + A(k) exp(©(j + 1)✕)) + (1 −✬)A(k) exp(©j✕)

A(k)exp(©[j− 1]✕) +A(k) exp(©[j + 1]✕) = A(k) exp(©j✕)[exp(−©✕) + exp(©✕)] =

A(k) exp(©j✕)[cos✕ − © sin ✕ + cos✕+ © sin ✕] =

A(k)2 exp(©j✕) cos✕

A(k + 1) exp(©j✕) = ✬

2A(k)2 exp(©j✕) cos ✕ + (1 −✬)A(k) exp(©j✕) =

A(k) exp(©j✕)[1 −✬(1 − cos ✕)]

1D Example: Jacobi

©2001 Eric de Sturler

Using we getcos ✕ = cos 2 $ (✕
2
) = 1 − 2 sin2(✕

2
)

A(k) exp(©j✕)[1 −✬(1 − cos✕)] = A(k) exp(©j✕)[1 − 2✬ sin2(✕
2
)]

This gives the amplification factor

, for .A(k + 1) = A(k)[1 − 2✬ sin2(✕
2
)] = A(k)G(✕) −✜ < ✕ [✜

These are the same convergence rates we saw for discrete

wavenumbers , corresponding to . k ✕k =
k✜
n

This is not generally the case, however.

From the above result we know that optimal weight is , which ✬ =
2

3

yields

✙ = G(✜
2
) = G(!✕) =

1

3

1D Example: Jacobi

©2001 Eric de Sturler

Now we assume .c ! 0

 becomesej
(k+1)

=
✬

2+h2cj
ej−1
(k)

+ ej+1
(k)

+ (1 −✬)e j
(k)

A(k + 1)exp(©j✕) = ✬

2+h2cj
A(k)2 exp(©j✕) cos ✕ + (1 − ✬)A(k) exp(©j✕) =

A(k) exp(©j✕) 1 −✬ +
2✬ cos ✕
2+h2cj

=

A(k) exp(©j✕) 1 −✬ 1 − 2cos ✕
2+h2cj

Result depends on . Typically take some fixed for analysis:c j c

maximum or minimum or worst case for amplification factor.c j

This gives for the amplification factor: this canG(✕) = 1 −✬ 1 − 2cos✕
2+h2c

be rewritten (for comparison) as

G(✕) = 1 −✬(1 − cos ✕) +✬(1 − cos ✕) −✬ 1 − 2cos✕
2+h2c

1D Example: Jacobi

©2001 Eric de Sturler

The amplification factor can be rewritten (forG(✕) = 1 −✬ 1 −
2cos✕

2+h2c

comparison) as

G(✕) = 1 −✬(1 − cos✕) +✬(1 − cos✕) −✬ 1 −
2cos ✕

2+h2c
=

G0(✕) + ✬ 1 − cos ✕ − 1 +
2 cos✕

2+h2c
=

G0(✕) + ✬ −1 + 2

2+h2c
cos ✕ =

G0
(✕) − ✬h

2
c

2+h2c
cos✕

where is for the case .G0(✕) G(✕) c = 0

 only differs significantly from if is not too small.G(✕) G0(✕) h
2
c

Note result is different from book p.52

1D Example: Jacobi

©2001 Eric de Sturler

For Gauss-Seidel we get

,ej
(k+1)

=

e j−1
(k+1)

+ej+1
(k)

2+h2cj

assuming carry out the relaxations from left to right (increasing j).

Again assuming and we gete j
(k)

= A(k) exp(©j✕) c = 0

.A(k + 1) =
exp(©✕)

2−exp(−©✕) A(k)

So we have as amplification factor G(✕) =
exp(©✕)

2−exp(−©✕)

The graph of shows the smoothing factor is obtained for .G(✕) ✕ =
✜

2

✙ = G(✜2) =
i

2+i =
1
5 l 0.453

1D Example: Gauss-Seidel

©2001 Eric de Sturler

-4 -3 - 2 -1 0 1 2 3 4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1D Example: Gauss-Seidel

©2001 Eric de Sturler

Contrary to what we saw for the Jacobi iteration, we notice that in this

case the eigenvalues on the infinite domain without boundaries are

different from the case with boundaries.

So the result only approximately gives the smoothing factors on finite

domains. As we can verify from the results from chapter 2.

1D Example: Gauss-Seidel

©2001 Eric de Sturler

We can apply local mode analysis analogously to two-dimensional

problems.

We represent the error as (mistake in book!)ejm
(k)

= A(k) exp(ij✕1 + im✕2)

where and run in and direction, and and represent waves inj m x y ✕1 ✕2

 and direction.x y

Now we look for recurrence: where againA(k + 1) = G(✕1, ✕2)A(k)

 is amplification factor corresponding to two wavenumbers.G(✕1, ✕2)

The oscillatory modes are modes that are oscillatory in either one
direction or both.

So smoothing factor is .✙ = max
✜

2
[✕j [✜

G(✕1, ✕2)

Local mode analysis for 2D

©2001 Eric de Sturler

Consider −uxx − u yy + cu = f

Discretization: −u jm−1 − u j−1m + (4 + h2c jm)u jm − u j+1m − u jm+1 = h2fjm

So weighted Jacobi iteration:

v jm
(k+1)

=
✬

4+h2cjm
h2fjm + v jm−1

(k)
+ v j−1m

(k)
+ v j+1m

(k)
+ v jm+1

(k)
+ (1 −✬)v jm

(k)

For error this gives

e jm
(k+1)

=
✬

4+h2cjm
ejm−1
(k)

+ e j−1m
(k)

+ ej+1m
(k)

+ ejm+1
(k)

+ (1 −✬)e jm
(k)

For c = 0

e jm
(k+1)

=
✬

4 ejm−1
(k)

+ e j−1m
(k)

+ e j+1m
(k)

+ ejm+1
(k)

+ (1 −✬)e jm
(k)

2D Example: Jacobi

©2001 Eric de Sturler

Analyze case c = 0

ejm
(k+1)

=
✬

4 e jm−1
(k)

+ ej−1m
(k)

+ ej+1m
(k)

+ ejm+1
(k)

+ (1 −✬)e jm
(k)

ejm
(k+1)

=
✬

4A(k)[exp ©[j✕1 + (m − 1)✕2] + exp ©[j✕1 + (m+ 1)✕2] +£] + (1 −✬)A¢ =

✬

4A(k) exp ©[j✕1 +m✕2](2 cos✕2 + 2 cos✕1) + (1 −✬)A(k) exp ©[j✕1 +m✕2] =

A(k) exp ©[j✕1 +m✕2](1 −✬[1 −
1
4
(2 cos✕2 + 2 cos✕1)])

2 cos✕1 + 2 cos✕2 = 2 1 − 2 sin2 ✕1

2 + 2 1 − 2 sin2 ✕2

2 =

4 − 4 sin2 ✕1

2 − 4 sin2 ✕2

2

(mistake in book)A(k + 1) =A(k) 1 −✬ sin2 ✕1

2 + sin2 ✕2

2

G(✕1,✕2) = 1 −✬ sin2 ✕1

2 + sin2 ✕2

2

2D Example: Jacobi

©2001 Eric de Sturler

Analyze case c ! 0

ejm
(k+1)

=
✬

4+h2cjm
e jm−1
(k)

+ ej−1m
(k)

+ ej+1m
(k)

+ e jm+1
(k)

+ (1 −✬)e jm
(k)

ejm
(k+1)

=A(k) exp ©[j✕1 +m✕2] 1 −✬+
✬

4+h2c
(2 cos✕2 + 2cos✕1)

G(✕1, ✕2) = 1 −✬ +
✬

4+h2c
(2 cos✕2 + 2 cos✕1)

Alternatively

G(✕1, ✕2) = 1 −✬ +
✬

4+h2c
(2 cos✕2 + 2 cos✕1) =

1 −✬ +
✬

4
(2cos✕2 + 2 cos✕1) −

✬

4
(£)+ ✬

4+h2c
(£) =

G0(✕1 ,✕2) + (2 cos✕2 + 2 cos✕1) −
✬

4 +
✬

4+h2c =

G0(✕1 ,✕2) −
✬

4
h2c
4+h2c

(2 cos✕2 + 2 cos✕1)

2D Example: Jacobi

©2001 Eric de Sturler

-u
xx
+bu

x
+cu=f

We solve several instances of the following equation

for various values of b, c, and h, and various choices

in the multigrid algorithm.

We show how smoothing analysis helps guide choices

Convection-diffusion example

©2001 Eric de Sturler

-uxx+500ux=0, h=1/64, nrel=10,

1. ✬=0.5, injection

2. ✬=0.5, full weighting

3. ✬=0.1, injection

4. ✬=0.1, full weighting (43)

5. ✬=0.05, injection (41)

6. ✬=0.05, full weighting (34)

0 10 20 30 40 50
-50

0

50

100

150

200

log10|r|2

1

2

3

4
56

Convection-diffusion example

©2001 Eric de Sturler

1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

✬=0.5

✬=0.4

✬=0.3

✬=0.1

✬=0.2

✬=0.05

Amplification factors for the oscillatitory modes

and

various weights

Convection-diffusion example

©2001 Eric de Sturler

0 10 20 30 40 50

-5

0

5

log10|r|2

1. w=0.5, injection

2. w=0.5, full weighting

3. w=0.1, injection

4. w=0.1, full weighting (43)

5. w=0.05, injection (41)

6. w=0.05, full weighting (34)

V-cycles

3

4

5
6

Convection-diffusion example

©2001 Eric de Sturler

1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Amplification factors for the oscillatitory

modes,

✬=0.1, injection, and various values for c

c=10

c=1000

c=10000 c=10
c=1000

c=10000

c=10000

c=10

c=1000
|G|10

Convection-diffusion example

