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The effective fragment potential (EFP) method is described and its capabilities illustrated using several
applications. The original method, EFP1, was primarily developed to describe aqueous solvation, by representing
Coulombic, induction and repulsive interactions via one-electron terms in theab initio Hamiltonian. It is
demonstrated, using water clusters, the Menshutkin reaction and the glycine neutral/zwitterion equilibrium,
that agreement with both fullyab initio calculations and experiment are excellent. More recently, the model
has been extended so that it can treat any solvent, as well as more difficult links across covalent bonds.

I. Introduction

The primary focus of quantum chemistry has traditionally
been on the development and applications of methods that
provide increasingly sophisticated descriptions of the behavior
and properties of individual molecular species. During the past
decade, however, there has been increasing activity in the
development of methods whose aim is to understand the effects
of the environment (e.g., solvation, heterogeneous catalysis,
enzyme activity) on chemical phenomena and more generally

in the development of methods for treating condensed phase
phenomena. Two alternative types of methods have emerged
that are most commonly used to describe environmental effects
in chemistry. One type may be collectively referred to as
continuum methods.1 These are characterized by a description
of the environment in terms of a single “bulk” unit, in which
the identities of individual parts of the environment (e.g., solvent
molecules) are not explicitly accounted for. These methods have
the advantage that they aredesignedto reproduce bulk or
macroscopic behavior, but their description of sometimes
important electronic effects is not generally adequate. The
second type of method is the discrete approach,2 in which each
individual component of the environment is treated explicitly.
To the extent that the potentials that describe these individual
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components are reliable, the discrete methods do treat the
individual electronic effects, and they attempt to describe bulk
behavior by employing techniques such as molecular dynamics
or Monte Carlo simulations, combined with the imposition of
periodic boundary conditions. The difficulties associated with
this second approach are the lack of potentials that are
sufficiently sophisticated that they can reproduce both cluster
and bulk behavior, and the challenge of adequately sampling
configuration space as the number of individual components
of the environment (e.g., solvent molecules) increases. It is
important to mention that there have been recent efforts designed
to incorporate the features of both continuum and discrete
methods.3

In the past several years, we have been developing a discrete
approach that is designed to describe environmental effects.
Although this “effective fragment potential” (EFP) method was
originally designed4,5 for the treatment of solvent effects on
chemical reactions, it has more recently been used to study
clusters of solvent molecules6,7 and environmental effects in
biomolecular systems.8,9 The most recent developments have
been the interface of the method with continuum methods10 and
the extension of the method to the treatment of covalent bonds.11

In the present paper, we present an overview of the current
implementations of the EFP method, in section II. This is
followed in section III by a presentation of selected applications,
chosen to illustrate the breadth of applicability of the EFP
approach. A summary and prognosis for the future are presented
in section IV.

II. The Effective Fragment Potential Method

A. Implementation for Water: EFP1. The EFP method was
originally formulated4 and implemented5 primarily for the
purpose of describing clusters of water molecules, either with
or without an explicit solute system treated with some level of
ab initio quantum mechanics. As described in more detail in
the following paragraphs, the original method, referred to as
EFP1, contains terms that represent (a) Coulombic interactions
between solvent molecules and each other, or with theab initio
solute, (b) solvent-solvent and solvent-solute induction or
polarization interactions and (c) exchange and other repulsion
terms. The properties, such as multipoles and polarizabilities,
needed to calculate terms (a) and (b) may be determined entirely
from ab initio calculations on a single solVent molecule;
therefore any parameters in these terms may either be established
once and stored for future use or generated on the fly as needed.
The repulsive term (c), however, arises from explicit intermo-
lecular interactions and thus must either be generated from first
principles or obtained by some fitting procedure that is
determined by the explicit nature and relative orientation of the
intermolecular species (e.g., water dimer) being described. In
EFP1, this repulsive term is determined by the latter approach.
It is therefore limited either to water, for which the repulsive
parameters were obtained, or to cases for which this repulsive
term may be omitted.12

A schematic of the EFP1 method is presented in Figure 1.
The method starts from theab initio Hamiltonian for the solute,
which might be a simple molecule, or a reacting group of
molecules, plus some (presumably small) number of solvent
molecules. The remaining solvent molecules are then treated
by adding their effects as one electron terms in theab initio
Hamiltonian. At present, the model does not include dynamic
correlation. So, these one-electron terms represent the three types
of interactions summarized above: Coulombic, induction/
polarization, and exchange repulsion+ charge transfer. The

charge-transfer term is not explicit, but rather is incorporated
via the fitting procedure described below. Subsequent extensions
of the model, discussed in section IV, will include correlation,
and therefore higher order solvent effects (e.g., dispersion,
exchange dispersion).

If HAR is defined as theab initio Hamiltonian that describes
the “ab initio region” (AR) of the system, then the Hamiltonian
H for the entire system may be written as

The three one-electron terms inV, representing the potential
due to the fragment molecules, correspond to electrostatic,
polarization, and exchange repulsion/charge-transfer interactions.
For theµth solvent molecule, the effective fragment interaction
Hamiltonian with an electron in the AR is given by4,5

where s represents the electronic coordinates. The three terms
on the right-hand side (RHS) of eq 2 represent the electrostatic,
polarization, and exchange potential/charge-transfer interactions,
respectively, and are explained in more detail below. Similar
terms are added to represent the interactions between nuclei in
the AR and fragment molecules, as well as fragment-fragment
interactions. Of course, there are no exchange repulsion/charge
transfer terms in the nuclear-fragment interaction. The solute
(including the desired number of solvent molecules) is explicitly
treated with theab initio wave function of choice, while the
remainder may be represented by effective fragments.

Figure 1. Schematic of the EFP Method.
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An accurate, relatively compact, representation of the elec-
trostatic potential in the important interaction regions is achieved
using adistributedmultipolar analysis13 (DMA) of the fragment
charge distributions. K in the first term of eq 2 is the number
of expansion points. In the present implementation, each nuclear
center and each bond midpoint is chosen to be an expansion
point (e.g., five expansion points for a water molecule), and
the expansion is extended through octopoles,

whereq, µ, Θ and Ω are the charge, dipole, quadrupole and
octopole, respectively, andFa, Fab andFabcare the solute electric
field, field gradient and field Hessian. Since the expression in
eq 3 is a point charge model, it must be modified to account
for overlapping electron densities as the molecules (fragment
and solute or fragment and fragment) approach each other. This
is accomplished by multiplying the expression in eq 3 by a
distance-dependent cutoff function,

The polarization of the fragment molecules by the electric field
of theab initio molecules (second term in eq 2) is treated by a
self-consistent perturbation model employing localized molec-
ular orbitals (LMOs). Using these LMOs, bond and lone pair
localized orbital dipole polarizabilitiesRab

1 are extracted from
finite-field perturbed Hartree-Fock calculations on isolated
molecules. For example, if the solvent of interest is water, one
would express the total dipole polarizability of water in terms
of polarizability tensors obtained for the two OH bond orbitals,
two lone pair orbitals and the inner shell orbital. These localized
orbital polarizaibilities are centered at the centroids of theL
localized molecular orbitals (L ) 5 for water):

Here,F is the field due to theab initio part of the system, while
Rxy

1 is a component of the polarizability of the fragment
molecule in thelth localized orbital.4

The exchange-repulsion/charge-transfer interaction between
theab initio and fragment molecules is modeled by one-electron
terms in theab initio Hamiltonian that have the form of simple
Gaussian functions located at the fragment atom centers and
the center of mass:

For water,J ) 2, and there are four fragment centers (M )
4)sthe three nuclear centers and the center of mass. The

Gaussian functions are optimized by a fitting procedure.Ab
initio calculations are performed on some number of points (e.g.,
192 for water dimer to represent water as the solvent). Theab
initio exchange repulsion/charge-transfer potential is obtained
by subtracting the sum of electrostatic plus polarization energies
from the total potential to obtain the termErem

(ab). Then,Vm
Rep is

fitted to Erem
(ab):

wherewp is a weighting factor that has been set to unity in the
fitting process for water.Ψ is the wave function of the AR.
The fragment-fragment interactions are treated in a similar
manner, except that a single exponential, rather than Gaussian
functions, is used to represent the exchange-repulsion/charge-
transfer interaction.

The necessary equations have been derived4,5 and coded for
the analytic gradients of the entire (ab initio + fragments)
system. The availability of analytic gradients means that one
can also perform vibrational analyses using finite differences
of these gradients. So, one can determine the manner in which
geometries and energetics of minima, transition states, and
reaction paths (and therefore the reaction dynamics) are modified
by the presence of the solvent. The entire code described here
has been added to the electronic structure code GAMESS.14

B. General Implementation: EFP2.The method described
in section II.A can in principle be extended to any solvent.
However, such a generalization would require extensive calcula-
tions on the dimer for any solvent of interest, at many distances
and orientations, to obtain a repulsive potential that can be fitted
to a functional form as in eqs 6 and 7. This process would be
very time-consuming and not necessarily successful. A desirable
alternative approach would be to replace the fitted exchange
repulsion/charge-transfer term with expressions that are derived
from first principles. This more general method may still be
described by the schematic in Figure 1, with the fitted repulsive
potential replaced by separate terms for exchange repulsion and
charge transfer. It is also necessary to ensure that the generalized
fragment-fragment interaction accounts properly for the pen-
etration of overlapping charge densities, represented by the
screening term in eq 4 for EFP1. This general method, referred
to here as EFP2, is a work in progress15-17 that is summarized
in this section.

1. Exchange Repulsion. The exact zeroth order exchange
repulsion energy between wave functionsΨA andΨB (assumed
here to be RHF wave functions) may be extracted from the
Heitler-London energy by subtracting the classical Coulomb
energy as well as the energies of molecules A and B,

Here HAB is the super molecular Hamiltonian for the A-B
complex, given by the individual Hamiltonians for molecules
A and B plus the interaction operator,

Using this division for HAB we can express the exchange
repulsion energy in terms of two internal energy contributions
as well as an interaction term,
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The exchange repulsion energy arises from terms in the wave
function generated by the antisymmetrizer,A, which permutes
0, 1, 2, ... electron pairs,

In the EFP2 method, the expansion in eq 11 is truncated atP1.
This leads to an approximate exchange repulsion that is
proportional to the square of theintermolecularoverlap (S),

where (cf. eq 10),

For exact HF wave functions the internal energy contribution
to the second-order exchange energy vanishes,

and similarly for ∆EB[O(S2)]. In practice, the HF MOs are
expanded in a finite basis set, so neglecting the internal energy
contributions in eq 13,

introduces a basis set dependent approximation. This expression
for the exchange repulsion energy can be separated into three
distinct energy terms based on theirexplicitoverlap dependence.

That is, all three termsscaleasS2, but their explicit dependence
on the overlap is zeroth, first and second order, respectively.
Each term is then approximated separately in terms of localized
molecular orbitals (LMOs):

Sij andTij are, respectively, an overlap and kinetic energy integral
connecting LMOsi and j. Rij is the distance between the
centroids of charge of LMOsi and j, and Rij is the distance
between nucleusI (with nuclear chargeZI) and the centroid of
charge of LMOj. Fik

A is the Fock matrix element connecting
LMO i with LMO k within molecule A; i.e., it is an intra-
fragment Fock matrix element. The approximations in eq 12
and eq 14 are based on the assumption that LMOs are used.
Combining these three approximations for the zeroth, first and
second-order terms in the intermolecular overlap leads to the
approximate formula for exchange repulsion between closed
shell molecules.15

Note that the intramolecular Fock matrix elements in eq 20 only
need to be calculated once for a particular molecular species
and a particular atomic basis set.

The accuracy and CPU cost of the exchange energies
calculated according to eq 20 are summarized in Table 1, for
several dimers calculated using three different basis sets. The
errors relative to the exact exchange energies are reasonably
small for all basis sets, but clearly improve (decrease) for the
larger basis sets. The CPU requirements for the EFP2 method
are a very small fraction of the correspondingab initio CPU
times.

Note that eq 20 applies rigorously only to cases in which all
MOs correspond to those of free monomers A and B and are
localized. This complicates the application of eq 20 toab initio/
EFP interactions, in which one of the molecules (A) is treated
by anab initio wave function, since the MOs are optimized in
canonical form and in the presence of B. The complication arises
due to the orthogonality “tails” that occur in theab initio
treatment, even for localized orbitals. One solution to this
complication is the following: First, theab initio MOs on A
are optimized using the Hamiltonian of eq 1, including the first
two terms of eq 2 to represent the field of B. Theseab initio
MOs are localized and then introduced into eq 20. While this
approach gives reasonable exchange repulsion energies, charge-
transfer effects are ignored, and the exact gradients require the
solution of a coupled Hartree-Fock equation, as discussed
below. A solution to both problems is to derive and implement
an exchange repulsionFock operatorby taking the variational
derivative of eq 16 and replacing the resulting two-electron
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integrals with approximations similar to those outlined in eqs
17-19. The derivation of this operator as well as the EFP/EFP
exchange induction and charge-transfer energies will be pre-
sented in a forthcoming paper.

2. Charge Penetration. The electrostatic interaction between
two molecules separated by a large distance is well represented
by the expressions for classical multipolar interactions. However,
if the two molecules are brought close enough, such that their
charge densities overlap, the nuclei on one molecule will no
longer be shielded by its own electron density, and will
experience a greater attraction for the electron density associated
with the other species. The energy difference resulting from
this increased attraction is the charge penetration.

Consider the interaction between a hydrogen-like atom with
nuclear chargeZ and a proton. The wave function of the former
is given by13

with corresponding electron charge density

One can then use Poisson’s equation (∇2V ) -F/εo), whereεo

is the permittivity of free space, to find the potential due to
that density. This results in

The second term in eq 23, the charge penetration, falls off as a
simple exponential.

One way to calculate charge penetration between fragments
is to introduce a damping function that multiplies the electro-
static potential. Equation 23 can be rewritten as

This suggests that a multipole expansion of the electrostatic
potential (Vmult) can be corrected for charge penetration effects
by using a damping function,f damp.

It is important choose the parameter in the damping function
such that the function fits the molecularab initio electrostatic
potential well in the region of interest. Then the difference
between the damped and undamped electrostatic interactions,
within the framework of the distributed multipolar analysis
(DMA), will be a good approximation to the charge penetration.

Consider two charge densitiesFA andFB centered at points
A and B, respectively. These points represent atomic centers
and bond midpoints for EFPs. Points 1 and 2 represent electronic
positions associated withFA and FB, respectively, referenced
from an arbitrary origin,O. Using these definitions, the
electrostatic interaction of the two charge densities is given by

where r1A ) r1 - RA. In the EFP method the electrostatic
potential due to the charge density is expanded in terms of
charges, dipoles, quadrupoles, and octopoles at each atomic
center and bond midpoint using Stone’s distributed multipolar
analysis:

whereVB
mult is expanded in multipolar terms:

The effect of charge penetration is accounted for by multiplying
eq 27 by a damping function that satisfies the following
requirements: (a) go to unity for largeRAB and fall off toward
zero asRAB (the distance between points A and B) approaches
zero, (b) fit well to theab initio electrostatic potential of an
isolated fragment in the region of its Van der Waals radius,
and (c) give rise to tractable integrals in eq 26. A simple
exponential function provides the best balance of the desired
qualities:18

The parameterR is determined by minimizing the difference,
∆, between the quantum mechanical electrostatic potential(ES)
and the multipolar expansion of the potential over a grid of
points (see eq 39 below).

To account for the fact that two damped distributed multipolar
expansions are interacting, the charge density on A,FA(r1A), is
found by applying Poisson’s equation to the damped charge
potential, eq 28:

TABLE 1: Exact (EFP) Exchange Repulsion Energies and
Requisite CPU Times for an Energy and Gradient
Evaluation Calculated for Several Dimers Using Three
Basis Setsa

basis set

6-31+G(d,p) 6-31++G(2d,2p) pVTZ

Water Dimer
Eexch 4.76 (4.41) 4.78 (4.90) 4.70 (4.88)
CPU seconds 52 (0.4) 251 (0.5) 839 (0.7)

Methanol Dimer
Eexch 5.07 (4.43) 5.19 (5.23) 5.22 (5.63)
CPU seconds 792 (0.8) 3476 (1.0) 12851 (1.6)

Dichloromethane Dimer
Eexch 0.80 (0.30) 0.84 (0.35) 0.84 (0.60)
CPU seconds 2226 (1.0) 14014b (1.1) 27222b (1.5)

Acetonitrile Dimer
Eexch 2.04 (1.60) 2.12 (1.94) 2.02 (1.96)
CPU seconds 1754 (1.0) 14608b (1.3) 26499b (2.1)

Acetone Dimer
Eexch 2.12 (1.53) 2.19 (1.72) 2.05 (1.67)
CPU seconds 6376 (1.6) 58519b (2.1) 602781b (3.9)

DMSO Dimer
Eexch 7.27 (6.59) 7.58 (7.42) 7.67 (8.65)
CPU seconds 20807b (2.1) 115155b (2.4) 671950b (4.5)

a Energies are in kcal/mol.b SCF calculations run in direct mode
due to size.

ψ(r) ) (Z3
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+ ...]
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Since Poisson’s equation is applied to each term in the damped
charge electrostatic potential, the charge density is also expressed
in terms of charge, dipole, quadrupole, etc. contributions. Then
using eqs 27 and 29, the integral in eq 26 becomes

Note that each integral in eq 30 must be explicitly symmetrized,
since, for example, the charge density on A interacting with
the damped charge potential on B is not the same as the charge
density on B interacting with the damped charge potential on
A.18 For simplicity, only one-half of the symmetrized integrals
will be explicitly discussed.

From eqs 27-29 one finds

where the charge at point A,qA, is found using Stone’s method13

andεo is the permittivity of free space. Then, the first term in
eq 30 becomes

which can be evaluated to yield

for RA * RB, and

for RA ) RB ) R, since 4πεo ) 1 in atomic units. A similar
procedure is used to calculate electron-nuclear interactions, with
the result given in eq 36:

Summing eqs 35 and 36, including the symmetrization, and
subtracting out the undamped interactions, the charge-charge
contribution to the charge penetration energy is

for RA * RB andZA,B ) 0 for bond midpoints. ForRA ) RB )
R,

In eqs 37 and 38 the total charge penetration is the sum of all
charge penetration energies between unique pairs of intermo-
lecular DMA points A and B.

If one follows the above procedures for the next higher terms
in the expansion, analytically solvable integrals are obtained
for the charge-dipole interactions, but not for the dipole-charge
terms.18 Therefore, as a first approximation, only the charge-
charge interactions are retained. Fortunately, most of the total
charge penetration is still recovered.

The parameterR in the damping function is obtained using
the error function

based on the difference between theab initio and multipolar
electrostatic potentials. A grid is defined about an isolated
fragment molecule by placing concentric spheres about each
of the atom centers at 67% and 300% of the van der Waals
radius of the corresponding atom. These values were chosen
because they result in the best fit of the damping function to
the ab initio density, and they describe the physically most
important regions in terms of charge penetration.18 The fragment
is then placed within a three-dimensional Cartesian grid with a
spacing of 0.50 Bohr in each direction, and any point not within
the two spheres is discarded. Theab initio density is calculated
on the fragment during a GAMESS run, and the electrostatic
potential is computed at each grid point. The parameterR is
optimized in the exponential damping function such that∆ in
eq 39 is minimized. The average absolute difference between
the EFP method and theab initio charge penetration for dimers
of water, methanol, acetonitrile, acetone, DMSO, and dichlo-
romethane at their equilibrium geometry is 0.32 kcal/mol.

An alternative, more CPU-intensive, expression forEpen, may
be derived19 using an approach analogous to that used to derive
eq 16, the Spherical Gaussian Overlap (SGO) approximation:

In eq 40 Sij is the intermolecular overlap integral between
molecular orbitalsi andj. The accuracy of this approach again
depends on the use of localized molecular orbitals.

3. Energy Gradients. Analytic expressions for the energy first
derivatives with respect to the nuclear coordinates for the EFP1
method were presented in the original paper.4 This derivation
was extended to minimum energy path (MEP) calculations in a
subsequent paper,5 so one can perform any type of calculation
that requires first, or even numerical second, derivatives.
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Analytical expressions for the energy first derivatives for
EFP2, eq 20, with respect to EFP coordinates were presented
in ref 16. As mentioned above, the corresponding derivatives
with respect toab initio coordinates are complicated by the fact
that the exchange repulsion effect is not added as an operator
as in eq 2. As a result, the current formulation requires the use
of coupled perturbed Hartree-Fock equations. Since this is very
time-consuming, the derivation of an operator representation
of eq 16 is the preferred alternative.

C. Extension to Covalent Bonds.The EFP method was
originally developed to study the weak interactions between
separate molecules, such as solvent-solvent and solvent-solute
interactions. Since the fragments are represented by model
potentials (EFPs), the method may be considered to be in the
general category of QM/MM (quantum mechanics/molecular
mechanics) methods. In other contexts QM/MM methods have
also been very useful for describing extended systems in which
the QM and MM regions are separated by covalent bonds rather
than weak intermolecular forces. Applications include the study
of organometallic compounds20 and surface chemistry.21 Most
of these methods rely on somewhat arbitrary links between the
QM and MM regions.

To make the link between theab initio and MM portions of
a problem less arbitrary, a covalently bondedab initio/EFP
interface has recently been developed11 and implemented in
GAMESS.14 The method is similar in spirit to that of Assfeld
and Rivail.22 The essential features of the approach are as
follows:

(1) A buffer region consisting of several LMOs, typically
surrounding theR-carbon of a given side-chain, is defined as
theab initio/EFP boundary. Once the buffer region is defined,
these LMOs are obtained by anab initio calculation on all or
a subset of the system (see below for an example), projected
onto the buffer atom basis functions.23 These LMOs are
subsequently frozen in the EFP calculations by setting select
MO Fock matrix elements to zero.24,25 The ab initio/buffer
region interactions are calculated by including the exact quantum
mechanical Coulomb and exchange operators corresponding to
the charge distribution of the buffer region, in theab initio
Hamiltonian. This requires calculation of two-electron integrals
over basis functions in the buffer region. Since the buffer MOs
are frozen, the changes in induction (polarization) contributions
from the buffer region are neglected during a geometry
optimization of theab initio region. The effect of this ap-
proximation on the chemical reaction of interest can be
systematically reduced by increasing the size of theab initio
region.

(2) Variational collapse of theab initio wave function into
the buffer region is avoided by keeping theab initio MOs
orthogonal to the buffer LMOs by Schmidt orthogonalization.
This is an approximation relative to a fullab initio calculation
because the MOs are allowed to build up “orthogonality tails”
only in the buffer region, not in the EFP region. The associated
error can again be systematically reduced by increasing the size
of the buffer region.

(3) The remaining part of the system (or within a defined
radius of the active region) is represented by an EFP. The
presence of the buffer region provides sufficient separation
between the EFP and theab initio regions to ensure that the
remaining interactions can be treated as nonbonded interactions
via the EFP terms presented above.

We demonstrate the utility of this method by calculating the
proton affinity of theε-NH2 group in the amino acid lysine and
the Gly-Lys-Gly tripeptide. These molecules are small enough

to make fullab initio calculations feasible, but large enough to
allow for several different choices of buffer region. Figure 2
depicts the general scheme of our method using lysine, divided
into the following EFP/buffer/ab initio regions (CO2H)(NH2)CH-/
CH2CH2/-CH2CH2NH2, as an example.

The RHF/6-31G* optimized structure of protonated lysine
(LysH+) is obtained and the MOs are localized using the
Edmiston-Ruedenberg localization scheme.26 The LMOs that
will comprise the buffer are selected and projected, using the
corresponding orbital method, so that they only span basis
functions on the atoms in the buffer region. The best source of
buffer LMOs is presumably the LMOs calculated for the entire
molecule, or the largest possible piece thereof.

The density of the molecular region that will be described
by the EFP is re-optimized in the presence of the buffer region
but in the absence of theab initio region. The electrostatic
potential of the optimized density, but not the buffer density, is
expanded in terms of multipoles through octopoles centered at
all atomic and bond midpoints using Stone’s Distributed
Multipole Analysis.13 Calculated in this way, these multipoles
do not account for polarization of the EFP region due to theab
initio region, so that this effect is not double counted when
dipole polarizabilities are added.

The EFP, buffer, andab initio regions are combined for
LysH+ and the geometry of theab initio region is re-optimized.
In a second calculation the proton is removed and theab initio
region geometry is re-optimized. The energy difference between
these two systems is taken to be the proton affinity.

Table 2 lists the PAs calculated with buffer regions (con-
structed as outlined above) at increasingly larger distances from

Figure 2. Schematic representation of buffer and EFP generation.
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the ε-N. The buffer regions, in bold and boxed in Table 2,
represent LMOs calculated for the RHF/6-31G* optimized
structure of protonated lysine, and truncated by projection. The
buffer region in the first row of the table, for example, consists
of four CH bonds, one CC bond, and two C 1s core MOs. The
geometry of the buffer and EFP regions (always to the left of
the buffer region) is thus taken from the RHF/6-31G* optimized
geometry of protonated lysine.

The target value is the PA calculated using fully relaxed RHF/
6-31G* wave functions and geometries of the protonated and
unprotonated form for lysine, 236.6 kcal/mol. It is important to
separate the error introduced by approximating part of the
electronic charge distribution with an EFP and buffer, from the
error introduced by the geometric constraints on those regions.
This is accomplished by also calculating the PA using RHF/
6-31G* for the entire molecule, but only partial geometry
optimization with the same geometrical constraints as in the
EFP calculations. The values are listed in the first column of
Table 2, and show that the geometrical constraints introduce
an error of 0.6 kcal/mol. In the subsequent discussion, we take
these constrained all-ab-initio calculations as our reference for
the corresponding EFP calculations.

Column 3 of Table 2 lists the results obtained for the EFP/
buffer/ab initio calculation. It is evident that the PA converges
relatively quickly to within 0.2 kcal/mol of the all-ab-initio
reference value. Column 2 lists the corresponding PA value
without the EFP to isolate the effect of the EFP region of the
molecule on the PA, which can be as large as 2.6 kcal/mol for
this system. The Ca-Cb bond and the associated CH and core
LMOs ([Râ]-buffer) appears to be the optimum choice for the
buffer region, since this region is relatively nonpolarizable and
far from the protonation site.

The last entry in Table 2 indicates a structural collapse of
the ab initio region onto the EFP region. This is presumably
due to the lack of a repulsive potential combined with a rather

unphysical division of the molecule into EFP/buffer/ab initio
regions, due to the small size of the molecule. Next, we consider
a larger system.

Further tests of the EFP/buffer/ab initio method were
performed by computing theε-N PAs of two different
conformations of the Gly-Lys-Gly tripeptide: one with an
intramolecular hydrogen bond and one without. The latter
undergoes a larger conformational change in the EFP region
and is therefore a more stringent test. The results are summarized
in Tables 3 and 4, respectively.

The first columns of both tables show that the presence of
the intermolecular hydrogen bond reduces the effect of confor-
mational rearrangement on the PA by 60-70%. This is a
promising result, given the large number of intermolecular
hydrogen bonds in proteins.

The second columns of both tables demonstrate that molecular
environment can have a significant effect (up to 7.2 kcal/mol)
on the PA of lysine. The effect is larger for the hydrogen-bonded
conformation, despite the fact that it undergoes a smaller confor-
mational change. The environmental effects are largely captured
by the EFP representation, as shown by the data in the last
columns. Again, the optimum choice of buffer region is the
[Râ]-buffer, which for both conformations reduces the error to
below 0.5 kcal/mol relative to the constrained all-ab-initio calcu-
lation. Moving the buffer region further out on the backbone
increases the absolute error to 0.8-2.0 kcal/mol, presumably
since that region is more polarizable. Thus, since the EFP region
is polarizable, it is not necessarily a worse representation of
the charge density than the all-ab-initio buffer region.

All molecules discussed here are small enough to allow full
ab initio calculations, to gauge the accuracy of the new
methodology. This also eased the construction of the EFPs, since
they could be derived from a singleab initio calculation. We
are currently applying the EFP/buffer method to larger proteins
(Turkey ovomucoid third domain,R-chymotrypsin, and alcohol
dehydrogenase) where the EFPs must be constructed from a
series ofab initio calculations on smaller overlapping pieces,
rather than on the entire structure. We will report on these first
principles hybrid calculations on proteins in a future paper.

D. Interface with the Continuum. In the discrete approach
to solvation, the size of the solvent configuration space increases
dramatically with the number of solvent molecules, so this can
become a computational bottleneck. In the dielectric continuum
model, the solvent is described as an infinite, isotropic dielectric
in which the solute is embedded. In this model, the solute
polarizes the solvent via its dielectric constant. The solvent in
turn polarizes the solute. The “reaction field” of the solvent is
calculated either analytically or numerically depending upon
the complexity of the electrostatic problem. Various cavities
have been considered, ranging from regular shapes like spheres
and ellipsoids to molecular shapes such as a cavity constructed
from interlocking spheres surrounding the atoms of the solute.1

Since the continuum model neglects the specific interactions
between solute and solvent molecules, it is desirable to develop
a model that includes both discrete interactions between solute
and nearby solvent molecules and the average interaction
between solute and solvent molecules that are further away from
the solute. Such a model would incorporate both discrete and
continuum descriptions of the solvent. A tractable approach
would be to use three different layers to describe the system, in
which the solute, perhaps plus a small number of solvent
molecules, is described usingab initio quantum mechanics, with
the remaining explicit solvent molecules treated with a model
potential. The outer layer would be a continuum. Van Duijnen

TABLE 2: Proton Affinities of Lysine (kcal/mol) a

a The upper number is the absolute proton affinity, the lower one is
the error relative to the referenceab initio calculation in column 1.
The proton affinity of the fully relaxed lysine is 236.6 kcal/mol.
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and co-workers explored this idea and developed a three-layer
model3c by representing the explicit solvent molecules as a
combination of point charges and atomic polarizabilities. Here,
we summarize a three-layer model in which the second layer
of solvent molecules is represented by effective fragment
potentials.

The first continuum method that has been interfaced with
the EFPs is the simple self-consistent reaction field (SCRF) with
a spherical cavity (Onsager method). Only terms up to dipole
are taken into account in the interaction energy between solute
and solvent. The combined model is referred to as EFP+
Onsager. Interfacing the EFP method with the polarizable
continuum model (PCM)1a is in progress. The EFP+ Onsager
method is summarized below.

The electrostatic interaction energy between a solute inside
a sphere and the surrounding solvent can be written1 as

wherea is the radius of the spherical cavity,ε is the dielectric

constant andMl
m is the expectation value of the multipole

momentml
m of the solute:

where Yl
m(θ,φ) and F are the spherical harmonics and the

charge density of the solute, respectively. Extracting the first
two terms from eq 41 gives

and

whereQ andµ are the charge and dipole moment of the solute,

TABLE 3: Same as in Table 2, for H-Bonded Gly-Lys-Gly Tripeptide in kcal/mola

a The proton affinity of the fully relaxed tripeptide is 231.0 kcal/mol.
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respectively. In the Onsager model only these two terms are
considered. The energy of the system is then given by

whereg ) [2(ε - 1)/(2ε + 1)] 1/a3 andE0 is the energy of the
quantum mechanical solute plus the fragments. The second term
on the right-hand side of eq 42 is additive. So, the energy
functional in the EFP+ Onsager model is given by

whereW is a Lagrange multiplier ensuring normalization of
the wave function. The total dipole moment of the systemµ,
has three contributions:

The three terms on the right-hand side of eq 44 represent the
dipole moment of theab initio part, the static dipole moment
of the fragments and the induced dipole moment of the
fragments, respectively. Taking the variation of the functional
in eq 43 with respect to the wave function parameters and setting
it to zero gives

where “cc” denotes the complex conjugate of the terms
given. Explicit expressions forδE0 are given in ref.4. Here,
we focus our attention on the second term on the right-hand
side of eq 45.

where theRj are the polarizabilities of the fragments defined at
the pointsj. F̂j is theab initio electric field operator, and,Fj,nuclear,
Fj,efp

s , Fj,efp
i are the electric fields due to theab initio nuclei,

static dipole of the fragments and induced dipole of the
fragments, respectively. Taking the variations in eq 46 explicitly
and inserting the result into eq 43 gives the following Schro-
dinger equation

whereµ is the total dipole moment of the system as defined in
eq 44.µ̂ab is the dipole moment operator for theab initio part.

For a neutral molecule the total energy of the system is given
by

TABLE 4: Same as in Tables 2 and 3, but for Non-H-Bonded Gly-Lys-Gly Tripeptidea

a The proton affinity of the fully relaxed tripeptide is 235.2 kcal/mol.
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whereµj
tot is the total induced dipole moment of the fragments

at point j. As discussed previously,4 the expectation value of
the functional in eq 43 is not equal to the energy given in eq
42 due to the nonlinear nature of the Schrodinger equation. This
is reconciled by adding the extra terms toW in eq 48 to get the
total energy. The above equations have been coded and
implemented in the electronic structure code GAMESS.14

III. Applications

A. Water Clusters. Understanding the intermolecular inter-
actions in water is of great interest due to its importance in
biological systems and as a solvent in synthesis and separation
processes. Furthermore, the understanding of water clusters is
a key step in linking molecular properties to bulk behavior. In
separate studies water clusters for (H2O)n of small (n ) 3-5)6

and moderate (n ) 6-20)7 size were examined using the EFP1
method. The structures, relative energetics and isomerization
barrier heights for the smaller clusters compare quite favorably
with the correspondingab initio Hartree-Fock results that had
been published previously by Wales and Walsh.27 The study of
the larger clusters serves as both a more extensive test of the
method and an evaluation of the efficacy of combined Monte
Carlo/simulated annealing methods for identifying global minima
in such clusters. Here, the clusters of six and 20 waters are
briefly summarized to illustrate the salient features of that work.

Simulated Annealing (SA) methods were tested by starting
from at least four randomly chosen geometries for each cluster
size. Random geometries were obtained by carrying out Monte
Carlo steps at a high temperature (25000 K) for greater than
1000 steps. Since overly compressed geometries cause problems
in converging the self-consistent polarizabilities in the EFP,
geometries were discarded if two atoms from different molecules
were separated by less than 1.3 angstroms.

The most successful method studied was the Monte Carlo
with minimization method of Li and Scheraga,28 implemented
in a manner similar to that of Wales and Hodges.29 The minima
found by the SA algorithm were confirmed by carrying out
Hessian calculations at the EFP level of theory and verifying
that there were no imaginary vibrational frequencies. Fullab
initio calculations, all using the polarized double-ú basis set of
Dunning and Hay30 (DH(d,p)), were carried out on the con-
figurations found to be minima on the EFP potential energy
surface (PES). Restricted Hartree-Fock (RHF) geometry
optimizations were carried out, and single point energies were
calculated with Møller-Plesset second-order perturbation theory
(MP2)31,32 at the RHF geometries. For the water hexamer,
geometry optimizations were also carried out at the MP2 level,
and single-point coupled-cluster (CCSD[T])33-36 energies were
obtained at the MP2 geometries. All calculations were carried
out with the GAMESS14 program except for the CCSD(T)
energies, which were calculated with the ACES II37 program
using the D95*38 basis set.

1. Hexamer.The energies for six minima on the potential
energy surface of (H2O)6 are given in Table 5. These structures,
shown in Figure 3, have been proposed previously39-41 as the
likely candidates for the equilibrium structure.

Four of the six configurations are predicted to be the global
minimum by one or more levels of theory. However, it seems
likely that the global minimum is either the cage structure, as
was found by Wales and Hodges29 at the TIP4P level, or the

prism structure, which is the minimum in all four previous
studies that used the MP2 level of theory.41,43-45 The prism is
predicted to be the global minimum by EFP, MP2 and CCSD-
(T). In fact, the predicted energy ordering of the six structures
is the same at these three levels of theory. However, all of these
minima are close in energy, and only two structures, the bag

E ) W +
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2
gµµ - gµµefp

s - gµ[∑
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j

Rj〈Ψ|F̂j
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TABLE 5: Binding Energies (kcal/mol of (H2O)6),
Contributions to the EFP, Relative Energies, and Dipole
Moments (µ, Debye) for (H2O)6

a

prism cage book bag cyclic boat

Binding Energies
EFP -42.42 -41.90 -41.45 -40.61 -41.14 -40.09
RHF -42.86 -42.49 -42.44 -41.58 -43.10 -42.12
MP2//RHF -55.86 -55.06 -54.13 -53.27 -53.75 -52.36
MP2//MP2 -58.25 -57.52 -56.49 -55.65 -55.75 -54.29
CCSD(T)//MP2 -55.10 -54.30 -53.10 -52.20 -52.20 -50.80
no. of H-bonds 9 8 7 7 6 6
electrostatic -55.76 -55.33 -54.67 -53.46 -53.47 -51.77
repulsion 22.77 23.08 23.77 23.41 23.83 22.66
polarization -9.44 -9.65 -10.55 -10.57 -11.51 -10.99

Energies per Hydrogen Bond
energy (EFP) -4.71 -5.24 -5.92 -5.80 -6.86 -6.68
electrostatic -6.20 -6.92 -7.81 -7.64 -8.91 -8.63
repulsion 2.53 2.88 3.40 3.34 3.97 3.78
polarization -1.05 -1.21 -1.51 -1.51 -1.92 -1.83

Relative Energies
EFP 0.00 0.52 0.98 1.81 1.28 2.33
RHF 0.00 0.37 0.42 1.29 -0.24 0.75
MP2//RHF 0.00 0.81 1.74 2.60 2.11 3.50
MP2//MP2 0.00 0.73 1.75 2.60 2.49 3.95
CCSD(T)//MP2 0.00 0.80 2.00 2.90 2.90 4.30

a EFP, Effective fragment potential; RHF, restricted-spin Hartree-
Fock with DH(d,p)20 basis set; MP2//RHF, MP221,22 single-point
energies using DH(d,p) basis at RHF/DH(d,p) optimized geometries;
MP2//MP2, optimized at MP2 level using DH(d,p) basis; CCSD(T)//
MP2, coupled cluster energies at MP2 optimized geometry.

Figure 3. Minimum energy structures for (H2O)6.
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and the boat, are clearly not the global minimum. At the
Hartree-Fock level of theory, the cyclic structure is the global
minimum.

The agreement between the EFP and RHF binding energies
is quite good (e1.0 kcal/mol) for the prism, cage, book, and
bag structures. For the cyclic and boat structures, the difference
is 2.0 kcal/mol. The MP2 and CCSD(T) results indicate that
the prism is the lowest energy structure on the potential energy
surface. The CCSD(T) binding energies are consistently about
3 kcal/mol smaller than those predicted by MP2, but the relative
energies predicted by the two methods are quite similar. The
much larger binding energies predicted by the correlated
methods reflect the omission of dispersion contributions in both
the RHF and EFP1 methods.

The EFP electrostatics, repulsion, and polarization energies
(total and per H-bond) are given in Table 5. While the
3-dimensional prism and cage structures have more H-bonds,
these bonds are weakened relative to those in the more
2-dimensional cyclic and boat structures due to a distortion from
the preferred linear orientation. The 2-D structures have fewer
H-bonds, but these bonds are less distorted and thus shorter
and stronger. The book and bag structures have intermediate
numbers of H-bonds and moderate degrees of H-bond distortion.
Competition between these two factors results in the six
structures having similar energies. This tradeoff is unique to
the water hexamer. For smaller clusters, the H-bond distortion
is too large in 3-D structures, and thus the cyclic structures are
lowest in energy. For larger clusters, the global minima are
clearly 3-dimensional structures. The stronger H-bonds in the
cyclic and boat structures have larger average components of
electrostatic, repulsion, and polarization than their weaker
counterparts in the prism and cage structures, but the total
electrostatic interaction is greater in the 3-D prism and cage
structures due to their greater numbers of H-bonds. The
molecules in the cyclic, boat, and book structures are so much
more polarized than those in the 3-D prism and cage structures
that the total polarization energies in these three clusters are
greater despite having fewer H-bonds. As a result, the combined
electrostatic plus polarization interactions are nearly equivalent
for the prism, cage, book, and cyclic structures.

2. n) 20.For the (H2O)20 system, basin hopping was carried
out at thirty-five temperatures with 2400 geometries per
temperature for a total of 84000 trial geometries. For each of
these three systems, four simulations were carried out at each
of the four starting geometries for a total of sixteen production
runs.

Table 6 lists the interaction energies for the minima found
for (H2O)20 (see ref 7 for the actual structures). Tsai and Jordan42

identified three nearly degenerate fused cube structures for the
lowest energy configurations of (H2O)20, while Wales and

Hodges29 found another structure (p3a) about 1 kcal/mol lower
in energy on the TIP4P PES. The latter structure is more than
2 kcal/mol lower in energy on the EFP and RHF surfaces, and
1.3 kcal/mol more stable in the MP2 calculations. Two other
low-energy minima, pps-b and pps-c, are just 0.7 and 0.8 kcal/
mol, respectively, above the EFP global minimum. The MP2
structures are nearly isoenergetic with two fused cube struc-
tures: the (D2d)4 structure identified as the global minimum by
Tsai and Jordon;42 and (S4)(D2d)3 not identified in the previous
studies. Once again, the EFP method reproduces the RHF
energetics to within about 1.5 kcal/mol. In general, the relative
energies predicted by the effective fragment potential, RHF and
MP2 methods are all in quite good agreement. Of course, the
uncorrelated methods underestimate the binding energies.

The individual components of the interaction energy obtained
with the EFP have facilitated the analysis of the balance between
the number of hydrogen bonds and the strain in the hydrogen
bonds. The anisotropic nature of the electrostatic interaction
leads to preferred bond angles in H-bonding, and thus makes
electrostatics the most important factor in determining the
stability. Increases in the magnitudes of the polarization and
repulsion terms are often the result of the shorter bond lengths
in structures with more favorable electrostatics. However, the
repulsive term is on average larger whenever the molecules are
closer, and thus can be more important in single prism
configurations than in multiple fused-prism geometries. This
renders single prism configurations less stable. Because of the
large role that electrostatics plays in water-water interactions,
the EFP can be a powerful tool in the prediction and analysis
of water cluster structures.

B. Menshutkin Reaction. The Menshutkin reaction46 is an
important test of any solvation method, since it involves the
reaction of two neutral species, an alkyl halide and an alkyl-
amine, to produce an associated ion pair (ammonium salt) and
eventually separated ions:

In the gas phase, of course, this process is rather endothermic,
but the product ion pair and separated ions are both expected
to be stabilized by polar solvents. There have been several
theoretical studies of the Menshutkin reaction, using various
theoretical methods, all with R) CH3 and R′ ) H. Sola and
co-workers47 used the modest 3-21G basis set and X) Br to
describe the solute plus two waters, then surrounded this cluster
with a continuum to predict a free energy of activation of 8.3
kcal/mol. Gao and co-workers48 used a semi-empircial QM/
TIP3P MM approach with X) Cl, and predicted a 26.3 kcal/
mol free energy of activation. Rivail49 used a continuum method
for X ) Cl to obtain a free energy of activation that is similar
to that predicted by Gao et al. The only quantitative experimental
data comes from the Okamoto group50 who find a free energy
of activation of 23.5 kcal/mol for R) CH3, R′ ) H, X ) I.

The EFP1 method has been used to study the Menshutkin
reaction for R) CH3, R′ ) H, X ) Br.51 The solute system
was treated with both restricted Hartree-Fock (RHF) and
second-order perturbation theory, using a polarized double-ú
basis set with diffuse functions added to Br. The effects of
electron correlation are found to be very small for the gas-phase
reaction,51 so only RHF wave functions were used for the
solvated systems. For two waters, full geometry optimizations
were performed using bothab initio and EFP waters, including
identification of the transition state and determination of the
minimum energy path (MEP) that connects reactants (reactant
molecule-pair) with product ion pair. For larger numbers of

TABLE 6: Binding Energies for (H 2O)20 (kcal/mol of
Clusters)

(H2O)20 EFP RHF MP2

p3a -191.19 -189.92 -248.39
(D2d)4 -188.83 -187.33 -247.04
pps-b -190.49 -188.72 -247.03
pps-c -190.42 -188.63 -246.90
(S4)(D2d)3 -188.63 -187.11 -246.88
pps-d -188.72 -187.90 -246.44
(D2dS4)2 -188.35 -186.77 -246.39
p3b -189.17 -187.97 -246.37
pps-e -188.99 -187.72 -246.14
pps-f -189.04 -187.45 -245.68
pps-a -188.90 -187.31 -245.63
(S4)4 -188.12 -186.24 -245.57

RX + R′NH2 f [X] -[R′(R)NH2]
+ f X- + [R′(R)NH2]

+

304 J. Phys. Chem. A, Vol. 105, No. 2, 2001 Gordon et al.



waters, geometries were optimized using EFP waters, and RHF
single point energy calculations were then carried out at the
EFP geometries. Since the primary goal of this study was to
assess the ability of the EFP method to reproduce the key
features of the Menshutkin reaction, the configuration space was
not exhaustively searched for a given number of water mol-
ecules. Rather, several plausible arrangements of waters were
chosen as starting points for geometry optimizations and saddle
point searches.

It is important to emphasize here thatno new EFP parameters
were employed for this analysis.That is, the EFP1 parameters
that were determined as described in section IIA are subse-
quently used for all applications, with no further adjustment.

The energetics of the Menshutkin reaction as a function of
the number of solvating water molecules are summarized in
Table 7. Note that REAC and PROD in this table refer to the
molecule-pair complex in the entrance channel and the ion-pair
product in the exit channel, so there are no basis set superposi-
tion error issues. Clearly, the complete separation into ions is
highly endothermic in the gas phase.51 The entries “A” and “B”
in the table for four and six waters refer to two different reaction
paths for these numbers of waters.

Several points regarding this table are noteworthy. First, as
the number of water molecules increases, the net exothermicity
increases and the barrier height decreases, as one would expect
for a polar solvent. The differences between the two different
reaction paths for four and six waters is small, but not
insignificantly so. One would therefore expect that a careful
statistical sampling of the configuration space will become
increasingly important as the number of water molecules
increases. This is very likely the reason that the barrier appears
to increase slightly upon increasing the number of waters from
six to eight. The agreement between the energetics predicted
by the EFP method and those from the allab initio calculations
are excellent. The two sets of relative energies and barrier
heights generally agree to within 1 kcal/mol, although the
difference is somewhat larger for the six water (A) case. This
suggests that the EFP method will be similarly successful in a
variety of solvation problems.

The corresponding free energies, calculated by constructing
the harmonic oscillator/rigid rotor partition functions, are listed
in Table 8 for zero, two and eight waters. The overall trends in
this table are similar to those discussed above, including the
excellent agreement between EFP and RHF methods. For the
largest number of waters, the predicted free energy of activation
is 22.7 kcal/mol. This is in good agreement with both experiment
and the earlier theoretical results of the Gao and Rivail groups.

Finally, a sense for the relative computer times required for
the EFP vs RHF calculations may be found in Table 9. These
calculations were performed on an RS6000/350 workstation,
and only wall clock times are presented. The most telling
comparison is that for the increment in the time required for
the calculation as the number of water molecules is increased.
For the EFP calculations, this increment is a direct assessment
of the cost of the EFP computations, since the same RHF solute
is present for each calculation. The EFP increment is essentially
constant as two waters are successively added. The observed
variation is due to small variations in the number of SCF
iterations that are required for convergence. The incremental
cost of the RHF calculations is more than 2 orders of magnitude
larger and is increasing asn increases.

C. Glycine Neutral/Zwitterion Equilibrium. As an example
of the interplay between discrete and continuum treatments of
solvation, we consider the equilibrium between neutral (N) and
zwitterionic (Z) glycine, the simplest amino acid. In the gas
phase, one expects the neutral isomer to be more stable, while
the zwitterion is the global minimum in aqueous solution.52 In
the present study, the geometries of bare N and Z glycine were
optimized in solution with the 6-31++G** basis set53 using
the Onsager self-consistent reaction field (SCRF) model. The
cavity radii for the optimizations were taken as 3.62 and 3.74
Å for N and Z, respectively. These radii were obtained by

TABLE 7: Calculated Energies (kcal/mol) at 0 K, Relative
to the Lowest Energy Molecule-Pair Reactant in the
Menshutkin Reaction as a Function of the Number of
Solvating Water Moleculesa

∆E (kcal/mol)no. of
waters EFP RHF

0 REAC 0.0
TS 34.0
PROD -4.7

2 REAC 0.0 0.0
TS 22.5 22.2
PROD -19.4 -19.2

4 A REAC 3.9 3.5
TS 17.6 16.9
PROD -30.7 -31.2

4 B REAC 0.0 0.0
TS 18.0 17.5
PROD -26.2 -26.3

6 A REAC 0.9 0.0
TS 23.0 20.3
PROD -19.6 -23.5

6 B REAC 0.0 0.0
TS 16.0 15.6
PROD -29.1 -28.8

8 REAC 0.0 0.0
TS 20.3 19.4
PROD -31.4 -31.3

a Zero-point energies and temperature effects are not included.

TABLE 8: ∆G (298.15 K) of Activation and Reaction
(kcal/mol), Calculated at the RHF/DZVP Level for the
Menshutkin Reaction with 0, 2, and 8 Solvating Water
Molecules

∆G298 (kcal/mol)no. of
waters EFP AI

0 REAC 0.0
TS 40.6
PROD 2.8

2 REAC 0.0 0.0
TS 28.3 27.7
PROD -10.2 -10.0

8 REAC 0.0
TS 22.7
PROD -23.8

TABLE 9: Comparison of Wall Clock Times (s, on IBM
RS6000/350) for RHF vs EFPa

wall clock ∆ (wall clock)no. of
waters RHF EFP RHF EFP

2 4006 1376 3117 487
(5399) (2118) (3672) (391)

4 11768 1658 7762 282
(17905) (2422) (12506) (304)

6 2054 396
(26684) (2981) (8779) (559)

8 1752 221
(45029) (3134) (18345) (153)

a Times in parentheses are from direct SCF;others are for conven-
tional SCF.
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calculating the molecular volume using GAUSSIAN 94.54 Two
other solvation models, IPCM1b/6-31++G** and SM5.42R1c/
6-31G*, were also used to calculate the energies of these two
optimized structures. Second, N(H2O)8 and Z(H2O)8 were
optimized using effective fragment waters with the RHF/
6-31++G** method for N and Z. Finally, the effect of the bulk
solvent was taken into account by embedding the clusters in a
continuum. The Onsager continuum was used with the EFP
waters, whileab initio waters at the EFP geometries were used
when the continuum was described by the IPCM and SM5.42R
models. The calculations were performed using GAMESS,14

GAUSSIAN9454 and GAMESOL.55

Two issues that arise in a supermolecule-continuum calcula-
tion are the number of solvent molecules to be used in the
calculation, and how best to sample the nuclear degrees of
freedom of the explicit solvent molecules. With regard to the
first question, adding waters to the hydrophilic parts of the solute
should give a reasonable approximation to the first solvation
shell. It is found that at least eight water molecules are necessary
to fill hydrophilic areas of glycine and act as a ‘first solvation
shell’. In the present work, eight explicit water molecules are
included. The configuration space of the eight water molecules
was not exhaustively sampled. Instead, full geometry optimiza-
tions were performed for reasonably chosen glycine-water
cluster structures.

The energy differences between the optimized N and Z
isomers using the Onsager, SM5.42R and IPCM methods are
shown in Table 10, as well as the gas phase energy difference.
The gas phase energy difference was calculated using the
Onsager optimized geometry of Z. A smaller basis set was used
for the SM5.42R model, since it has not been parametrized for
the larger basis. All three continuum methods cause a significant
stabilization of Z relative to N, but all three still find N to be
slightly more stable than Z. One reason for these results is that
the three models assume that the polarization of the solvent is
linearly proportional to the electric field of the solute. However,
for the zwitterion, nonlinear effects in the polarization of the
solvent become important due to the charges present at the two
ends of the solute.56,57

Next, N(H2O)8 and Z(H2O)8 were optimized using RHF/6-
31++G** for glycine with EFP waters. The hydrophilic sites
of both N and Z are filled by the explicit waters. Analogous
full RHF/6-31G* calculations were also carried out. Table 10
shows the results of these calculations. Note that EFP andab
initio results differ by only 1.4 kcal/mol. The cluster calculations
stabilize Z relative to N, but N(H2O)8 is still predicted to be
more stable than Z(H2O)8. In the gas phase, the RHF/6-
31++G** dipole moment of Z (13.4 D) is much higher than
that of N (1.3 D). But, Z(H2O)8 has a smaller dipole moment
(3.5D) than N(H2O)8 (5.3 D). Since the Onsager model considers
only the dipole moment of the solute, N(H2O)8 will clearly be

more stabilized than Z(H2O)8 in this model, contrary to the
stabilization of bare N and Z in the Onsager model.

Next, the combined cluster/continuum effect of the bulk
solvent is taken into account by surrounding the clusters with
a continuum, using the EFP+ Onsager model, as well as all
three continuum models withab initio waters. The results are
shown in Table 10. As suggested above, the Onsager model
stabilizes the N cluster more than the Z cluster due to the larger
N(H2O)8 dipole moment. N(H2O)8 is more stable than Z(H2O)8
by 5.8 kcal/mol (without the continuum the energy difference
is 4.6 kcal/mol). The relative stabilization of N using 8ab initio
waters is similar. In the SM5.42R model, N and Z clusters are
very close in energy, though N is still more stable by 1.1 kcal/
mol. The SM5.42 continuum stabilizes the Z(H2O)8 cluster by
2.1 kcal/mol. The IPCM model favors the Z cluster by 8.6 kcal/
mol. So, the IPCM continuum stabilizes the Z(H2O)8 cluster
by ∼11.8 kcal/mol. A more definitive study of these effects
would involve a systematic sampling of configuration space as
a function of the number of water molecules.

An approximate sense for the level of agreement with
experiment can be found by comparing the SM5.42 and IPCM
values with the experimental free energy change, Nf Z in
solution, of 7.67 kcal/mol favoring Z.20 Although the IPCM
model takes into account only the electrostatic part of the
solvation free energy, these results clearly suggest that the
combination of a small number of explicit waters and a
sophisticated continuum model will be an effective tool for the
study of N-Z equilibria.

IV. Summary and Future Directions

The effective fragment potential (EFP1) method has now been
applied successfully to a wide array of problems, including the
analysis of water cluster structures and the effects of aqueous
solvation on chemical reactions in ground and electronically
excited states. The principle limitation of the method, at present,
is that correlation contributions, most notably dispersion, are
not yet included in the method. A careful study of the water
dimer potential energy surface using both second-order pertur-
bation theory and coupled cluster CCSD(T) calculations has
been completed,58 and these calculations will form the basis
for the development of the dispersion term.

A bottleneck in the EFP1 method is that the extension of the
method to solvents other than water requires the determination
of dimer potential energy surfaces for each solvent of interest,
followed by a fitting procedure for the exchange repulsion/
charge-transfer term. Therefore, the more appealing approach
for generalization of the method is to avoid adjustable fitted
parameters by deriving these latter terms, as well as the
dispersion, from first principles. This is the guiding philosophy
of the EFP2 method. Generalized formulations for both the
exchange repulsion and charge penetration, as well as EFP
components of the energy gradient, have already been derived
and implemented. Analogous derivations for dispersion and
charge transfer and theab initio/EFP contribution to the gradient
are in progress.

A particularly exciting development is the derivation of the
EFP/ab initio link across covalent bonds. While this approach
was initially developed to study the biochemistry of peptides
and enzymes, the potential applications are clearly much
broader. Since the method incorporates most of the important
physical interactions directly from quantum mechanics and
requires no adjustable parameters, it will be an obvious
alternative to the MM in any QM/MM calculations.

TABLE 10: E(N) - E(Z) (kcal/mol)

gas phase (RHF/6-31++G**) -30

discrete continuum only

EFP (RHF/6-31++G**) -4.6 SCRF/6-31++G** -9.0
ab initio (RHF/6-31G*) -3.2 SM5.42R/6-31G* -1.0

IPCM/6-31++G** -3.2

Discrete+ Continuum

method energy difference

EFP+ SCRF (6-31++G**) -5.8
AI + SCRF(6-31G*) -4.3
SM5.42R (6-31G*) -1.1
IPCM (6-31G*) 8.6
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