
ATOMS AND THE CONTINUUM

Coupling Atomistic Simulations and

Continuum Elasticity for

Multiscale Simlations

Noam Bernstein

Center for Computational Materials Science

Naval Research Laboratory

Washington, DC

1



OUTLINE

• Introduction

– (Brief) Overview of Molecular Dynamics

– Continuum Elasticity – Concepts and Basic Equations

– Overview of Finite Element Method
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OTHER MESH REFINING ATTEMPTS

Hoover et al. (Comput. Phys. 6, 1992) (very sketchy)

Kohlhoff et al. (Phil. Mag. A 64, 1991)

Molecular dynamics: embedded atom

U =
∑
i

F (ρi) +
∑
ij

V (rij)

where

ρi =
∑
j

φ(rij)

and F (ρ) is nonlinear, and long ranged.

Finite elements: nonlinear elasticity, matched elastic constants

Application: quasistatic fracture in BCC metals
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OTHER MESH REFINING ATTEMPTS CONT’D

Refine mesh to atomic size

Two zones, each a boundary condition to the other
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Type contribute to which calc.? feel which forces?
black atoms MD MD
grey atoms MD FE
dashed elems. FE MD
solid elems. FE FE

Not conservative – no well defined total energy

• Forces don’t sum to zero

• Energy not conserved during dynamic simulation
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IMPROVED CONSTITUTIVE LAWS

What’s missing from conventional finite elements?

• variation of mass matrix (lumped vs. distributed)

• variation of stiffness matrix (atomistic vs. bulk)

• accounting for missing deg. of freedom (temperature)

• effects of extreme non-linearity

Several approaches to address subsets:

• coarse-grained molecular dynamics

• quasicontinuum method
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COARSE-GRAINED MD CONCEPT

(Rudd and Broughton Phys. Rev. B 58 1998)

Concept: define a set of finite element equations that are explicitly

derived from an atomistic empirical potential description

Assume continuum field is mean of atomistic description, i.e.

~uj =
∑
µ
fjµ~u

µ

~uµ is an atomic displacement

~uj is a finite element node displacement

fjµ is a weight function (related to interpolation/shape function N)

Define quantities (displacement, momentum, energy, etc.) as ther-

modynamic averages over atomic D.O.F. that obey constraint
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COARSE-GRAINED MD TOTAL ENERGY

Given some MD Hamiltonian HMD, define CG energy as

E

(
{~uk, ~̇uk}

)
=
∫
d~xµd~pµHMDe

−βHMD∆/Z

where ∆ is the constraint

∆ =
∏
j

δ

~uj −∑
µ
~uµfjµ

 δ
~̇uj −∑

µ
~pµfjµ/mµ


and Z is the partition function

Results (for a harmonic Hamiltonian):

E

(
{~uk, ~̇uk}

)
= Uint +

1

2

∑
jk

(
Mjk~̇u

j
~̇u
k

+ ~ujKjk~u
k
)

where Uint is the energy of the missing DOF

Uint = 3(N −Nnode)kT
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COARSE-GRAINED MD MATRICES

Deriving FE from MD+thermodynamics is nice, but

what about details?

Mjk = m

∑
µ
fjµfkµ

−1

and

Kjk =

∑
µ
fjµD

−1
µν fkµ

−1

(note: Dµν is singular. . . )

How to choose weight functions fjµ?
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COARSE-GRAINED MD WEIGHT FUNCS.

Weight functions tell us how we’re coarse graining

Equivalent in conventional FEM: shape functions N i(~r)

Reminder: FEM definition

~u(~r) =
∑

~ujNj(~r)

From atomistics: best fit displacement field minimizes

χ2 =
∑
µ
|~uµ − ~u(~rµ)|2 =

∑
µ

∣∣∣∣∣∣~uµ −
∑
j

~ujNj(~rµ)

∣∣∣∣∣∣
2

Best fit FE field with ~uj =
∑
µ fjµ~u

µ and

fjµ =
∑
k

(∑
ν
Nj(~rν)Nk(~rν)

)−1

Nk(~rµ)

Recipe: Nj(~r) ⇒ fjµ ⇒ (with Dµν) Mjk and Kjk
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COARSE-GRAINED MD RESULTS

1-D chain with harmonic springs

incommensurate coarse grained mesh

• Phonon spectrum error < 6%

Conventional FEM > 18% (worst at zone edge)

• Reflection coefficient through CG region

Nice transition from to 0 to 1 at correct wavelength

Conventional FEM shows wavelength shift, little peaks

(by permission from Rudd and Broughton, Phys. Rev. B 58, p. R5893 (1998).)
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QUASI-CONTINUUM METHOD CONCEPT

Concept: standard finite elements with explicitly atomistic constitu-

tive model

Conventional approach: elasticity

• small deformation - quadratic

• maybe few higher order terms

Real materials: inelastic (very)
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LOCAL QUASI-CONTINUUM

For each element:

• Construct deformation gradient for this element

• Pick representative atom in center of element

• Calc. energy per atom using atomistic model

• Assign energy to element

12



LOCAL QUASI-CONTINUUM ISSUES

Advantages:

• Include underlying periodicity

• Phase transformations

Missing effects:

• Multi-atom unit cells [fix by relaxing internal DOF]

• Rapidly varying displacement fields

• Interactions between elements (phase boundaries)

• Finite temperatures

• Dynamics (no prescription for mass)
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QUASI-CONTINUUM AND COMPLEX
LATTICES

Displacements ~u determine deformation gradient FiJ

For Bravais lattices, FiJ is everything (Cauchy-Born)

xi = FiJxJ

For complex lattices, additional internal DOF

E.g. for a shear FiJ

Bravais lattice Complex lattice

Explicitly minimize w.r.t. internal DOF
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QC COMPLEX LATTICE EXAMPLE

Silicon:

diamond structure

2 atoms per unit cell

Energy vs. shear:

No relaxation With Relaxation

(by permission from Tadmor et al., Phys. Rev. B 59, p. 235 (1999).)

Big difference in energetics, allows for phase transformation
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NON-LOCAL QUASI-CONTINUUM

Like local QC, except environment of representative atom depends

on several nearby elements

Fix for:

• Rapidly varying displacement fields

• Interactions between elements:

– phase boundaries

– free surfaces

• Arbitrary local disorder

– grain boundaries

– dislocation cores

Reproduces MD in limit of one atom per element
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QUASI-CONTINUUM RESULTS AND ISSUES

Results

• Dislocations

• Crack - grain boundary interactions

• Nanoindentation (metals and Si)

Issues

• Dynamics and finite temperatures

• Boundary between local and non-local:

– Atoms in local elements don’t feel nearby non-local atoms

– Non-local atoms do feel nearby local elements

– No well defined energy, forces don’t balance
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COUPLING: WHERE DO WE STAND?

MD - well understood, computationally expensive

FEM - well understood, computationally cheap

Coupling - connect disparate concepts (atoms vs. fields)

Mesh refining:

• One possible way for short range potentials

Details would vary for each potential

• What to do about non 2- or 3-body potentials?

• Not all prescriptions conserve energy

• Constitutive laws must vary with scale
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PROGRESS: VARIABLE CONSTITUTIVE LAWS

Coarse-grained MD

• Thermodynamically motivated

• Prescription for dynamics (mass matrix)

• Only small deviation from equilibrium

Quasicontinuum

• Full blown nonlinearity (large deviation from equil.)

• No dynamics worked out yet

• Problems matching local to non-local
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BIGGER ISSUES: TEMPERATURE

Temperature:

• What do we do when temperature varies?

(CGMD derived for equilibrium)

– T dependent constitutive law

(little MD sim. for each QC cell?)

– Solve heat transport problem on FE mesh

• What about missing deg. of freedom?

– Add dissipative terms (less ad hoc than Broughton et al.)

– Need to account for

atomic vibrations conversion into FE temperature

and

FE temperature causing atomic vibrations
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BIGGER ISSUES: TIME SCALE

Atoms move one time scale of 1 / Debye frequency

Elements move at 1/
√
LY/ρ

Variable time step time integration?

How much can FE help anyway?

l = vt

v is speed of sound, t is time scale

l is distance that information could propagate

t is limited by MD region, how big does the system ever need to be?
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BIGGER ISSUES: OTHER CONTINUA

Fields that aren’t mass distributions, e.g.

Continuum electrodynamics?

Probably straightforward

Need potentials that interact with fields

Fluids?
Much harder – need to mesh very different concepts

Solid mechanics: atomic positions ⇔ displacement fields

• Deterministic atomic positions (neglecting dynamics)

Fluid mechanics: atomic positions/velocities vs. flow/potential fields

• Stochastic atomic positions (even for statics)
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