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Periodic Crystals

(The discussion here follows Aschroft and Mermin, ”Solid State Physics”,
Chapters 4-8.)

A crystal is an ordered state of matter in which the positions of the
nuclei (and consequently all properties) are repeated periodically in space.
A crystal is much simpler than a general disordered structure such as a
liquid or amorphous material. It is specified by the positions of the nuclei in
the smallest possible repeat unit (a primitive unit cell), and the rules that
describe the repitition (translations).

e The positions and types of atoms in the unit cell is called the basis, and
the set of translations generates the entire periodic crystal by repeating
the basis. The set of translation vectors is a lattice of points in space
called the Bravais lattice.

This can be summarized as:
Crystal structure = Bravais lattice 4+ basis.

e The order is described by symmetry operations. The set of translations
form a group of operations. The sum of any two translations is another
translation, and the set of all translations forms the translation group.

In addition there may be other operations that leave the crystal the
same, such as rotations, reflections, and inversions.

This can be summarized as:

Space group = translation group + point group.



Translation Symmetry in Crystals

Here we will deal only with translations which are intrinsic to all crystals.
The possible translations form a lattice in space, which has dimension d. In
some places the formulas will be for d=3, but they are easily generalized
to any dimension. Any translation can be written as integral multiples of
primitive vectors,

T(ny,ng,..) = nia; + noas + ... (1)

where the vectors a;, © = 1,d are the primitive translation vectors of the
lattice.
Examples: (here a is the unit of length)

e line: a; = a.

e square: a; = (1,0)a; ap = (0,1)a.

triangular: a; = (1,0)a; ap = (%’ ?)a.

simple cubic: a; = (1,0,0)a; ay = (0,1,0)a; az = (0,0,1)a.

face centered cubic a; = (3, 3,0)a; as = (3,0,
(11 ANga (1 1 1y, . (111
e body centtered cub. a; = (5,3, —3)a; a2 = (5, —35,3)a a3 = (—3, 5, 3)a-

In matrix notation these may be written (where each row is the cartesian
components of a primitive translation vector):

10 ' 1 0 100
sq:a:lo 1]cz;tm:a:ll ﬁla; sc:a=|01 0]a

2 2 0 01

1 10 a 1 1 -1 a

feccca=|1 0 1]|=;bcc:a=| 1 -1 1 |=.

01 1]?2 11 1 |2



Periodic Functions and
the Reciprocal Lattice

Consider any function f(r) defined for the crystal, such as the density of
the electrons. This function is the same in each unit cell,

f(x+T(n1,n2,n3)) = f(r), (2)

where T is any translation defined above.

Fourier transforms

A periodic function can be easily represented by Fourier transforms. The
formulas can be written simply in the language of a finite basis if we restrict
the Fourier components to only those which are periodic in a large volume
of crystal Qerystar composed of Negy = Ny X Ny x ... cells,

exp(iq - r) = exp(iq - (r + T(Ny, Ny, ..)) (3)

so that the vectors q are restricted to q-a; = W We will take the limit
of large volumes €2;ystq1 s0 that the final results will be independent of the
choice. The Fourier transform is defined to be

1 .
fla)=g—— [ f()eaplia-x)dr @)
crystal Qc’rystal
Since f is periodic, this can be written:
1 .

f@=g— ¥ [ f@esplia- (x+T(m,nsn))dr

C'rystal n1i,n2,n3 chll

LS eaplia- Tl naim)) x o— [ f(x)eaplia - 1)dr (5)
= exp(iq - T(ny,ne,n r)exp(iq - r)dr

Ncell n1,n2,13 ! 2 s chll chll

Now the first term on the right hand side is 0 all q except those for which
q - T(n1,n9,n3) = 21 X integer for all translations T. Since T(ny, ng, n3) is
an integral multiple of the primitive translations a;, it follows that q - a; =
27 x integer. This defines the Reciprocal Lattice.



The Reciprocal Lattice
If we define the vectors b;, i = 1, d which are reciprocal to the the prim-

itive translations a;, i.e.,
bi A = 27'('(5@', (6)

then the only non-zero Fourier components of f(r) are for q = G, where the
G vectors are a lattice of points in reciprocal space defined by

G(nl, na, 77,3) = n1b1 + n2b2 + n3b3. (7)

Finally, the non-zero Fourier transform of the periodic function can be writ-
ten in terms of the integral over one primitive cell,

1
chll Qeelr

f(G) f(r)exp(iG - r)dr (8)
We can also write the definition of the reciprocal lattice vectors in matrix

notation
bfa=1; or bl =a! (9)

In 3 dimensions there is a geometric interpretation, b; = 27 22X 5, etc.

|a1-(a2><a3

It is easy to show that the reciprocal of a square (simple cubic) lattice
is also a square (simple cubic) lattice, with dimension 27” However, the
reciprocal of the triangular lattice is also triangular, but rotated with respect

to the crystal lattice,

. 1 —=12n
triangular : b = 0 2 3 —.
7B ] a

The bee and fec lattices are reciprocal to one another,

becreciprocalto fcc:b=| 1 -1 1 | —;

11
fecreciprocaltobecc :b=|1 0
0 1



Wigner-Seitz Cell and First Brillouin Zone

The primitive cell for the crystal can be any one of the infinite set of
possible choices of cells the fill all space when translated by the set of all
lattice vectors. This holds for the direct and the reciprocal lattices.

Is there a way to make a ”best” choice that is unique in some important
way?

Wigner-Seitz Cell: defined to be the most compact cell possible, i.e.,
the primitive cell around the origin is set of all points closer to the origin than
to any other lattice vector. The Wigner-Seitz Cell can always be constructed
by the set of points inside the perpendicular bisecting planes between the
origin and all other lattice vectors.

First Brillouin Zone: the Wigner-Seitz Cell of the reciprocal lattice.

Basis of Atoms in Primitive Cell

The basis describes the positions of atoms in each unit cell relative to the
chosen origin. If there are N, atoms per primitive cell, then the basis is
specified by the atomic position vectors 7., kK = 1, Ngsom.-

NaCl and ZnS are two examples of crystals with an fcc Bravais lattice
and a basis of two atoms per cell. For the case of NaCl, one can choose one
atom at the origin, since there is inversion symmetry and cubic rotational
symmetry around each atomic site: 77 = (0,0, 0) and the second basis vector
chosen to be m = (%, 0,0)a or any one of the 6 equivalent choices.

The basis for the Zinc Blende structure can be chosen in a symmetric
way, 71 = (%, %, %)a, and 7, = —(%, %, %)a, which is appropriate for diamond
since this is a center of inversion symmetry. One can also choose the origin
at one atom, which is a center of tetrahedral symmetry, 7, = (0,0, 0)a, and
Ty = (i, %, i)a or any of the equivalent choices. (It is easy to show that in

terms of the primitive lattice vectors, the 75 = [%, 1, 1], etc.



C Excitations and the Bloch Theorem )

This follows the ”second proof” of the Bloch Theorem in Ashcroft and
Mermin.

Excitations of the states of the crystal do not in general have the peri-
odicity of the crystal. We take the Born-Von Karmen boundary conditions
that the excitations are required to be periodic in the large volume just as
before. In the limit of large volumes, the boundary conditions do not matter.

Consider the eigenstates of any independent particle Schrodinger equation
(e.g., Kohn-Sham equations of Density Functional theory),

2
Hipi(r) = l— 25

€

vﬂwmﬂwm=qmm. (10)

The key point is that V(r) is periodic since all cells are equivalent.

Now we can use the general properties of solving the Schrodinger equation
in a basis, in this case Fourier components or ” plane waves”. We require that
the states be normalized in the volume of the crystal, and any state can be
expanded in the complete set of normalized Fourier components,

1

Yi(r) = gcm X mexp(iq ‘r) = ;ci,q X |q), (11)

where the c; 4 are the expansion coefficients of the wavefunction in the basis
|q) which are plane waves.
Taking the matrix elements of the terms in the Schrodinger equation, we

find R
Z(ql|H‘q>Ci,q =6 Z(q'\q)cm = Giliqg'- (12)
q q
The matrix element of the kinetic energy operator is simply
h? h?
| = —V?q) = %S - 13
(@] = 5 VPla) = 5 l0dg (13)

Since V' (r) is periodic, its matrix elements are given by Eq. (8),

(dV]a) =V(G)dg-q.a; (14)
where G is a reciprocal lattice vector, and
1
V(G) = V(r)exp(i(G - r)dr. (15)
chll chll



Major Results

Bands of eigenvalues. Since the equation above couples only Fourier
components which differ by a reciprocal lattice vector, a state labeled by a
wavevector k in one cell of the reciprocal lattice is completely decoupled from
states at any other k' in that cell. For each k in one cell of the reciprocal
lattice, the Fourier components which enter the Schrodinger Eq. are only the
set of vectors q = k+G, where G is any of the vectors of the reciproval lattice.
The Hamiltonian may be diagonalized separately for each k in one primitive
cell. Usually we choose the most compact cell around the origin, called
the Brillouin zone. The crystal momentum k varies continuously within the
primitive cell, and for each k there are a discrete set of eigenstates, given by
the solution of the matrix equations. The leads to bands of eiegenvalues ¢,
and energy gaps where there can be no eigenstates for any k.

The Bloch theorem. Each eigenfunction labeled by 7, k can be written
as a product of exp(ik - r) X u;x(r), where u; k(r) is a periodic function of r.
This follows since for each k, each eigenstates can be written

VYix(r) = %: cix(G) x \/ﬁexp(i(k +G)-r) = \/ﬁexp(ik - T)u; (1),

(16)

where
1

Uik (r) = % ¢ix(G) meaﬁp(iG ‘1), (17)

which is periodic and normalized in one primitive cell.

The Role of the Brillouin Zone. The Brillouin zone is unique among
all primitive cells because its boundaries are the bisecting planes where Bragg
scattering occurs; inside the Brillouin zone there are no such boundaries so
that any non-analytic dependence upon k can occur only at the boundaries.
Thus the boundary points are of special interest.

Examples of Brillouin zones for important cases are shown in a figure
given in the Power Point presentation with labels for important symmetry
points and lines using the notation of Bouckaret, Smoluchowski, and Wigner.



Sums over Brillouin Zone We often need to evalate quantities like
the total density or total energy per unit cell. For a function f;(k), where
¢ denotes the discrete band index, it is straightforward to show from the
average value is simply

Fom i D00 = [k fik), (18)

where .. is the volume of a primitive cell in real space and % is the
volume of the BZ. [For example, the fact that each band can hold at most
one electron (of each spin) is satisfied by this definition.]

A very convenient choice is the regular grid in k-space defined by Monkhorst
and Pack. The most efficient grid does not include the k = 0 point. [For vi-
sualizing these sums it is simpler to use a parallelpiped primitive cell of the
reciprocal lattice rather than the BZ, since the points are evenly distributed
in the cell.]

10



Calculations of Bands in Plane Wave Basis

Using the formulas above we find the matrix equation for the Schrédinger
equation in plane waves:

z Hk(G, GI)Ciyk(GI) = ei,kci,k(G) (19)
GI
where
h2
H(G,G') = 5 k 4+ G[*¢q + V(G -G (20)

e

This is a hermitian matrix equation in G, G’, and the solution by standard
diagonalization techniques leads to the bands of eigenvalues ¢; x and the pe-
riodic part of their eigenstates u; k(r).

Plane Wave Empirical Pseudopotential Calculations

We now have the equations to solve any independent particle problem in
a crystal.
What is the problem?

e Works only if the number of plane waves is feasible.

— Only for hydrogen! Core electrons too difficult for other elements!

— Or if we use pseudopotentials to eliminate core electrons
e Works only if we have a way of getting the potential V(r) or V(G)

— Density functional theory provides ways to find V' - approximate,
but well tested in many classes in many materials

— Models and Empirical Approximations for V' show us the general
character of solutions

11



Sum of Spherical Potentials

Often the potential is given by a sum of spherical potentials in real space.
This is always true for the bare proton potentials or the bare ionic pseudopo-
tentials. Often it is also a good approximation to take the entire potential
as a sum of spherical potentials. An example which is often rather close to
the final potential is to assume V(r) to be a sum of neutral atom potentials.
In any case where the potential is a sum of spherical potentials,

ntype natom(i

Z Z Z atom '_TD’ (21)

then the Fourier transform can be written,

1 ntype

V(r)exp(i(G - r)dr = Z Si(G)

V(G) = IG)),  (22)

atom(
chll chll

where the structure factor for each type of atom is

1 natom(i)

Si(G) = ——= Z exp(i(G - 75 5) (23)

natom(i) =

and the form factor for each type of atom is

natom(s ;
(G = " [y (eDenpi(G vy (24)
cell all space

This is an approximation to the true potential which is not a sum of
spherical potentials. However, it is often a good approximation. Further-
more, in the full Kohn-Sham calculations the bare ionic potential due to the
rigid spherical nuclei and cores are spherical and this form is used in that
case.

12



Model Potentials and Empirical Pseudopotentials

The programs used in our lab exercises use potentials that are sums of
spherical atomic-like potentials. These are useful because:

e This is a very good approximation in many cases and gives one a feeling
for bands. It is very useful for describing bands, optical properties, etc.
See book by Cohen and Chelikowsky.)

e Empirical potentials can be a starting point for large calculations not
feasible in ab initio methods. Calculations for “quantum dots of many
thousands of atoms have been done by Wang, et al (see references)
using the same potentials as in our lab.

e Self-consistent ab intio calculations also involve terms of exactly the
same form in the fixed external potential (nuclei or ions).

The programs used in the lab include empirical potentials for Si, Ga, As,
(from S. B. Zhang, et al) and various model cases: “El” (i.e., no potential or
“empty lattice”).

Examples of results are shown here:

13



Figure 1: Bands for GaAs using empirical pseudopotentials
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Figure 2: Free electron bands for an fcc crystal with the lattice constant of
Si.
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