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Schrödinger-Poison Solvers Description and
Quantum Corrections in classical simulators:

1. Schrödinger-Poisson solvers
- major concerns for future integrated circuits
- time-dependent Schrödinger wave equation (SWE)
- discretization of the SWE for variable effective mass
- time-independent Schrödinger equation

(A) Airy functions method
(B) Variational approach
(C) Shooting method for 1D problems – SCHRED description
(D) Finding the roots of a characteristic polynomial
(E) The Lanczos algorithm
(F) Numerov algorithm – note on the integration of the SWE
(G) 2D and 3D eigenvalue solvers

- open systems

2. The effective potential approach
- Madelung and Bohm’s reformulation of quantum mechanics
- other quantum potential formulations
- the effective potential approach due to Ferry
- simulation examples that utilize the effective potential approach

(A) Simulation of a 50 nm MOSFET device
(B) Simulation of a 250 nm FIBMOS device
(C) Simulation of a SOI device structure

- conclusions regarding the use of the effective potential approach
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1. Schrodinger-Poisson Solvers

� While current production devices are only at 0.1 µm, predictions are 
that they will be at 50 nm by year 2007.  Issues that are currently 
investigated in these device structures include:

❤ Tunnel currents in gate oxide
❤ Source to drain tunneling
❤ The role of the electron-electron interactions on carrier thermalization
❤ Statistical fluctuations: gate-length, gate-width, oxide thickness and

doping density variation:

❣ Must go 3D instead of 2D
❣ Must model ensemble of devices instead of a single device
❣ Dopant solubility, activation and segregation at the surface 

must be addressed
� At these sizes, we should begin to see quantum effects, as λD~3-5 

nm at 300 K.  The questions are:
❤ How large is the electron wave packet?
❤ How do we include space quantization effect into classical device 

simulators?

1.1 Major concerns for future integrated circuits
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Example 1: Degradation of Ctot for Different Device Technologies
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Conclusion: Quantization effects must be taken into account to properly 
describe the operation of future MOS devices. 
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Example 2: Heterojunction devices

• Esaki and Tsu (1969) => ionized donors can be spatially 
separated from the free electrons using modulation doping

• Dingle (1978) => grew the first modulation doped 
GaAs/AlGaAs superlattice

• The impact of the heterostructure is that the potential is abrupt, 
which leads to a more vigorous control of the channel charge 
density by the externally applied voltage.
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1.2 Time-dependent Schrödinger equation

• One of the goals of the quantum mechanics is to give quantitative 
description on a macroscopic scale of individual particles which
behave both like particles and waves. The simplest wavefunction 
is a plane-wave:

• To describe realistic situations, more complicated wavefunctions
can be constructed as superpositions of plane waves:

• The evolution of the wavefunction is described by the time-
dependent Schrödinger equation:
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• A stable and norm-preserving discretization scheme for the time-
dependent SWE is the Crank-Nicholson semi-implicit scheme:

• In the actual implementation, one solves the tri-diagonal system 
of equations

and then calculates the value of the wavefunction at time-step 
(k+1) as:
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1.3 Discretization of the SWE for variable effective mass

• Under the assumption of slowly varying material composition, 
one can adopt the SWE with varying effective mass. There are 
two ways one can make the Hamiltonian of the system to be 
Hermitian:

(a) Bring the effective mass inside the differential operator, i.e.

For uniform mesh size, the discretized version of Hψ is:
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(b) Another Hermitian operator proposed for variable mass has 
the form:

If one applies the box-integration method to the first two terms of 
this Hamiltonian, it gives the same discretized form of the 
equations as the fist method
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1.4 Time-independent Schrödinger equation 
• If one is considering stationary states, then:

• The time-independent SWE then reduces to:

(a) For a system confined by a potential well, the SWE is an
eigenvalue problem

(b) For an open system, one has a boundary value problem
where the energy of the wanted solution is specified and one
has to specify the spatial variation of ψ(r) 

• For 1D confinement (triangular or rectangular quantum well 
problems) one can use either:

- analytical approaches
- numerical approaches

)/exp()()exp()(),( hiEttit −ψ=ω−ψ=ψ rrr

)()()()(
*2

2
2

rrrr ψ=ψ+ψ∇− EV
m
h



6

Computational Electronics

Triangular well
(analytical approaches)

Airy functions method

Variational Approach

Numerical
Approaches

1. Shooting method
2. Finding the roots of a 

characteristic polynomial
3. Lanczos algorithm

1. Housholder method
2. Implicitly restarted Arnoldi 

method (ARPACK)

1D

2D and 3D

• Summary of approaches used to solve the SWE
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(A) Airy functions method 

• Suppose, we want to solve self-consistently the 1D Schrödinger-
Poisson problem in a MOS structure:

• The analytical solution of the Poisson equation is of the form:
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• When the inversion charge density does not make significant 
contribution to the band-bending, The 1D SWE reduces to:

• The solutions are:
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(B) Variational Approach 

• When the electrons significantly affect the band bending near 
the interface, the Airy functions approach fails. In this case, at 
low temperatures one can use the variational approach due to 
Fang and Howard, in which the ground state wavefunction is 
assumed to be of the form:

• The energy of the lowest subband is:
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• When one minimizes the total energy per electron, it follows 
that:
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(C) Shooting Method for 1D problems 

• To describe the shooting method, lets rewrite the time-
independent SWE in the form:

• When discretized on a uniform mesh, one gets that:

• The schematics of the potential used in the discussion is:
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• The solution strategy is the following one:

(1) Integrate the SWE towards larger z from zmin

(2) Integrate the SWE towards smaller z starting from zmax

(3) At the matching point zm, one matches the solutions ψ< and

ψ>

(4) The eigenvalue is then signaled by equality of the derivati-
ves at zm
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(C1) Description of SCHRED 

• For actual device simulations, one has to solve self-consistently 
the 1D Schrödinger equation self-consistently with the 1D 
Poisson equation.

• For the case of Si, in the solution of the 1D Schrödinger equati-
on one must worry about the mass anisotropy
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(1) Existing Features of SCHRED:

å Classical and quantum-mechanical charge description
Fermi-Dirac and Maxwell-Boltzmann statistics

� Single-valley and multiple-valley conduction bands
ê Exchange and correlation corrections to the ground state 

energy of the system
� Metal and poly-silicon gates
� Partial ionization of the impurity atoms

Features Recently Being Implemented in SHRED:

Á Hole quantization
Á Non-parabolicity of the bands

Current home of the solver: Purdue Semiconductor Simulation Hub
(http://www.ecn.purdue.edu/labs/punch/)

Current home of the solver: Purdue Semiconductor Simulation Hub
(http://www.ecn.purdue.edu/labs/punch/)
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(2) Sample input file used in SCHRED simulations:

device bulk=yes
params temp[K]=300, tox[nm]=1.5, kox=3.9
body uniform=true, Nb[cm-3]=1.e19
gate metal=false, Ng[cm-3]=-6.0e19
ionize ionize=no, Ea[meV]=45, Ed[meV]=45
voltage Vmin[V]=0, Vmax[V]=2.5, Vstep[V]=0.1
charge quantum=yes, Fermi=yes, exchange=no,
+ e_nsub1=4, e_nsub2=2
calc CV_curve=yes, file_cv=cv.dat
save charges=no, file_ch=chrg.dat,
+ wavefunc=no, file_wf=wfun.dat
converge toleranc=5.e-6, max_iter=2000

device bulk=yes
params temp[K]=300, tox[nm]=1.5, kox=3.9
body uniform=true, Nb[cm-3]=1.e19
gate metal=false, Ng[cm-3]=-6.0e19
ionize ionize=no, Ea[meV]=45, Ed[meV]=45
voltage Vmin[V]=0, Vmax[V]=2.5, Vstep[V]=0.1
charge quantum=yes, Fermi=yes, exchange=no,
+ e_nsub1=4, e_nsub2=2
calc CV_curve=yes, file_cv=cv.dat
save charges=no, file_ch=chrg.dat,
+ wavefunc=no, file_wf=wfun.dat
converge toleranc=5.e-6, max_iter=2000
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Exchange-Correlation Correction:

➯ Lower subband energies

➯ Increase in the subband separation

➯ Increase in the carrier concentration at 
which the Fermi level crosses into the 
second subband

➯ Contracted wavefunctions

Vasileska et al., J. Vac. Sci. Technol. B 13, 1841 (1995)
(Na=2.8x1015 cm-3, Ns=4x1012 cm-2, T=0 K)

Thick (thin) lines correspond to the
case when the exchange-correlation
corrections are included (omitted) in
the simulations.
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(3) Sample of simulation results obtained with SCHRED:
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(4) Sample of simulation results obtained with SCHRED (Cont’d):



12

Computational Electronics

(4) Sample of simulation results obtained with SCHRED (Cont’d):
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(D) Finding the roots of a characteristic polynomial 

• The finite-difference approximation of the 1D SWE is given by:

• The eigenvalues are the zeroes of the Nth degree characteristic 
polynomial of A
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• Several features help considerably in finding the roots of PA:

(1) The number of times the sequence 1, P1(E), P2(E),…,PN(E)    
changes sign equals the number of eigenvalues less than E

(2) To make a systematic search for all of the eigenvalues, a 
guidance can be the Gerschgorin’s bounds:

(3) Once the eigenvalues are determined, the eigenvectors are 
found by using the inverse vector iteration procedure, in which 
one starts with an initial guess for the eigenvector ψn

(1) associa-
ted with a given eigenvalue En and refines the guess by 
evaluating:
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(E) The Lanczos algorithm  

• This algorithm is very suitable when one is interested in many 
of the lowest eigenvalues.

• The strategy is to construct a set of orthonormal basis vectors 
{ψn}, in which A is explicitly tri-diagonal matrix

(1) Choose an arbitrary first vector in the basis ψ1 such that:

(2) One then forms a second vector in the basis as:

(3) Subsequent vectors in the basis are then constructed 
recursively:
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• The real utility of the Lanczos method is when many, but bot all, 
of the eigenvalues of a large matrix are required. Suppose that 
one is interested in the 10 lowest eigenvalues of a matrix of 
dimension 1000. The procedure is then the following:

(1) Generate some number of states in a basis larger than the 
number of eigenvalues being sought

(2) A linear combination of these eigenvectors is then used in 
constructing a new basis of dimension 25

(3) The continued procedure of:
-> generating a limited basis,
-> diagonalizing the tridiagonal matrix
-> using the normalized sum of the lowest eigenvectors as

the first vector in the next basis
converges to the required eigenvalues and eigenvectors.
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(F) Numerov Algorithm – note on the integration of the SWE

• There is particularly simple and efficient method for integrating 
second-order differential equations called Numerov or Cowling’s 
method, based on the idea sketched below:

• Solving the linear system of equations for either ψi-1 or ψi+1 then 
provides a recursion relation for integrating either forward or 
backward
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(G) 2D and 3D Eigenvalue Solvers  

• When solving 2D eigenvalue problems, one can transform the 
matrix to tri-diagonal form by using either the Householder 
method, Lanczos iteration or Rayleigh quotient iteration method 
(S.E. Laux, and F. Stern, Appl. Phys. Lett. 49, pp. 91, 1986).

• For 3D problems, the best eigenvalue solvers of large and 
sparce matrices, based on Implicitly Restarted Arnoldi Method, 
can be found in the publicly available software package 
ARPACK:

-> the codes are available by anonymous ftp from

ftp.caam.rice.edu

-> or by connecting directly to the URL

http://www.caam.rice.edu/software/ARPACK

Computational Electronics

1.5 Open Systems  

To calculate the conduction-band 
edge of the RTD structure, one 
needs to solve self-consistently 
the Poisson equation:

and the 1D Schrödinger equation: 
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• For a 1D domain limited to x∈[0,L], the SWE discretized on a 
uniform grid, with mesh size ∆ is:

• The traveling wave at a specified energy is assumed to be of a 
plane-wave type of the form:

• For a traveling wave that enters the open system at x=0, the 
procedure is the following one:

(1) one sets A(L)=1 at the output boundary to get that:
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(2) The next step is to calculate the wavefunction for i=0,1,…, 
N-1:

(3) For i=0, one has that:

• The procedure for inflow from the right boundary is identical:

and is started assuming 
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• To find the total wavefunction from the renormalized results of 
the two recursions steps (from the left and from the right), one
needs to specify the INJECTION conditions: 

• Once the wavefunction is determined, one can proceed with the 
calculation of the current through the structure:

• The electron density is then given by:
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2.1 Madelung and Bohm’s Reformulation of QM

� The hydrodynamic formulation is initiated by substituting the wavefunc-
tion into the time-dependent SWE:

� The resultant real and imaginary parts give: 
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2.2 Other Quantum Potential Formulations

� An alternate form of the quantum potential has been proposed by 
Iafrate, Grubin and Ferry, and is based on moments of the Wigner-
Boltzmann equation:

� Ferry and Zhou derived a form for a smooth quantum potential based 
on the effective classical partition function of Feynman and Kleinert.  The 
Feynman and Kleinert idea is as follows:

(a) Calculate the smeared version of the potential V(x) as follows:

(b) Introduce a second parameter Ω and form the auxiliary potential:
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(c) The minimization with respect to Ω and the minimization with 
respect to a2 then give:

� Gardner and Ringhofer derived a smooth quantum potential for 
hydrodynamic modeling that is valid to all orders of h2, that involves 
smoothing integration of the classical potential over space and 
temperature:
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2.3 The Effective Potential Approach due to Ferry
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In principle, the effective role of the potential can be rewritten in terms of the 
non-local density as (Ferry et al.1):

Classical density
Smoothed,
effective potential

Built-in potential
for triangular po-
tential approxima-
tion.

Effective potential 
approximation

Quantization
energy

“Set back” of charge --
quantum capacitance 
effects

1 D. K. Ferry, Superlatt. Microstruc. 27, 59 (2000); VLSI 
Design, in press.
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Within a factor of 2, the second 
term is now recognized as the 
density gradient term, but is more 
commonly known as the Bohm
potential

• The connection of Ferry’s Approach to the Bohm Potential is 
given below:
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(1) Validation of the approach on the example of a MOS 
capacitor with tox = 6 nm – sheet density results:
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(a)

The Gaussian fitting parameter a0 = 0.5 nm.
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(b)

The Gaussian fitting parameter a0 = 0.5 nm.

(2) Validation of the approach on the example of a MOS capacitor
with tox = 6 nm – results for the average carrier displacement:
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p-type substrate

N+ channel N+

SiO2

gate

source drain

Device specification:

• Oxide thickness = 2 nm
• Channel length = 50 nm
• Channel width = 0.8 µm
• Junction depth = 36 nm
• Substrate doping:

NA=1018 cm-3

• Doping of the source-drain
regions:

ND = 1019 cm-3

2.4 Simulation examples that utilize the effective potential
approach

(A) Simulation of a 50 nm MOSFET Device

Computational Electronics

(1) Conduction Band Profile

E
n

er
gy

  [
eV

]

D
is

ta
nc

e 
 [n

m
]

source drain

Distance  [nm]

Without Effective
Potential  Veff

With the Effective
Potential Veff

VG = VD = 1 V



22

Computational Electronics

Ex – field  [V/cm]
D

is
ta

nc
e 

 [n
m

]

Distance  [nm]

source drain

D
is

ta
nc

e 
 [n

m
] Ey – field  [V/cm]

Distance  [nm]

source drain

With Veff Without Veff

Negative electric field 
responsible for charge 

setback from the interface

(2) Electric field profile
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� The observed threshold voltage shift 
is mainly due to the degradation of 
the device transconductance and is 
not due to mobility degradation in the 
channel.

� The shift in the threshold voltage 
leads to a reduction in the on-state 
current.
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(4) Transfer and output characteristics
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(B) Simulation of a 250 nm FIBMOS device

Source and drain length 50 nm

Source and drain junction depth 36 nm

Gate length 250 nm

Device width ���� P

Bulk depth 400 nm

Oxide thickness 5 nm

Source and  drain doping 1019 cm-3

Substrate doping 1016 cm-3

Implant doping 1.6×1018 cm-

3

Substrate doping 1016 cm-3

Implant length 70 nm

×
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Average electron displacement from the interface and the total channel 
width increase when quantum effects are included!

(1) Concentration of electrons in the channel

Computational Electronics

(2) Sheet electron density

When Quantum effects are included: 

� sheet density is reduced

� inversion more difficult to achieve

� threshold voltage is increased
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� Average energy increases and velocity decreases when quantum 
effects are included.

� Prominent velocity overshoot evidence of non-stationary transport.

(3) Energy and velocity along the channel

Computational Electronics

With quantum effects: � Drive current is lowered
� Threshold voltage is higher

� Transconductance is degraded

(4) Device transfer and output characteristics
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Experimental data1:

� Simulate this structure using full 
3D Poisson solver coupled with 2D 
Schrödinger solver.

� Do the same calculation with 
effective potential

(C) Simulation of a SOI Device Structure

1 Majima, Ishikuro, Hiramoto, IEEE 
El. Dev. Lett. 21, 396 (2000).
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Approach 1:

Solve the 2D Schrödinger equation

where the electron density is given by:

Approach 2:

Use the effective potential approach to obtain the line 
electron density.
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Excellent agreement is observed between the two approaches when 
using the theoretical value for the Gaussian smoothing parameter of 
0.64 nm.

(2) Simulation results for a quantum wire
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� The effective potential approach in many cases allows for a 
quite accurate approximation of the quantization effects in real 
semiconductor devices

� The numerical cost of including the effective potential is low –
“more bang for the buck”

Some challenges remain, however:

� Model valid within the random phase approximation.

� It is still “quasi-local”, so it does not allow proper treatment  
phase interference effects

2.5 Conclusions regarding the use of the effective 
potential approach


