NSF 2002 Summer School (Urbana-Champaign) Microfluidics George Em Karniadakis Brown University

- Basic Concepts and Applications
- Gas Flows
- Liquid Flows
- Particulate Flows
- Moving Domains and Applications

<u>Reference:</u> G.E. Karniadakis & A. Beskok <u>Micro Flows: Fundamentals and Simulation</u>, Springer, 2002.

Microfluidics:

Emerging technology that allows development of new approaches to synthesize, purify, and rapidly screen chemicals, biologicals, and materials using integrated, massively parallel miniaturized platforms.

• Microfluidics is Interdisciplinary:

- Micro-Fabrication
- Chemistry
- Biology
- Mechanics
- Control Systems
- Micro-Scale Physics and Thermal/Fluidic Transport
- Numerical Modeling
- Material Science
- System Integration and Packaging
- Validation & Experimentation
- Reliability Engineering

```
- ...
```

Microfluidic Devices

Sensors & Actuators:

Pressure, Temperature, Shear Stress, Biological & Chemical Sensors

Fluidic Components:

Channels, Pumps, Membranes Valves, Nozzles, Diffusers and Mixers

Motion Generation:

Micro-Motors, Turbines, Steam Engines, Gears, Pistons, Links **Microfluidic Applications:**

Defense Applications:

• Lab on a chip: µ-TAS

Bio-Medical Applications:

- Drug Delivery Systems
- DNA Analyzers
- Human Health Monitoring
- Artificial Organs

Environmental Monitoring:

- Water & Air Pollution Sensing
- Gas/Liquid Filtration Systems

Microelectronics:

- Thermal Management
- Bubble-Jet Printers

Aerospace Industry:

Drag & Stall Control

Micro-Total-Analysis-Systems (μ -TAS) seamlessly integrate sample collection and separation units, biological and chemical sensors, fluid pumping and flow control elements, and electronics on a single microchip.

Scientific & Technological Challenges

- Development of *new* concepts that are *specifically designed* to take advantage of the small scale of microfluidic devices,
- To impart unique new functions that are not simply miniaturized versions of existing systems and components.

Mass Flow Rate versus Pressure Drop

•Pipe Flow (2mm x 200 mm; gas at low pressure)

Deviations from Continuum - Gases

•Microchannel: 0.51 microns (Bau et al., U Penn, 1988)

C*=Po_{ex}/Po_{th} where Po=C_f Re
Po=64 (pipe)
Po=96 (2D channel)

Deviations from Continuum - Liquids

Microducts (Bau & Pfahler, 2001)Silicone oil

•Question: Anomalous Diffusion or something else?

Interface Inside Carbon Nano-Tubes

(transmission electron micrographs)

50 nm

Courtesy of Megaridis & Gogotsi, UIC

Reverse Micelle Formation in Microchannels Containing Hexadecane/ 2% Span80

* Telleman et al.

Characterization of Airborne Particles

Size, Shape & Orientation

Active Control of Supraparticle Structures Microchannels

Hayes et al. Langmuir (2001)

Entropic Trapping and Seiving of DNA in Nanofluidic Channels

Digital Micro-Mirror DeviceTM

Digital Light Processing TM: 848 x 600 pixels 1280 x 1024 pixels 16μm x 16μm w/ 1 μm separation

Mirror

Courtesy of Texas Instruments

DMD[™] Air Damping Effects & Transient Response Courtesy of Texas Instruments

A TEXAS INSTRUMENTS TECHNOLOG

DMD 101 - Intro to DMD & DLP Technology (3-hour version) - Section 04 - Architecture & Electromechanical Operation (LJH:10/19/00)

Simulation of Micro-Pulse-Plasma Thrusters (micro-PPT)

- New issues arise in simulating plasma microthrusters that are an order of magnitude smaller than the existing state-of-the art.
 - Current simulation technologies are based on mathematical models and assumptions that break down in microscales and, therefore, cannot treat these microflows comprehensively.
- Microspacercaft are currently considered by Air Force, NASA and industry for a variety of applications.
 - L<10 cm, W< 1 kg, and P< 10 W.
 - Need for micropropulsion.
 - Plasma microthrusters introduce an additional complexity in their analysis due to the overlap of electrodynamic and gasdynamic scales.

Physical Processes in a micro-PPT

•Gas Discharge Processes

•Teflon Ablation

•Magnetogasdynamic Acceleration

> •Coupling with External Circuit

Gas Microflows: Typical Applications

The Continuum Hypothesis

- How small should a volume of fluid be so that we can assign it *mean* properties?
- At what scales will the statistical fluctuations be significant?
- Are the low-pressure rarefied gas flows dynamically similar to the gas micro-flows?

The Continuum Hypothesis

LIQUIDS: Nano-Scale Behavior

MD Simulations (Koplik & Banavar, ARFM 1995)

Density fluctuations across a nano-channel.

Layering of Lennard-Jones molecules near a smooth surface.

- •3D periodic channel 51.30x29.7x25.65 (molecular units)
 •27,000 number of atoms
- •2,592 atoms of each wall (FCC lattice type)
- •*1 atom = 1 unit*

The Continuum Hypothesis

Volume of fluid to which instrument responds

Туре	Force	Motion	Structure	statistics
	(molec)	(d_0)	(molec)	
Solid	Strong	<<1	ordered	quantum
Liquid	Medium	O(1)	Semi-order	quantum+ classical
gas	weak	>>1	disordered	classical

Slip Length in Complex Liquids

strong nonlinear response?

<u>Question:</u> At high shear rates, is the liquid behavior near the wall non-Newtonian?

Physical Challenges of Micro-Scale Transport

• Gas Flows

. . .

- Compressibility
- Rarefaction
 - Slip
 - Transition
 - Free Molecular
 - Thermally Induced Motion
- Surface & Roughness
- Viscous Heating
- Incomplete Similitude

Micro Flows: Fundamentals & Simulation

Karniadakis & Beskok, Springer, New York, 2001 ISBN 0-387-95324-8

- Liquid Flows
 - Wetting
 - Adsorption
 - Slip
 - Electrokinetics
 - Polarity
 - Coulomb & van der Waals Forces
 - Capillary Forces
 - Roughness

. . .

Constitutive Laws, Boundary Conditions, Surface, Interface and Body Forces

Numerical Modeling Challenges

- Multi Physical Phenomenon (Thermal, Fluidic, Mechanical, Biological, Chemical, Electrical)
- Multi Scale (Atomistic, Continuum)
- Complex Geometry

Numerical Simulation Strategies

Scientific Simulations:

- Multi Scale
- Simpler Geometry
- Accurate (error < 1 %)

• Low Order Models:

- Multi Physics
- Full Device Simulation
- Lower Accuracy, but Fast (error ~10 %)

- Engineering Simulations:
 - Multi Scale
 - Multi Physics
 - Complex Geometry
 - Accurate (error < 5~10 %)

Challenges of Microscale Research

Small Scale Physics

- Governing Equations Breakdown
 - Constitutive Laws
 - Boundary Conditions
- Microscopic Effects
 - Dominance of Surface Forces
 - Coulomb Forces
 - Van der Waals Forces
 - Capillary Forces
 - Importance of Molecular Structure

Detection & Experimental Verification

- Micro Particle Image Velocimetry
- Molecular Fluorescence Velocimetry

Numerical Modeling Methods

Experimental Limitations

•Micro-Particle-Image-Velocimetry (Meinhart et al.)

•30 x 300 microns channel•Resolution: 450 nm in the wall-normal

Overlapped windowsSpecialied interrogation algorithms

Prototype Flows

- Pressure-Driven Flows
 - Poieseuille flow
- Shear-Driven Flows
 - Couette flow
 - Cavity flow
- Squeezed Film Lubrication
 - Reynolds equation
- Electrokinetically-Driven Flows
 - Dielectrophoresis
- Thermal Creep
 - Knudsen compressors
- Surface-Tension-Driven Flows
 - routing of droplets

FUTURE

•Microfluidics:

The path and link to nanotechnology • The wet circuit \rightarrow liquid circuit + element

•Fluidic Self Assembly – Massively Parallel VLSI-like, programmable fluidic networks with logic

•Fluids with more than Viscosity – MOEMS

•Complex Fluids

- •Magnetorheological fluids
- •Magnetic (high-frequency) microfluidics
- •Dynamic reconfiguration, use \mathbf{E} to change properties
- •Wall-less fluidics/interfaces (Bebe, Whitesides)
- •Smart dust Biomimetic sensors

Sandia nanospheres

