Topics

- Full-systems MEMS modeling
- Flow Solver-NEKTAR
- Chaotic Advection
- Stochastic Modeling

(Mikuchenko & Mayaram, 2000)

Coupled Circuit/Device Simulator

Micro Device Concepts and Simulation Based Verification: Micro-Pump

H/P Finite Element Method with Arbitrary Lagrangian Eulerian Formulation

Conceptual Design and Simulation of a Micro-Pump

Conceptual Design and Simulation of a Micro-Pump (3-D Simulation)

SPICE-NEKTAR Coupling Direct Coupling: Simulator Interaction

Microfluidic System Model

Time Stepping Scheme

- Fluid solver is called from SPICE
- The time step for SPICE < time step for fluid solver
- Fluid solver specifies the next synchronization time point
- Results: the number of fluid solver calls is the same as that of standalone fluid solver

Simulation Results

Simulation Results

Statistics SPICE / Nektar **Total iterations** 7234 / 800 **Transient timepoints** 3567 / 800 **Accepted** timepoints 3562 / 800 **Total Analysis Time** 0.43s / 5min (PII - 300MHz)

Nεκταr Capabilities

* The only high-order code for complex geometries

Spectral/hp Elements

- Efficient discretization complex geometries
- Standard finite element meshes used
- Global spectral accuracy
- Resolution increased by increasing P or element number

Karniadakis & Sherwin, Spectral/hp Element Methods for CFD, Oxford University Press, 1999.

Method/Expansion Bases

Spectral/hp Element Methods for CFD Karniadakis & Sherwin, Oxford University Press, 1999

Variable Polynomial Order on Hybrid Elements

MPI/OpenMP NEKTAR

•Exponential accuracy at sublinear cost using Threads

NEKTAR-ALE Formulation

- ALE = Arbitrary Lagrangian-Eulerian
- Introduces an "arbitrary" vertex velocity into the variational formulation
- Lagrangian at the structure boundary
- Eulerian on the domain boundary
- Seek a mesh velocity algorithm which
 - produces a smoothly varying mesh velocity
 - computationally efficient

Graph Theory Algorithm

The ALE Grid Velocity Algorithm

Graph Theory: Force Directed Method in Velocity Space Fast Analog of $\nabla \bullet (\kappa \nabla Ug) = 0$ Using Incomplete Iteration

Convergence with Skewed Elements

Traditional Mesh Movement Algorithm

Graph Theory Based Algorithm

NEKTAR-ALE CODE

- Non-Newtonian Micro-Fluids in Deforming Geometries
- Graph Theory Approach

G-S Karamanos, R.M. Kirby and G.E. Karniadakis, Brown University

G-S Karamanos, R.M. Kirby and G.E. Kamiadakis

Micro Device Concepts and Simulation Based Verification: The Micro Heat Spreader

- h : channel height
- l : channel length
- a : membrane oscillation amplitude
- L : membrane length
- $\boldsymbol{\omega}$: membrane oscillation frequency

CFD Based Design & Validation: Micro Heat Spreader

Micro Heat Spreaders: Reciprocating Flow Forced Convection

Micro Heat Spreaders, a Concept Verification

- Very high heat flux removal $(68 W/cm^2)$
- Transient Control

Dimensional Analysis

- Re & Pr are the only parameters.
- Simulations are done for
 - Re = 2π
 - Pr = 1 (~ air) & Pr = 10 (~ water)
- ΔT is a floating parameter.

Nondimensional Temperature Distribution on the Surface of the MHS

Pure Conduction

Re = 2π , **Pr** = **1 Snapshots**

 $Re = 2\pi$, Pr = 10 Snapshots

Micro Heat-Spreaders

- <u>Closed-loop single-phase</u> micro-fluidic systems.
- Actuated electrostatically.
- Based on <u>unsteady</u> forced convection in micro-channels.
- Achieve very high heat flux removal rates.
- Enable <u>active closed loop control</u> strategies.
- Are <u>MEMS</u> devices.
- Can be integrated to microchip design & fabrication.

•Heat dissipation to surrounding via the side walls with larger surface area enables conventional cooling strategies.

Chaotic Advection in a Peristaltic Micro-Mixer

Peristaltic Micro Mixer, Kinetic Energy

Peristaltic Micro Mixer, tracing an initially horizontal interface

Modeling Uncertainty

- Stochastically-excited structures
- Boundary conditions, geometry, properties
- Sensitivity/failure analysis
- Gaussian and non-Gaussian processes
- Polynomial Chaos vs. Monte Carlo
- Stochastic spectral/hp element methods

Uncertainties in MEMS

- Anisotropy in mechanical properties
- Polycrystalline silicon random orientation/shapes of crystal grains
- First PhD (Mirfendereski, Berkeley'95) shows COV of 3% in response of microbeams and 6% in frequency of lateral micro-resonators

**Wiener, 1938; Ghanem & Spanos, 1991)*

Representation of a Random Process

$$T(\mathbf{x}, t; \theta) = \sum_{i=0}^{\infty} T_i(\mathbf{x}, t) \Psi_i(\xi(\theta))$$

•
$$T(\mathbf{x}, t; \theta)$$
 - Random process

- (**x**, t) Spatial/temporal dimension
- θ Random dimension
- $T_i(\mathbf{x}, t)$ Deterministic coefficients
- $\Psi_i(\xi(\theta))$ *Generalized* Polynomial Chaos

Generalized Polynomial Chaos

$$T(\mathbf{x},t;\theta) = \sum_{j=0}^{\infty} T_j(\mathbf{x},t) \Psi_j(\boldsymbol{\xi}(\theta))$$

- Polynomials of random variable $\xi(\theta)$
- Orthogonality : $\langle \Psi_{i}\Psi_{j}\rangle = \langle \Psi_{i}^{2}\rangle\delta_{ij}$ $\langle f(\xi)g(\xi)\rangle = \int f(\xi)g(\xi)W(\xi)d\xi \text{ or } \langle f(\xi)g(\xi)\rangle = \sum_{i}f(\xi_{i})g(\xi_{i})w(\xi_{i})$
- Weight function determines underlying random variable (*not necessarily Gaussian*)
- Complete basis from *Askey scheme*
- Each set of basis converges in L² sense

Orthogonal Polynomials and Probability Distributions

- Continuous Cases:
 - *Hermite* Polynomials \longleftrightarrow *Gaussian* Distribution

(special case: exponential distribution)

- Jacobi Polynomials
- *Legendre* Polynomials ← → *Uniform* Distribution
- ←→ *Beta* Distribution

Orthogonal Polynomials and Probability Distributions

- Discrete Cases :
 - *Charlier* Polynomials *Poisson* Distribution

 - *Meixner* Polynomials $\leftarrow \rightarrow$ *Pascal* Distribution

Hypergeometric distribution

Applications : ODE with Uncertain Coefficients

• Equation :
$$\frac{dy}{dt} = -ky, \quad y\Big|_{t=0} = \hat{y}.$$

k is the decaying coefficient with given probability distribution.

• Chaos expansion :

$$y(x,t;\theta) = \sum_{i=0}^{P} y_i(x,t) \Psi_i(\xi(\theta)), \quad k(\theta) = \sum_{i=0}^{P} k_i \Psi_i(\xi(\theta))$$

• Galerkin projection :

$$\frac{\mathrm{d}\mathbf{y}_{i}}{\mathrm{d}t} = -\frac{1}{\left\langle \Psi_{k}^{2} \right\rangle} \sum_{i=0}^{P} \sum_{j=0}^{P} \left\langle \Psi_{i} \Psi_{j} \Psi_{k} \right\rangle \mathbf{k}_{i} \mathbf{y}_{j}, \quad \mathbf{k} = 0, 1, 2, \dots, P$$

- The Chaos will be chosen according to the distribution of *k*.
- L^{inf} error :

$$\frac{\left|\overline{y}_{chaos}(t) - \overline{y}_{exact}(t)\right|}{\overline{y}_{exact}(t)}$$

Discrete Distribution : <u>Poisson</u> (Charlier-Chaos)

Solution of expansion modes : $\lambda = 1$

Convergence w.r.t. expansion terms

- 4th-order Charlier-Chaos expansion
- Exponential convergence rate

Channel flow with Random Boundary Conditions

Exact solution (uniform BCs):

$$u(y) = (1 - y^{2}) + \frac{1 - y}{2}\sigma_{1}\xi_{1} + \frac{1 + y}{2}\sigma_{2}\xi_{2}$$

- Two-dimensional PC expansion
- Gaussian inputs :

$$\sigma_1 = 2\%, \sigma_2 = 1\%$$

Solution profile across the channel

Non-uniform <a>Exponential Random BC

• Exponential correlation

 $C(x_1, x_2) = \sigma^2 e^{-|x_1 - x_2|/b}$

• Stochastic input: $\sigma = 0.1$

- 2D K-L expansion
- 4th-order Laguerre-Chaos expansion
- 15-term expansion

Non-Uniform Uncertainty at Wall

Heat Transfer in a Microcavity: Noisy B.C. versus Noisy Conductivity

