
Topics

• Full-systems MEMS modeling
• Flow Solver-NEKTAR
• Chaotic Advection
• Stochastic Modeling



(Mikuchenko & Mayaram, 2000)
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SPICE-NEKTAR Coupling











Nεκταr Capabilities
• Open-
Source

• C++
• MPI

* The only high-order code for complex geometries



Spectral/hp Elements

• Efficient discretization
complex geometries

• Standard finite
element meshes used

• Global spectral
accuracy

• Resolution increased
by increasing P or
element number

Karniadakis & Sherwin, Spectral/hp Element Methods for CFD,
Oxford University Press, 1999.



Method/Expansion Bases

Coordinate system
Spectral/hp Element Methods for CFD
Karniadakis & Sherwin,
Oxford University Press, 1999



Variable Polynomial Order on Hybrid Elements



MPI/OpenMP NEKTAR

•Exponential accuracy at sublinear cost using Threads



NEKTAR-ALE Formulation

• ALE = Arbitrary Lagrangian-Eulerian
• Introduces an “arbitrary” vertex velocity

into the variational formulation
• Lagrangian at the structure boundary
• Eulerian on the domain boundary
• Seek a mesh velocity algorithm which

– produces a smoothly varying mesh velocity
– computationally efficient



Graph Theory Algorithm



Convergence with Skewed Elements



Time Per
Timestep

Time to Compute
Mesh Velocity

Time Per
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Time to Compute
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3.416 s .04753 s 3.044 s 0.02 s
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Heat Source



CFD Based Design & Validation: Micro Heat SpreaderCFD Based Design & Validation: Micro Heat Spreader

Micro Heat Spreaders: Reciprocating Flow Forced ConvectionMicro Heat Spreaders: Reciprocating Flow Forced Convection



Micro Heat Spreaders, a Concept VerificationMicro Heat Spreaders, a Concept Verification

• Very high heat flux removal 
• Transient Control 

( )2/68 cmW



Dimensional AnalysisDimensional Analysis

• Re  &  Pr are the only parameters.

• Simulations are done for

• Re = 2π

• Pr = 1 (~ air)   &   Pr = 10 (~ water)

• ∆T is a floating parameter.



Steady Pure Conduction

Nondimensional Temperature Distribution on theNondimensional Temperature Distribution on the
Surface of the MHSSurface of the MHS

Five slices during a cycle

Five slices during a cycle

      Re = 2π    Pr = 1

     Re = 2π    Pr = 10



Pure ConductionPure Conduction



Re = 2Re = 2ππ , Pr =1     Snapshots , Pr =1     Snapshots



Re = 2Re = 2ππ , Pr =10     Snapshots , Pr =10     Snapshots



Micro Heat-SpreadersMicro Heat-Spreaders

• Closed-loop single-phase micro-fluidic systems.

• Actuated electrostatically.

• Based on unsteady forced convection in micro-channels.

• Achieve very high heat flux removal rates.

• Enable active closed loop control strategies.

• Are MEMS devices.

• Can be integrated to microchip design & fabrication.

•Heat dissipation to surrounding via the side walls with      larger surface area
enables conventional cooling strategies.



Peristaltic Micro Mixer, tracing an initially horizontal interface

Peristaltic Micro Mixer, Kinetic Energy

Chaotic Advection in a Peristaltic Micro-Mixer  Chaotic Advection in a Peristaltic Micro-Mixer  



Modeling Uncertainty

• Stochastically-excited structures
• Boundary conditions, geometry, properties
• Sensitivity/failure analysis
• Gaussian and non-Gaussian processes
• Polynomial Chaos vs. Monte Carlo
• Stochastic spectral/hp element methods



Uncertainties in MEMS

• Anisotropy in mechanical properties
• Polycrystalline silicon – random

orientation/shapes of crystal grains
• First PhD (Mirfendereski, Berkeley’95)

shows COV of 3% in response of micro-
beams and 6% in frequency of lateral
micro-resonators



Representation of a Random Process
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Generalized Polynomial Chaos 

∑
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Orthogonal Polynomials and Probability Distributions

 Continuous Cases:
• Hermite Polynomials              Gaussian Distribution
• Laguerre Polynomials             Gamma Distribution
                                               (special case: exponential distribution)
• Jacobi Polynomials                 Beta Distribution
• Legendre Polynomials            Uniform Distribution

Gaussian distribution Gamma distribution Beta distribution



Orthogonal Polynomials and Probability Distributions

 Discrete Cases :
• Charlier Polynomials               Poisson Distribution
• Krawtchouk Polynomials        Binomial Distribution
• Hahn Polynomials                   Hypergeometric Distribution
• Meixner Polynomials              Pascal Distribution

Poisson distribution Binomial distribution Hypergeometric distribution



Applications : ODE with Uncertain Coefficients
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k is the decaying coefficient with given probability distribution.

• Equation :

• Chaos expansion :
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• Galerkin projection :

• The Chaos will be chosen according to the distribution of k.

• Linf error : )t(y
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Discrete Distribution : Poisson (Charlier-Chaos)

• dy/dt = - k y,  y(t=0)=1

• k is a Poisson random variable :

Convergence w.r.t. expansion terms

• 4th-order Charlier-Chaos expansion

• Exponential convergence rate
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Solution of expansion modes : 1=λ



Channel flow with Random Boundary Conditions
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Exact solution (uniform BCs):

%1   %,2 21 =σ=σ

• Two-dimensional PC expansion

Solution profile across the channel

• Gaussian inputs :



Non-uniform Exponential Random BC

Umean along centerline Vmean along centerline

• Exponential correlation
b/xx2

21
21e)x,x(C −−σ=

1.0=σ• Stochastic input:

• 2D K-L expansion

• 4th-order Laguerre-Chaos expansion

• 15-term expansion



General Roughness -- Mean SolutionNon-Uniform Uncertainty at Wall



Heat Transfer in a Microcavity:
Noisy B.C. versus Noisy Conductivity

* Stochastic B.C. * Stochastic conductivity

spectrum

KL-1 KL-2


