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Introduction: a promising device

µ(max) ~ 2,000-
20,000 cm2/V-s

Ion ~ 10 µΑ 
at VDD~1V

McEuen et al., to be published.

Analytical Q(VG) and C(VG)

Analytical ID(VG,VD)

Understand device physics

Explore design approaches
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Modeled Device Structures
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Gate Electrostatics:Approach
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J. Guo et al., submitted for publication

Semiclassical model

2) CNT potential vs. gate vltage



3

5NSF Short Course, UIUC, May 22, 2002

Gate Electrostatics:Cins
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Gate Electrostatics: Cins:
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Gate Electrostatics:CCNT
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Gate Electrostatics: C-V Reflects 1D DOS



5

9NSF Short Course, UIUC, May 22, 2002

Gate Electrostatics: Validation by a detailed model 

(this work)

Schrodinger

Poisson

Gate
1nm

(13,0) CNT

Basis: pZ orbits of C (detailed)
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I-V Characteristics: Approach

J. Guo, M. Lundstrom, and S. Datta, Appl. Phys. Letts., 80, pp. 3192 (2002).
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K. Natori, J. Appl. Phys. Letts., 76, pp. 4879 (1994).

Assume the same QCNT(VG)
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Coaxially gated: tins=1nm, K =4

VG=0.4V

0.3V

0.2V

Ballistic CNTFET performance projection (upper limit)

I-V Characteristics:
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Quantized Channel Conductance:

Coaxially gated: tins=1nm, 

KT 300=

VVatE GF 3
~ =

1st subband

2nd subband

VVatE GF 1
~ =

4=κ
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The Injection Velocity and Subband Occupancy

Coaxially gated: tins=1nm, 

VVG 2@ =

1st subband

2nd subband

VVG 4.0=VD=1V

SFE ,

4=κ
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Comparison to silicon MOSFETs

• The electrostatic design is 
important for large Ion at low 
power supply voltage.

“Equivalent” MOSFET

Planar CNTFET

Coaxial CNTFET
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I-V characteristics: Validation by a detailed model 

this work
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Conclusions:

1D analytical theory of silicon MOSFETs was adapted 
to CNTFETs and verified by detailed simulations.

C-V of nanotube MIS capacitors is influenced by 1D 
DOS

Quantized channel conductance due to 1D nature

Careful electrostatic design will be important for 
CNTFETs


