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Abstract – The device physics of nanoscale MOSFETs is explored by numerical simulations of a
model transistor.  The physics of charge control, source velocity saturation due to thermal injection,
and scattering in ultra-small devices are examined.  The results show that the essential physics of
nanoscale MOSFETs can be understood in terms of a conceptually simple scattering model.
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I.  INTRODUCTION

Scaling MOSFETs to their limits is a key challenge now faced by the semiconductor industry.

Physically detailed simulations which capture the off-equilibrium transport (e.g. velocity overshoot)

[1, 2, 3] and the quantum mechanical effects that occur in these devices [4] can complement

experimental work in addressing these challenges.  Also needed, however, is a simple conceptual

view of the nanoscale transistor — to help interpret detailed simulations and experiments and to

guide experimental work.  Such a model has recently been outlined [5, 6].  Our objective in this

paper is to assess and discuss this simple  view through the use of numerical simulations.  As a

vehicle for these studies, we use a model 10nm double-gate MOSFET, but we expect the

conclusions to apply to nanoscale MOSFET’s more generally.  We use a semiclassical approach,

because recent work shows that MOSFET’s operate essentially classically down to channel lengths

of about 10nm [7, 8].  We also restrict our attention to the steady-state current vs. voltage

characteristics, which are relevant to the high-speed operation of digital circuits [9].

Figure 1 summarizes the essential physical picture that will be discussed in this paper.  We

adopt  a transmission view of the device [10, 6] in which carriers are injected into the channel from a

thermal equilibrium reservoir (the source), across a potential energy barrier whose height is

modulated by the gate voltage, into the channel, which is defined to begin at the top of the barrier.

The beginning of the channel is populated by carriers injected from the thermal equilibrium source
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(and, under low drain bias, from the thermal equilibrium drain as well).  The density of carriers at

the top of the barrier is controlled by MOS electrostatics so that the charge in the semiconductor

balances that in the gate.  Under equilibrium conditions (VDS = 0V) in an electrostatically well-

tempered device, equilibrium, 1D MOS electrostatics apply at this point, so the inversion layer

density can be computed as for a 1D MOS capacitor.  Above threshold, therefore,

Q q n C V Vi s ox GS T( ) ( ) ( ),0 0= ≈ − (1)

where Cox  is the effective oxide capacitance (as influenced by quantum mechanical confinement,

polysilicon depletion, etc. [9]).  We will show that a type of “gradual channel approximation”

applies at this point, so that the inversion layer density at the source end of the channel remains

nearly equal to its equilibrium value even when a drain bias is applied.

Some fraction of the carriers injected from the source into the channel backscatter and return to
the source; others flow out the drain and comprise the steady-state drain current, I

D
.  (For a high

drain bias, carriers injected from the drain need not be considered.)  Assuming current continuity, ID

may be evaluated at the beginning of the channel where the carrier density is known from MOS

electrostatics to find

I WQ W C V VD i ox GS T= ≈ −( ) ( ) ( ) ( )0 0 0υ υ , (2)

where <υ(0)> is the average velocity of carriers at the beginning of the channel.  The maximum

value of <υ(0)> is approximately the equilibrium uni-directional thermal velocity, υT , because the

positive velocity carriers at the beginning of the channel were injected from the thermal equilibrium

source [5].  Backscattering from the channel determines how close to this upper limit the device

operates.  Under high drain bias, the average velocity at the beginning of the channel can be related

to a channel backscattering coefficient, r, according to [5]

υ υ( )0
1
1

≈ −
+







r

r T , (3)

where 0 < r < 1 is a backscattering coefficient in the spirit of McKelvey [11, 12].  (Note that when

(3) is inserted into (2), we get a result presented earlier [5].  Also note that the backscattering

coefficient, r, depends on the scattering physics and on the self-consistent potential within the

channel, so r is a function of the gate and drain biases.)  The importance of the source velocity is, of
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course,  well-known (e.g. [13]); we relate it to a channel backscattering coefficient in order to clarify

the source velocity limit.

Because of the high electric field and strong velocity overshoot, carrier transport through the

drain end of the channel is rapid.  As a result, the D.C. current is controlled by how rapidly carriers

are transported across a short low-field region near the beginning of the channel.  Carriers diffuse

across the beginning of the channel in much the same way that they diffuse across the base of a

bipolar transistor, and they are collected by the high-field portion of the channel much as in the

collector of a bipolar transistor [14].  We refer to the critical, low field region near the beginning of

the channel as the “kT-layer” because it is roughly the distance over which the channel potential

drops by kBT/q.  Scattering within the kT-layer limits the steady-state drain current; scattering near

the drain end of the channel has only an indirect effect.  This is analogous to the well-known Bethe

condition for thermionic emission in a forward-biased metal-semiconductor diode [15], except that

in a MOSFET the flow of carriers is down the potential barrier rather than up.  For well-designed

MOSFET’s, the length of the kT-layer (which is set by 2D electrostatics as influenced by velocity

overshoot within the channel [16]) is about one-mean-free path, which means that transport across

this layer is quasi-ballistic.

In the following sections, we use detailed, numerical simulations to confirm this basic physical

picture and to expand upon it.  Note that in presenting the basic, physical picture, we have made

several simplifying assumptions.  For example, we assumed high drain bias, although a full range

expression can be developed [17].  We also assumed non-degenerate carrier statistics; degeneracy

increases the average thermal velocity, causes the average velocities of the positive and negative

halves of the distribution at the top of the barrier to differ, and influences  the length of the critical

region (i.e. the criterion of a kT/q potential drop must be generalized for degenerate statistics).

Some of these issues will be discussed further in this paper, but our intent is to present the basic,

physical picture in simple form, so a full discussion must be deferred to later publications.  The

following specific issues will be addressed in this paper:

1) injection velocity limits at the source end of the channel
2) the off-equilibrium distribution function at the source
3) charge control in a nanoscale MOSFET
4) the role of scattering and the generalized Bethe condition for a MOSFET
5) the role of velocity overshoot in the channel
6) the magnitude of the quantum contact resistance in nanoscale MOSFETs.
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To examine these effects, we numerically simulated the simple, model MOSFET shown in Fig. 2.

The device is a double gate (DG) MOSFET with an exceptionally thin (1.5 nm) Si body, a 1.5nm

SiO2 gate oxide, and LG = 10nm.  A hypothetical mid-gap workfunction gate material was assumed.

The device is assumed to be wide in the z-direction (out of the page), so that many transverse modes

are occupied.  Also note that the idealized metal contacts in Fig. 2 represent the actual contacts

where dissipative scattering would dominate and maintain a thermal equilibrium carrier distribution.

(Real contacts would also flare out to reduce series resistance).

Our simulations treated electrostatics two-dimensionally, but transport is essentially one-

dimensional in this geometry, so a simplified, 1D transport model was used [8].  Quantum

confinement effects in the direction normal to the Si film were treated in the one subband

approximation.  Several different approaches were used to describe transport along the channel.  In

the ballistic case, both a semiclassical (Boltzmann) solution and a quantum solution using a

Green’s function approach [18] were used.  Quantum transport in the presence of phase breaking

scattering was treated using a simple generalization of the Büttiker probe concept [18] (we verified

that this approach captured the essential features of scattering observed in semiclassical

approaches).  Conventional drift-diffusion and energy transport models were also available.

The simplified device geometry and the ultra-thin body help to clarify the device physics to be

explored in this study, but the conclusions of this study are born out by full 2D simulations of

thicker body devices.   Those results, however, are clouded by multi-subband conduction and

stronger two dimensional electrostatics (e.g. DIBL).  Although the model device is a double gate

MOSFET, we expect that the general conclusions of the study will apply to bulk MOSFET’s as

well.  Figure 3 shows the computed self-consistent conduction subband profiles vs. position under

a variety of bias conditions.  (The program used to perform these simulations is available [19], and

more extensive simulations of the same device have been reported in [8].)

II.  The BALLISTIC MOSFET

The physical picture presented in Sec. I is most easily examined in the ballistic limit, and since

present-day devices operate relatively close to this limit [20, 21], there is also a practical motivation

to examine the ballistic MOSFET.  For this purpose, we numerically simulated the model

MOSFET of Fig. 2 using a semiclassical, ballistic transport model coupled to a two-dimensional

solution to Poisson’s equation [22].
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A.  Source Velocity Limits in a Ballistic Nano-MOSFET

In Sec. I, we argued that the average carrier velocity at the beginning of the channel was the

equilibrium, uni-directional thermal velocity.  Assuming that only one subband is occupied, it can be

shown that [23, 24]
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where η ε= −( ) /E k TF B1 , and the factor in brackets accounts for carrier degeneracy and

approaches unity for a nondegenerate gas.  (More generally, when multiple subbands are occupied,

Schrödinger-Poisson simulations are needed [24].)  Figure 4 shows the equilibrium υ̃T  vs. nS

characteristic computed from (4).  Note that below threshold, ̃ .υ υT T≈ ≈ ×1 2 107 cm/s, but that

above threshold, the carriers become degenerate, and the thermal injection velocity increases.

Finally, note that the degenerate thermal injection velocity is the average velocity of all the carriers,

while the Fermi velocity, υF, refers to the velocity of carriers at the Fermi level.  The two are related

by

υ̃ η
π

υT F→ ∞( ) = 





4
3

(5)

We assert that the equilibrium, uni-directional thermal velocity is the maximum velocity that can

be observed at the source end of the channel.  The maximum source velocity exceeds the saturated

velocity, but the origin of this high velocity is much different than that of the conventional velocity

overshoot that occurs in steep electric field gradients [25].  These high source velocities will,

however, not be achieved unless the velocity within the channel is even higher (e.g. unless strong

velocity overshoot within the channel).

The simulations displayed in Figs. 5 and 6 confirm the assertions made in the previous

paragraph.  Figure 5 is a plot of <υ(0)> vs. drain bias as obtained by simulating the ballistic device

of Fig. 2.  (The location, x = 0, is taken as the top of the source-to-channel barrier, which changes

with bias.)  Under low bias, the average velocity is nearly zero because the negative velocities of

carriers injected from the drain nearly cancel the positive velocities of those injected from the

source.  When the drain bias exceeds a few kBT/q, then the negative velocity carriers injected from

the drain are suppressed, and the average velocity saturates at the equilibrium thermal

velocity,υ̃T .    Figure 6 shows the average velocity vs. position profiles at different drain to source
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voltages.  As expected in this ballistic transistor, the velocity near the drain increases without limit

(band structure limits have not been included).  Under high drain voltages, however, the velocity at

the top of the barrier saturates at the value displayed in Fig. 4.  These results confirm the

assumption made in Sec. I and earlier [5].  They show that velocity saturation occurs in a ballistic

MOSFET, but it is the velocity at the top of the barrier that saturates at the thermal limit as opposed

to the high-field velocity saturation in a bulk semiconductor which occurs because of scattering.

In the ballistic MOSFET, a special kind of equilibrium exists; k-states are in equilibrium with

the contact from which they were populated [10].  The overall carrier distribution, however, can have

a highly off-equilibrium shape.  For example, under high drain bias, the carrier distribution at x = 0

assumes a hemi-Fermi-Dirac, shape.  This is suggested by the dashed line in Fig. 5, which shows

the ratio, J-/J+, of the negative flux to the positive flux vs. drain bias.  This ratio approaches zero

when the drain bias is large enough to suppress the injection of negative-velocity carriers from the

drain. The net velocity then saturates at υT ≈ ×1 8 107. cm/s, which is 5% higher than the

equilibrium thermal injection velocity shown in Fig. 4 (the difference is due to two-dimensional

electrostatics).  These effects are shown directly in Fig. 7, which plots the computed ballistic

distribution functions at the top of the barrier for the four different voltages noted in Fig. 5.  For

low VDS the velocity distribution is nearly symmetrical about υx = 0.  (In a long channel device, this

symmetry is a result of carrier scattering, but in the ballistic MOSFET, the positively-directed

carriers are injected from the source and the negatively-directed carriers from the drain.)  As the

drain bias increases, the magnitude of the negative-velocity component decreases.  Note, however,

that although the overall velocity distribution has a highly nonequilibrium shape, each half is in

equilibrium with its respective contact.

B.  Charge Control in a Ballistic nano-MOSFET

We turn now to the issue of charge control in the ballistic nanotransistor.  Because the carrier

distribution at the top of the barrier approaches a hemi-Fermi-Dirac distribution under high drain

bias, it might be expected that under high bias, nS(0) would be one-half of its equilibrium value, (1).

Figure 8, however, shows that this is not the case — nS(0) is approximately  constant with drain

bias.  This occurs because MOS electrostatics demands that the charge on the gate balance that in

the semiconductor, so that as VDS increases, the conduction band is pushed down, more electrons

are injected from the source, and ns(0) is maintained approximately at the value given by (1).  (This

barrier lowering  is also seen in Fig. 3d.)  The plot of nS(0) vs. VDS in Fig. 8 confirms that in a

“well-tempered MOSFET,” which is designed to electrostatically isolate the drain from the source

[26], MOS electrostatics maintains the inversion layer charge at the beginning of the channel at an
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approximately constant value.  Although the velocity distribution is highly nonequilibrium in shape,

the charge density is maintained at approximately its equilibrium value.  The same effect has also

been observed in 2D Monte Carlo simulations [27].

C.  The Channel Resistance of a Ballistic nano-MOSFET

Because the physics of the ballistic MOSFET is rather simple, a compact model is readily

developed.  Using the approach of [24] and assuming single subband occupation, one can show

[17] that
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where Qi(VGS) is the inversion layer charge (approximately 2Cox(VGS - VT) above threshold) and

UDS is VDS normalized to kBT/q.  (Under nondegenerate conditions, the Fermi-Dirac integrals are

replaced by exponentials, and under high drain bias, the term in brackets approaches unity.)  Under
high gate bias Qi ≈ 2Cox(VGS - VT), so (6) reverts to (2) with υ υ( ) ˜0 = T .

Conventionally, a MOSFET’s channel resistance is proportional to its channel length, but there

is also a ballistic component independent of channel length that may be important in nanoscale

MOSFET’s [20].  For low drain bias, (6) gives the ballistic conductance as
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As discussed in [24], under fully degenerate conditions, (7) reduces to G M e hDS = ( )2 2 , where M

is the number of occupied transverse modes.

In Fig. 9 we compare the ballistic I-V characteristics as computed by direct numerical simulation

and by the analytical expression, (6).  The agreement is good – except for the output conductance, a

two-dimensional effect not treated by the 1D analytical model.  The channel resistance, RDS, of this

nano-MOSFET, as computed from the slope of the simulated characteristic in Fig. 9 or from (7), is

about 60 Ω-µm.  For comparison, we also show the simulated IDS vs. VDS characteristic for the

transistor including a simple model for scattering (to be discussed in the next section).  With

scattering included, the channel resistance increases to about 200  Ω-µm.  This value includes the

conventional channel resistance, which is proportional to channel length, L, and the quantum contact
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resistance, which is given by (7) and is independent of L.  Note that the ballistic channel resistance

is about 30% of the total channel resistance.  Depending on the channel length and inversion layer

mobility, this length-independent component to RDS may become important.  

III.  SCATTERING

In a ballistic MOSFET, the positive-velocity carriers at the top of the barrier are injected from

the source and negative-velocity carriers from the drain, but scattering mixes these two streams. The

result is that the carrier distribution at the top of the barrier does not approach a hemi-Fermi-Dirac

distribution under high drain bias;  <υ(0)> is less than ̃υT  under on-current conditions.  When VDS

>> kBT/q, so that all negative-velocity carriers at the top of the barrier arise from backscattering, (3)

applies.  Well-designed MOSFETs currently operate with r ≈ 0 4.  [20], so from (3) <υ(0)> is about

one-third of its limit, but devices with r ≈ 0 2.  have been reported [21].  Figure 9 illustrates how

scattering reduces device performance with respect to the ballistic limit; the channel resistance

increases to several times the ballistic resistance, the on-current is reduced to about one-half of the

ballistic limit, the drain saturation voltage increases, and the output  conductance increases.

In this section, we examine two issues in detail:  1) charge control in the presence of scattering,

and 2) the issue of why the channel backscattering coefficient is sensitive to backscattering  very

near the source end of the channel and relatively insensitive to scattering deep within the channel.

For these studies, we use a Green’s function method with a simple, Büttiker-probe model of

scattering, which we tested to ensure that it captures the essential physics of scattering in a

MOSFET.  As shown in [8], device operation is essentially classical (except for the strong quantum

confinement  effects); the quantum transport model was used because it was available and had been

extensively tested on this device [8].  The broadening parameter, η, in the scattering model (see

[18]) was set to 30 meV, which results in an inversion layer mobility of 100 cm2/V-s for a long

channel device.  See Datta  for a discussion of the formalism and solution methods [18].

A.  Charge Control and Velocity Saturation in the Presence of Scattering

Figure 10, which compares the self-consistent conduction subband profiles under on-current

conditions with and without scattering, shows that the source-to-channel barrier is higher in the

presence of scattering.  This can be understood in terms of the self-consistent electrostatics of the

MOSFET.  For a given gate voltage, we expect the same inversion layer charge density at the top of

the barrier – in the presence or absence of scattering.  For the ballistic case, the carrier distribution

is a hemi-Fermi-Dirac  distribution, and the barrier height is established  to provide the necessary

inversion layer density.  In the presence of scattering, the carrier distribution function at the top of
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the barrier is more nearly symmetric in υx; so a higher barrier results in the same inversion layer

density.

Figure 11 displays the simulated average velocity and carrier density at the top of the barrier vs.

VDS with a high gate voltage applied.  The corresponding results for the ballistic case (from Figs. 5

and 8) are also displayed.  Note first of all, that the inversion layer density at the top of the barrier,

is nearly equal to its equilibrium value in the presence or absence of scattering (this is a simple

consequence of self-consistent MOS electrostatics and is relatively insensitive to the specific

transport model).  Note also that the maximum velocity at the top of the barrier does not saturate as

clearly as for the ballistic case and that it is well below the thermal injection limit.  Still, one can

identify a drain saturation voltage of VDSAT ≈ 0.3V, which is greater than the ≈ 0.2V in the ballistic

case.  It’s clear that the mechanism for velocity saturation at the top of the barrier is different in the

case of scattering and that it does not involve suppression of carrier injection from the drain as in

the ballistic case.

In the presence of scattering, velocity saturation at the beginning of the channel occurs because

of the self-consistent electrostatics in the device.  As shown in Fig. 3d, for VDS greater than about

0.3V, most of the additional applied drain voltage is dropped across the drain end of the channel,

and conditions near the source are relatively constant.  From (3), one can estimate  that r ≈ 0.3 at

VDS ≈ VDSAT.  Below VDSAT, the electric field near the source varies directly with VDS, but above

VDSAT, the source electric field increases slowly with increases in VDS.  The slow rise in <υ(0)> with

VDS beyond the saturation voltage occurs because of the slow increase in electric field, which slowly

decreases r.  Since IDS is the product of <υ(0)> and Qi(0), which is approximately constant, these

observations also explain the IDS vs. VDS characteristic  displayed in Fig. 9.

B.  Carrier Backscattering in a nano-MOSFET

Given the central role of the backscattering coefficient, r, is the operation of a MOSFET, we

should examine the physics that controls it.  The backscattering coefficient is determined by both

carrier scattering and by the potential drop within the channel.  Figure 12 schematically illustrates a

stream of carriers injected into the channel from the quasi-equilibrium point at the top of the barrier.

The fraction that backscatters and returns to the source is defined as r.  If backscattering occurs

beyond a certain critical distance (denoted as   l  in Fig. 12), then it is unlikely that the carrier will

have sufficient longitudinal energy to surmount the barrier and exit into the source.  More likely, it

will be reflected by the channel potential, perhaps undergo several scattering/electric field

reflections, and exit from the drain.  These scattering events will increase the carrier density in the
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channel and through Poisson’s equation, the self-consistent electric field throughout the entire

channel, but they do not contribute directly to r as we have defined it.  To understand why this
occurs, one must realize that Fig. 12 is a plot of longitudinal energy (m x

*υ 2 2 ) not total energy

( m*υ 2 2 ).  For the typical case of a wide MOSFET, there is a continuous distribution of transverse

modes.  Only a small fraction of the carriers will backscatter directly  at the source and possess

sufficient longitudinal energy to surmount the barrier.  Note that this argument applies to both

elastic and inelastic scattering.  Finally, note that if this were a quantum wire MOSFET in which the

only degree of freedom was the x-axis, then r would be sensitive to backscattering through out the

entire channel.

From the argument presented above, we conclude that the steady-state drain current is limited

only by backscattering that  occurs  within a critical distance,   l , from the beginning of the channel.

The existence of such a critical distance was first noted by Price, who observed in performing

Monte Carlo simulations of carrier transport down a potential barrier, that if carriers penetrated only

a very short distance into the potential drop, then even if they did scatter, they were unlikely to

return to their injection point at the top of the barrier [28].  Price used a detailed balance argument

to relate his “down the potential” simulations to  “up the potential” transport .  Recognizing the

close connection between transport up or down the barrier, we can make use of the well-known

Bethe  condition for a metal-semiconductor junction to establish   l .  Bethe showed that currents

near the thermionic (i.e. ballistic) limit occurs when the first kBT/q of potential drop at the junction,

occurs over a distance much less than the mean-free-path. Since this critical distance (known as the

kBT layer [15]) is a small fraction of the barrier width, the thermionic emission typically applies.

From Price’s detailed balance argument, we recognize a close connection between transport with

and against the barrier, which suggests that the critical layer for the MOSFET is also the distance

over which the first kBT/q of channel potential drops, typically a small fraction of the channel length.  

By identifying the critical distance,   l , with the kBT layer, the expression for the

backscattering coefficient for a field free semiconductor slab of length, L, [Dat99, Lun00],

r
L

L
=

+ λ
(8)

can be generalized to [5]

  
r =

+
l

l λ
. (9)
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Since the critical backscattering occurs in a region where the carriers have gained little energy from
the channel field, the appropriate mean-free-path to use in (9) is λ o , the near-equilibrium mean-

free-path for backscattering, which can be obtained from the measured mobility of a long-channel

MOSFET.  A comparison of the simple expression, (9), with a rigorous  evaluation of r by direct

Monte Carlo simulation, shows good agreement [5].  Note also that the key result, (9), need not be

postulated; it can be derived by scattering theory (see Chapter 9 of [25] for an introduction to

semiclassical scattering theory).

Calculating the channel backscattering coefficient [even under the simplifying assumptions that

lead to (9)] is non-trivial, but a simple argument explains why the importance of backscattering

decreases from source to the drain.  Consider a charge carrier injected from the source into the
channel with momentum p0 = ( , )p pxo zo , as shown in Fig. 13.  (Because of the quantum

confinement in the y-direction, the electron has two degrees of freedom.)  If this injected carrier

gains an energy, ∆E, by acceleration in the longitudinal electric field, then its momentum is p1 ,

where p p m E pxo zo1
2 2 22= +( ) +∆ .  Assume that the electron then backscatters elastically to

momentum, ′p1 (see Fig. 13).  If the backscattered electron propagates ballistically back to the

beginning of the channel, what is the probability that it can cross the barrier, and, therefore,

contribute to r?   To do so, requires sufficient longitudinal kinetic energy,

′ = ≥p

m

p

m
Ex1

2 2
2

2 2
1

* * cos θ ∆ . (10)

Equation (10) defines a maximum  angle, θmax, for backscattered carriers that contribute to r,

θmax cos=
+







−1

0

∆
∆

E

E E
. (11)

(See Fig. 13).  Finally, the fraction of the scattered carriers that contribute to r is the fraction with
θ θ< max or

F

E

E E
= =

+






−

θ
π π
max

cos 1

0

∆
∆

. (12)

Figure 14 is a plot of F vs. ∆E E0 ; it shows that when the carriers have traveled down the potential

drop by an amount  equal to the injection energy, E0 (kBT for a non-degenerate, 2D carrier gas), then
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even if they do scatter, only 50% of them have a chance to contribute to r.  As carriers travel further

down the potential drop, the probability  that  a scattering event will contribute to the channel

backscattering coefficient, r, steadily decreases.

The simple argument presented above explains why scattering near the source controls the

backscattering coefficient, r.  In practice, the critical region is even more weighted towards the

beginning of the channel than suggested by Fig. 14.  There are two reasons; first, as the

backscattered carrier  propagates towards the source, it may be scattered again, and second, as the

injected carrier penetrates deeper into the channel, its energy increases  and so does the probability

of scattering by phonon emission, which lowers its energy and makes it less likely to return to the

source.

IV.  DISCUSSION

Transport in a nanoscale MOSFET is nonlocal;  the average carrier velocity does not depend on

the local electric field.  A mobility can be precisely defined, but since it depends on an essentially

unknown distribution function, it is not a useful parameter [29].  Mobility is, however, well-defined

parameter in a long channel MOSFET.  From the near-equilibrium mobility, which is readily

measured in a long-channel MOSFET, the near-equilibrium mean-free-path for backscattering,

which is the important transport parameter for a nanoscale MOSFET, can be determined.  In this

sense, one can say that mobility is a meaningful parameter for nanoscale MOSFETs.  (There are, of

course, complicating factors that have to be dealt with, such as the use of halo implants which can

result in different channel dopings for long and short-channel devices and, therefore, different

mobilities.)

Shockley used scattering theory  to relate the near-equilibrium diffusion coefficient, Do, to the

mean-free-path for backscattering as [12, 11]

Do T o= υ λ 2 . (13)

(See Chapter 9 in [25] for an alternative derivation of this result.)  Since near-equilibrium

conditions prevail, the Einstein relation may be invoked and the result is a simple relation between

the near-equilibrium mobility and the near-equilibrium mean-free-path for backscattering.  Finally,

we note that (13) assumes nondegenerate carrier statistics, but this assumption fails above

threshold.  In the more general case, the relation between λo and µo becomes more complex.  Note

also, that defining the width of the critical region from the kBT/q potential drop also assumes
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nondegenerate carrier statistics.  Our use of nondegenerate statistics establishes the central ideas

simply.

We have been careful to refer to λo  as the mean-free-path for backscattering, but we have not

defined  it precisely.  The relation of the mean-free-path for backscattering that we use and the

mean-free-path itself is analogous to the relation between the momentum relaxation time, τm, and the

mean time between scattering events, τ [25].  This mean-free-path can be precisely define in terms

of the transition rate per unit time for scattering from state k to k’  S(k, k’ ) as [30]

1

0λ υo xk k

S

x z

≡ ′( )
>
∑ k k

k
,

( )' ',

, (14)

where we have assumed nondegenerate carrier statistics.  

For the past decade, much of the modeling and simulation work has focussed on accurately

describing velocity overshoot within the channel, but in the view presented in this paper, velocity

overshoot is considered to play an indirect role.  It can, however, have significant effects on devices

[16].  We should note first that to achieve a velocity at the source that approaches the thermal limit,

the velocity within the channel must be even higher.  When the source velocity is well below the

thermal limit, it is possible for a velocity saturated simulation to get the velocity at the source correct,

but it will erroneously clamp the velocity near the drain at an unphysically low value.  The inversion

layer density in the channel will be too high near the drain, which will lead to errors in the self-

consistent channel potential.  These carriers will screen the source from charges on the drain, so we

should expect a unphysically low output conductance from a velocity-saturated model.   These

effects are shown in Fig. 15.  Figure 15a compares the channel velocity vs. position profiles under

on-current conditions for a velocity-saturated drift-diffusion transport model and for the Green’s

function method.  We observe that the Green’s function method captures the velocity overshoot that

occurs near the drain.  Figure 15b compares the simulated IDS vs. VDS characteristics for the two

transport models.  Note that the output conductance is considerably higher when velocity overshoot

is included.  Bude has observed that the effect can be as much as 40% for nanoscale bulk

MOSFETs [16].
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V.  SUMMARY

A conceptual view of the essential physics of carrier transport in nanoscale MOS transistors

was presented and confirmed by numerical simulation.  Key results are:  i) that the source velocity

saturates and that its limit is set by thermal injection, ii)  that the carrier density at the top of the

source to channel barrier is fixed by MOS electrostatics (in an electrostatically well-designed

MOSFET), iii)  that scattering in a very short region near the beginning of the channel limits the on-

current, and iv) that the role of off-equilibrium velocity overshoot  is largely an indirect one based

on its influence on the self-consistent potential throughout the channel.  The results show that the

physics that determines the steady-state current of a MOSFET can be understood in terms of a

simple model.  This view of nanoscale MOSFET device physics should provide a useful guide for

experimental and theoretical work, for developing compact models, and for interpreting detailed

simulations.
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LIST OF FIGURES

Fig. 1 The conduction subband edge vs. position from the source to the drain of a nanoscale
MOSFET under high gate and drain bias.  Also shown are the thermal injection fluxes
from the source and drain.

Fig. 2 Structure of the L = 10nm double-gate MOSFET with tox = 1.5 nm, tSi = 1.5 nm, and
VDD = 0.6V.  This device was simulated with a 2D solution to Poisson’s equation
coupled to a 1D transport solution [8].

Fig. 3 The computed self-consistent conduction subband edge vs. position for DG MOSFET
of Fig. 2.  (a) VDS = 0.05V and VGS from 0.0V to 0.6V.  (b)  VDS = 0.6V and VGS from
0.0V to 0.6V, (c) VGS = 0.05V and VDS from 0.0V to 0.6V, and (d) VGS = 0.6V and VDS
from 0.0V to 0.6V

Fig. 4 The equilibrium thermal injection velocity, υ̃T vs. inversion layer density, nS for the DG
SOI MOSFET as evaluated from (4).  Also shown is υF, the Fermi velocity.

Fig. 5 The average velocity at the beginning of the channel vs. VDS for the device of Fig. 2

under ballistic conditions.  For the gate voltage used nS ≈ ×5 1012cm-2.  Also shown is
the ratio, J J− +  , (negatively-directed flux to the positively-directed flux), which is a
measure of the anisotropy of the distribution (dashed line).  Note that the velocity at the
beginning of the channel saturates at the thermal equilibrium injection velocity as given
by (4) when the negative half of the distribution is suppressed J-/J+ = 0).  The four large
dots identify the four voltages examined in Fig. 7.

Fig. 6 The average velocity vs. position for the device of Fig. 2 under ballistic conditions. For
the gate voltage used nS ≈ ×5 1012cm-2.  Results for several different drain voltages are
shown.

Fig. 7 The computed, ballistic velocity distributions at the top of the source to channel barrier
under (a) VDS = 0.0V, (b) VDS = 0.05V, (c) VDS = 0.1V, (d) VDS = 0.6V.  For each case,
VGS = 0.6V.

Fig. 8 Illustration of the charge control mechanism for the device of Fig. 2 under ballistic
conditions.  Solid line:  the carrier density at the beginning of the channel vs. VDS for the
device.  Dashed line:  The source to channel barrier height  vs. VDS.  Figure 5 showed
that as the ratio, J-/J+,  decreases from 1 to 0, the average velocity increased.  This figure
shows that nS(0) remains essentially constant and that the source-to-channel barrier
height decreases with increasing VDS to maintain a constant carrier density at the top of
the barrier.  (The small increase can be attributed to DIBL.)

Fig. 9 Comparison of the simulated IDS-VDS characteristics of the ballistic device with the
analytical model of (6).  Solid line:  simulated ballistic IDS vs. VDS for agate voltage of
0.6V.  Dashed  line with symbols:  analytical IDS vs. VDS.  Solid line with symbols:
simulated  IDS vs. VDS including the effects of scattering.  (An inversion layer mobility of
100 cm2/V-s was assumed.)
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Fig. 10 Illustration of the effects of scattering on the self-consistent potential within the device
of Fig. 2 under a bias of VDS = VGS = 0.6V.  Solid line:  the lowest conduction subband
energy vs. position in the presence of scattering.  Dashed line:  the same plot in the
absence of scattering.  The that the key difference is a slightly lower source-to-channel
energy barrier in the presence of scattering.

Fig. 11 Illustration of the effects of scattering on the average velocity and charge at the top of
the barrier for the device  of Fig. 2 with VGS = 0.6V.  (a) The carrier density at the
beginning of the channel vs. VDS (right vertical axis).  (b) The average velocity at the
beginning of the channel vs. VDS (left vertical axis).  The solid lines include scattering,
and the dashed lines are the corresponding results for ballistic conditions  (from Figs. 5
and 8).

Fig. 12 Illustration of carrier backscattering in a MOSFET under high drain bias.  If a carrier
backscatters beyond a critical distance,   l , from the beginning of the channel, then it is
likely to exit from the drain and unlikely  to return to the source.

Fig. 13 Illustration of backscattering and how it contributes to r.  A 2D confined carrier is injected
into the source with momentum p0.  It propagates  down the potential drop towards the
drain gaining an energy ∆E with corresponding momentum, p1.  It then scatters to
momentum p1’  (since we assume elastic scattering, p1 = p1’ ).  Only carriers within the
shaded region have sufficient longitudinal momentum to cross the barrier and enter the
source.

Fig. 14 The fraction of the scattered electrons that contribute to the channel backscattering
coefficient, r (i.e. the shaded region in Fig. 13).  The curve is evaluated from (12) assuming
that a carrier gains an energy, ∆E, before iotropically scattering, then propagates back to the
barrier without scattering again.

Fig. 15a Average velocity vs. position at VGS = VDS = 0.6V for the 10 nm DG SOI-MOSFET.  
Two different transport models are compared.  Solid line:  Green’s function approach
that captures velocity overshoot.  Dashed line:  Drift-diffusion with velocity saturation.

Fig. 15b IDS vs. VDS for VGS = 0.6V for the 10 nm DG-SOI MOSFET.  Two different transport
models are compared.  Solid line:  Green’s function approach that captures velocity
overshoot.  Dashed line:  Drift-diffusion with velocity saturation.
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Figure 2
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Figure 3
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Figure 7
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Figure 8
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Figure 14
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Figure 15a
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Figure 15b
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