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Course Objectives

Understand how MEMS are designed
Understand some of the computational techniques that go into 
the development of MEMS simulation tools
Specific examples: electrostatic MEMS, microfluidics
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Outline

Some MEMS Examples
Mixed-Domain Simulation of electrostatic MEMS and 
microfluidics

Techniques for interior problems (e.g. FEM)
Techniques for exterior problems (e.g. BEM)
Algorithms
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Pressure Sensor

Applications
Biomedical (e.g. blood pressure)
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Accelerometer
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Micro Mirror

Applications
High performance projection displays
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Outline

Some MEMS Examples
Mixed-Domain Simulation of electrostatic MEMS and 
microfluidics

Techniques for interior problems (e.g. FEM)
Techniques for exterior problems (e.g. BEM)
Algorithms

Dynamic Analysis
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Is Electrostatics a good idea?
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Scaling Laws

Useful to understand where macro-theories start requiring 
corrections with the aim of better understanding the physical 
consequences of downscaling
Develop an understanding of how systems are likely to behave 
when they are downsized
Examples

By reducing the size of a device, the structural stiffness generally 
increases relative to inertially imposed loads
The mass or weight scales as l3, while the surface tension scales as l as 
the system size becomes smaller
More difficult to empty liquids from a capillary compared to spilling 
coffee from a cup because of increased surface tension in a capillary
Heat loss is proportional to l2; Heat generation is proportional to l3; 
As animals get smaller, a greater percentage of their intake is 
required to balance heat loss; Insects are cold blooded
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Scaling in Electrostatics

L2Electrostatic force
LSurface Tension
L3Gravity

L3Mass

LVelocity

LDistance

L3Torque
L3Power
L2Muscle force

L0Time

L1/4van der Waals

L2Friction

h

w

d

Consider a capacitor

The electrostatic P.E. stored in 
a capacitor is:

d
hwVE br
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εε=

=bV electrical breakdown voltage
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Scaling in Electrostatics

3
1

2110

, l
l

llllE me →=

Assume       scales linearly with d (the gap)bV

The maximum energy stored in the capacitor scales 
as L3

If L decreases by a factor of 10, the stored energy in 
the capacitor decreases by a factor of 1000

Electrostatic Force
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Electrostatic force scales as L2; This is an advantage 
because mass and inertial forces scale as L3; The 
electrostatic force gains over inertial forces as the size of 
the system decreases
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Scaling Laws: Vertical Bracket Notation
Different possible forces can be written as

















=
4

3

2

1

l
l
l
l

F
case where the force scales as L1

case where the force scales as L2

[ ][ ] 33 −− === FF lll
m
Fa Flll

F
mxt −⋅⋅== 32

34
00

11
ll

ll
Vt

xF
V
P

F

F

−
=














=

→
















=
4

3

2

1

l
l
l
l

F
















=
−

−

1

0

1

2

l
l
l
l

a
















=

1
2

1

2/3

l
l

l
t

















=
−

−

0.2

5.0

1

5.2

0
l
l
l
l

V
P



University of Illinois at Urbana-ChampaignBeckman InstituteComputational MEMS/NEMS

Scaling Laws: Remarks

Even in the worst case when F = L4, the time required to 
perform a task remains constant when the system is scaled 
down
Under more favorable force scaling (e.g. F = L2), the time 
required decreases as L (a system 10 times smaller can 
perform an operation 10 times faster i.e. small things tend to 
be quick)

For Electrostatics 2ll F =
0.1

0

11 −− === l
V
Pltla

When the force scales as F = L2, the power per unit volume 
scales as L-1 => When the scale decreases by a factor of 10, the 
power that can be generated per unit volume increases by a 
factor of 10
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Outline

Some MEMS Examples
Mixed-Domain Simulation of electrostatic MEMS and 
microfluidics

Techniques for interior problems (e.g. FEM)
Techniques for exterior problems (e.g. BEM)
Algorithms
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Elastostatics

Finite-difference methods
Finite-element methods
Meshless methods
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Key steps in FEM:

•Construct a weak or a variational form of the 
problem

•Obtain an approximate solution of the variational
equations through the use of finite element 
functions

Finite Element Method: Introduction
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• Trial function }q)1(u,Hu|u{ 1 =∈=δ

•Test function (or weighting functions) }0)1(w,Hw|w{ 1 =∈=ν

• Strong form

0dx)fu(w
1

0
xx,∫ =+

• Integrate by parts 0dxfwdxuwwu
1

0

1

0
x,x,

1
0x, ∫ ∫ =+−

1x0     0fu xx, ≤≤=+

B.C. Dirichlet            q)1(u =

B.C. Neumann       h)0(u x, =−

(S)

• Derive weak form

Weak form
h)0(wdxfwdxuw

1

0

1

0
x,x,∫ ∫ += (w) ( ) ( )WS ⇔

1-D Example: Strong and Weak Forms

0 1
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•Notations: ∫=
1

0
x,x, dxuw)u,w(a ∫=

1

0

dxfw)f,w(

h)0(w)f,w()u,w(a +=•The weak form can be rewritten as

∑
=

=
N

1A
AA

h CNw ∑
=

=
N

1B
BB

h dNu

• Galerkin Approximation Method

hhu δ∈

hhw ν∈

h)0(w)f,w()u,w(a hhhh +=Galerkin form

( ) hC0Nf,CNdN,CNa
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Apply the 
interpolation

1-D Example: Galerkin Form



University of Illinois at Urbana-ChampaignBeckman InstituteComputational MEMS/NEMS

( ) 0h0NfdNddNNC
N

1B
AABx,Bx,A

N

1A
A =









−Ω−Ω∑∫ ∫∑
=

Ω Ω
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CA’s are arbitrary, so

( )∑ ∫ ∫
=

Ω Ω
+Ω=Ω

N

1B
AABx,Bx,A h0NfdNddNN for A=1,2, …, N

∑
=

=
N

1B
ABAB FdK for A=1,2, …, N

where

∫Ω Ω= dNNK x,Bx,AAB ( )h0NdfNF AAA +Ω= ∫Ω

The matrix form FdK = (M)

1-D Example: Matrix Form
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Remarks:

• K is symmetric;

• For any given problem, ( ) ( ) ( ) ( )MGWS ⇔≈⇔

1-D Example: Matrix Form
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[ ]1AA x,x +Domain [ ]21 ,ξξ

global local

Nodes { }1AA x,x +
{ }21 ,ξξ

{ }1AA d,d +
{ }21 d,dDegree of freedom

{ }1AA N,N + { }21 N,NShape functions

Interpolation 
function

( ) ( )
( ) 1A1A

AA
h

dxN
dxNxu

++

+= ( ) ( )
( ) 22

11
h

dN
dNu

ξ+
ξ=ξ

For a linear finite element

Local/Element Point of View
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• Local Shape function

where

• Derivative of the Shape function

Mapping
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• Global stiffness

• Force vector

local stiffness

Matrix Assembly
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Divergence theorem Γ=Ω ∫∫ ΓΩ
dnfdf

ii,

∫∫∫ ΩΓΩ
Ω−Γ=Ω dfgdngfgdf i,ii,Integration by parts

Heat Conduction

Strong form: given ℜ→Γℜ→Γℜ→Ω hg :h,:g,:f

find ℜ→Ω:u such that

hii

g

i,i

 onhnq

 ongu
 infq

Γ=−

Γ=

Ω=

where 
j,iji uKq −= Kij are the conductivities

FEM: Multidimensional Problems
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( ) 0dfqw i,i =Ω−∫Ω

0dfwdqwdnwq ii,ii =Ω−Ω−Γ ∫∫∫ ΩΩΓ

∫∫∫ ΓΩΩ
Γ+Ω=Ω−

h

whddfwdqw ii,

g on   0w Γ=

Notation: ( ) ∫Ω Ω= duKwu,wa j,iji,

( ) ∫Ω Ω= wfdf,w ( ) ∫ΓΓ Γ=
h

dhwh,w

( ) ( ) ( )
h

h,wf,wu,wa Γ+=

( ) ( ) ( )
h

h,wf,wu,wa hhhh
Γ+=

• Weak form

• Galerkin form

Apply the property of the weighting function

Weak Form: Heat Conduction Problem
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FdK =• Matrix form

( )BAAB N,NaK =

( ) ( )Γ+= h,Nf,NF AAA

Substitute  the 
interpolation

where

Heat Conduction Problem: Matrix Form
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Strong form: given fi, gi and hi, find ui such that

hijij

giii

ij,ij

 onhn

 ongu

 in0f

Γ=σ

Γ=

Ω=+σ

The stress is related to the strain by Hooke’s law

klijklij c ε=σ

( )j,iu
2

uu i,jj,i
ij =

+
=ε

( ) 0dfwdnwdwdfw iijijiijj,iij,iji =Ω+Γσ+Ωσ−=Ω+σ ∫∫∫∫ ΩΓΩΩ

( ) ∑ ∫∫∫
=

ΓΩΩ





 Γ+Ω=Ωσ

nsd

1i
iiiiij dhwdfwdj,iw

Strain tensor

• Weak form

FEM for Elastostatics
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( ) ijijj,i j,iww σ=σ

( ) [ ]jiwjiww ji ,,, +=
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( ) ijijj,i j,iww σ=σWhy

where

rewrite

since

and

FEM for Elastostatics
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Notation: ( ) ( ) ( )∫Ω Ω= dl,kucj,iwu,wa ijkl

( ) ∫Ω Ω= dfwf,w ii ( ) ∑ ∫
=

ΓΓ 




 Γ=

nsd

1i
ii

hi

dhwh,w

( ) ( ) ( ) vw all for    h,wf,wu,wa ∈+= Γ

( ) ( ) ( )Γ+= h,wf,wu,wa hhhh

• Weak form

• Galerkin form

s)dof'  3( 1,2,3i    dNu
n

1A
iAA

h
i == ∑

=

FdK =
• Matrix form

FEM for Elastostatics
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Bilinear Quadrilateral Element
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• Shape functions

Property of the shape function

Shape Functions
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Numerical Integration
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Gaussian Quadrature Rules in 2-D
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Transformation function
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Density transformation

Cauchy stress

Velocity

Finite Deformation Elastodynamics
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[ ] BP 02

2

0 ρρ +=
∂
∂ Div

t
ϕ

• Boundary conditions:

EcS = FFc T= [ ]IcE −=
2
1

SFP =where

Strong form:

[ ]
[ ]TΓhnP
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ihiAiA

g
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,0
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       g 

=

=ϕ

• Initial conditions:
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=

     V 
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0

0

0
0

Vt

t ϕϕ

Elastodynamics: Governing Equations
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( ) [ ] ( )( )[ ] 0:, 0 =Γ⋅−⋅−= ∫∫∫ ΓΩΩ h

ddVdVDGradG hBES ηηϕϕηηϕ ρ

( ) 0int =− extFF d

• Weak form:

• Galerkin form:

Where 

( ) dVT∫Ω= Sd
)

BF int ∫∫ ΓΩ
Γ⋅+⋅=

h

ddVext NhNB0ρF

Nonlinear equations:

( ) [ ] [ ] 0:, 0 =Γ⋅−⋅−= ∫∫∫ ΓΩΩ h

ddVdVDGradG hhhhhhh hBS ηηϕηηϕ ρ

FEM for Elastodynamics
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The scalar problem: r(d) is a scalar nonlinear function of d. Find        such thatd

( ) 0=dr

Possibilities:

d

r

d

r

d

r

d

one unique solution several solutions no solutions

1d 2d

Solution of Nonlinear Systems: Newton Methods
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( ) ( ) ( ) ( )
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• Solution strategy:
Guess  a “good” d0 close to the solution;

d0d

1d

2d

r

• Geometric interpretation

Newton’s Method
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( )

( )
( )

for end
if end

else

if

econvergenc untilfor

  

'

  

   
 ,2,1 

0

1

0

ddd
dr
drd

dd

toldr
i

dd
i

ii

i

i

i

i

i

∆+=

−=∆

=

<

=
=

=

+

KK

The error at the i-th iteration is given by ( ) dde i
i −=

( ) ( ) kii eCe ≤+1 if then we say the algorithm converges with order k.

Newton’s method has quadratic convergence, i.e. k=2

Algorithm: Newton’s Method



University of Illinois at Urbana-ChampaignBeckman InstituteComputational MEMS/NEMS

Advantages of Newton’s method

•Optimal (quadratic) convergence 
close to solution

Disadvantages of Newton’s method

•Poor or no convergence far away 
from the solution;

•Computation of K(di) is very 
expensive in the general 
multidimensional case (K (di)  is a 
matrix).

Algorithm: modified Newton’s method

( )

( )
( )

end
if end 

else

if

econvergenc untilfor 

 

'

  

   
 ,2,1 

0

1

0

0

ddd
dr
drd

dd

toldr
i
dd

i

ii

i

i

i

i

∆+=

−=∆

=

<

=
=

=

+

KK

Modified Newton’s Method
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( )dR

Similar to the scalar case
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Let             be a n-dimensional vector valued nonlinear function of the n-
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• Directional or Frechet derivative

( )0dK T is called the tangent stiffness matrix

Newton Method: Multidimensional Case
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Remarks:

• The load step is needed since the 
method might not converge if the 
entire load is applied at once. Instead 
the load is applied incrementally. 
Each increment is converged before 
the next step is applied. 

• Likewise one might have to apply the 
“g” b.c.’s incrementally. This method 
is called “displacement control”.

• In practice, the terminology “Newton-
Raphson method”is often used to 
denote algorithms in which a new left 
hand size matrix is formed for each 
iteration. If KT is not updated in each 
iteration, but kept frozen for a couple 
of iterations, the term “modified 
Newton” method is used. 

( )

( )( ) ( ) ( )

( )( )
( ) ( ) ( )

( ) ( )
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Newton-Raphson Method: Algorithm
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Outline

Some MEMS Examples
Mixed-Domain Simulation of electrostatic MEMS and 
microfluidics

Techniques for interior problems (e.g. FEM)
Techniques for exterior problems (e.g. BEM)
Algorithms
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BEM - Introduction

What is Boundary Element Method ?
Boundary discretization only 
Integral based method

Approaches available for solving boundary integral 
equations 

BEM based on Collocation
BEM based on Galerkin

Analysis of a turbine blade using FEM and BEM
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Comparison of FEM and BEM

BEM FEM 

Fewer packages availableLot of commercial 
packages available

Unsymmetric, dense and 
smaller matrices

Symmetric, sparse and 
large matrices 

Boundary mesh (1D/2D)Domain mesh 
(2D/3D)

Global approach, Integral 
based

Local approach
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Table 1 

ConstantNeumann 
b.c.

Dirichlet 
b.c.

Scalar 
function

Problems

ResistivityElectric 
current

Electro-
potential

Electric 
conduction 

PermittivityElectric flowField potential Electrostatic

Stream functionIdeal fluid 
flow

Warping 
function

Elastic 
torsion

Thermal 
conductivity

Heat flowTemperatureHeat 
Transfer
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Boundary Integral Formulation 

Laplace equation represents many problems in engineering 
(Table 1)

v+-

Interior problem Exterior problem

0T2 =∇ 02 =φ∇inside outside
Temperature ‘T’ known on the surface Potential     known on the surfaceφ
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Boundary Integral Formulation

BEM is based on the Second Theorem of Green

Problem definition

Ω

uΓ

n

x

)x(p2 =φ∇ Ω∈x

Governing equation:

Dirichlet boundary condition (b.c):

Neumann boundary condition (b.c):

)y()y( φ=φ uy Γ∈

)y(q
n

)x(

yx

=
∂
φ∂

=

ny Γ∈

nΓ




≠
=

Poisson;0
Laplace;0

)x(p

y

Definition of the problem
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Boundary Integral Formulation 

Derivation of  BIE:
Multiplying                       with       and integrating over 

( ) 0dp2 =Ωφ−φ∇∫Ω
∗

Integrating by parts we get (2D case),

( ) 0dpdn =+Ωφ+φ∇⋅φ∇−Γ⋅φ∇φ ∫∫ Ω

∗∗

Γ

∗

∗φ Ω)p( 2 −φ∇

Integrating by parts the second integral we get,

( ) 0dpdndn 2 =Ωφ−φ∇φ+Γ⋅φ∇φ−Γ⋅φ∇φ ∫∫∫ Ω

∗∗

Γ

∗

Γ

∗

( )1. . .

where n is the outward normal to the boundary Γ
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Boundary Integral Formulation 

Therefore, Equation (1) can be written as, 

is the Fundamental Solution of Laplace equation. ∗φ

( ) ( ) 0d
n

d
n

dpdp 22 =Γ
∂
φ∂

φ−Γ
∂
φ∂

φ+Ωφ−φ∇φ=Ωφ−φ∇ ∫∫∫∫ Γ

∗

Γ

∗

Ω

∗∗

Ω

∗

( ) ( )[ ] Γ







∂
φ∂

φ−
∂
φ∂

φ=Ωφφ∇−φφ∇⇒ ∫∫ Γ

∗
∗

Ω

∗∗ d
nn

d22 ( )2. . .
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Boundary Integral Formulation

Fundamental Solution        for Laplace equation :
satisfies Laplace equation
represents field generated by a concentrated unit charge acting at a 

point ‘i’
effect of this charge is propagated from ‘i’ to infinity

∗φ

0)j,i(2 =δ+φ∇ ∗ =δ )j,i( Dirac Delta function

Multiplying with      and integrating we get,φ

idjid φδφφφ −=Ω−=Ω∇ ∫∫ ΩΩ

∗ )),(()( 2

Therefore,

Γφ






∂
φ∂

=Γ







∂
φ∂

φ+φ ∫∫ Γ

∗

Γ

∗

d
n

d
n

i

( )3. . .
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Boundary Integral Formulation

Fundamental 
Solution

Equation

Convection/decay 
Equation

Diffusion Equation

Wave Equation

Helmholtz

Laplace

Fundamental Solutions :  One Dimensional Equations
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Boundary Integral Formulation

Fundamental 
Solution

Equation
Fundamental Solutions :  Two Dimensional Equations

Navier’s Equation

Plate Equation

Wave Equation

D’Arcy
(orthotropic case)

Helmholtz

Laplace 00
2 =δ+φ∇ ∗

00
22 =δ+φλ+φ∇ ∗∗

0
dx
dk

dx
dk 02

2

2

22
1

2

1 =δ+
φ

+
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c 02
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Boundary Integral Formulation

Fundamental 
Solution

Equation
Fundamental Solutions :  Three Dimensional Equations

Navier’s Equation
(Isotropic 
homogenous)

Wave Equation

D’Arcy

Helmholtz

Laplace
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Boundary Integral Formulation

What happens when point ‘i’ is on     ?Γ

ε=r

Boundary 
surface

Boundary 
point ‘i’

Surface

Γ

εΓ

3D case - Hemisphere around point ‘i’ 2D case - Semicircle around point ‘i’

Boundary 
point ‘i’

ε=r

Boundary 
curve Γ

Boundary 
curve εΓ

Augment the boundary with 
Hemisphere of radius       in 3D
Semicircle of radius       in 2D

ε
ε
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Boundary Integral Formulation

Consider equation (3) before any boundary conditions have been applied,

- RHS integral easy to deal (lower order singularity),
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Boundary Integral Formulation

Therefore,

Γ






∂
φ∂

φ=Γ
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for smooth boundaries

. . .

,
2
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π
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c for corner points
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Boundary with corner point
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Boundary Integral Formulation (contd.)

Exterior Problem - Electrostatics,

A system of ‘Nc’’ ideal 
conductors

n

n−

∞R

jΓ

∞Γ=Γref

02 =φ∇ outside

Potential     known on the surface of each conductorφ

For 3D Electrostatic problem the boundary integral equation is,

∑ ∫
=

Γ

∗ Γφ
∂
φ∂

=φ
c

j

N

1j

i d
n
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Boundary Element Method
Equation (4) is discretized to find system of equations

Boundary is divided into N elements

Discretized form of equation (3) at point ‘i’ is given as,

Γφ
∂
φ∂

=Γ
∂
φ∂

φ+φ ∑ ∫∑ ∫
=

Γ

∗

=
Γ

∗

d
n

d
n

c
N

1j

N

1j

i

jj

Constant elements               Linear elements              Quadratic elements
Nodes Element
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Boundary Element Method

In matrix form,

[ ] }{ [ ]








∂
Φ∂

=Φ
n

GH

where Hij and Gij are the influence coefficients given as,

‘i’  is the source point (where fundamental solution is acting) 
‘j’  is the field point (any other nodes on the boundary)
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Boundary Element Method
Constant Elements:

and        are assumed to be constant over each element 
The value of      and         is assumed equal to that at mid-element node

The influence coefficients, Hij and Gij are given as,

∫Γ
∗

Γ
∂
φ∂

+δ=
j

d
n

)j,i(
2
1H ij

Γφ= ∫Γ
∗dG

j

ij

‘i’  is the source point (where fundamental solution is acting) 
‘j’  is the field point (any other nodes on the boundary)

φ

∗φφ
∗φ

Node ‘i’

Element ‘j’
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Boundary Element Method

Evaluation of integrals:
Hij and Gij can be calculated numerically, for the case 

For the case          , Hij and Gij are evaluated analytically
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Boundary Element Method
Linear Elements:

and       are assumed to vary linearly over each element 

Nodal value of 
Nodal value of 

[ ]
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21 NN
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Node ‘i’
Element ‘j’
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Boundary Element Method

Putting all the unknowns on LHS we get,

[ ] } }{{ FxA =

Note: A is a dense matrix

Dense Matrix
A

(N x N) V
ec

to
r  

x
(N

x
1)

= A
x 

(N
 x

1)

DIRECT
O(N3)

ITERATIVE
O(N2)
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Fast Integral Equation Solver

Matrix-Vector multiplication:  O(N(logN)O(N(logN)22))
Storage:  O(N(logN)O(N(logN)22))

Results : 2-Conductor Problem
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Fast Integral Equation Solver
Results : Mirror Problem

Matrix-Vector multiplication:  O(N(logN)O(N(logN)22))
Storage:  O(N(logN)O(N(logN)22))
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Fast Integral Equation Solver
Results : Comb-Drive Problem

Matrix-Vector multiplication:  O(NlogNO(NlogN))
Storage:  O(NlogNO(NlogN))
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Outline

Some MEMS Examples
Mixed-Domain Simulation of electrostatic MEMS and 
microfluidics

Techniques for interior problems (e.g. FEM)
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Coupled Electromechanical Analysis

We need to self-consistently solve the coupled electrical and 
mechanical equations to compute the equilibrium 
displacements and forces. Three approaches –

Relaxation technique
Full-Newton method
Multi-level Newton method

Solution of elastostatic equations is represented by 

))(( qPRu M=

Solution of electrostatic equations is represented by 

),( VuRq E=
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Relaxation Technique

Simplest black-box approach
Data is passed back and forth between black-box electrostatic 
and elastostatic analysis programs until a converged solution 
is obtained

))(()1( k
M

k qPRu =+

)( k
E

k uRq =
Repeat

Compute

Compute

0;1 == kuk

1+= kk

εε ≤−≤− ++ 11 kkkk qquuUntil
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Relaxation Technique

Advantages
Very quick implementation based on black-boxes
Existing mechanical and electrical solvers can be used

Disadvantages
Fails to converge for strong coupling between electrical and 
mechanical domains
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Multi-Level Newton Algorithm

Matrix-free approaches: Matrix-vector product involving a 
Jacobian and a vector can be computed as

ε
ε )()( uRuuRu

u
R −∆+=∆
∂
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Define a new residual
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Multi-Level Newton Algorithm

),(),( kkkk quRu
qquJ −=





δ
δ

Repeat
solve

0;0;1 === kk quk

1+= kk

εε ≤−≤− ++ 11 kkkk qquuuntil

set uuu kk δ+=+1

qqq kk δ+=+1set

use an iterative solver
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Iterative Solution of Linear Systems

Lets say we need to solve 
Key steps in GMRES algorithm

pPq =

make an initial guess to the solution, 0q
set   k = 0
do   {

compute the residual, kk Pqpr −=

if ,tolrk ≤ return       as the solutionkq
else   {

choose         and          ins'α β
k

k

j

j
j

k rqq βα += ∑
=

+

0

1

to minimize 1+kr
set 1+= kk

}}
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Multi-Level Newton Algorithm
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Multi-Level Newton Algorithm

Advantages
Black box based approach
Superior global convergence

Disadvantages
Can be sensitive to the choice of the matrix-free parameter
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Full-Newton Technique

Represent the mechanical and electrical equations as

0)()(),( int =−= qfufquR ext
M

0)(),( =−= VquPquRE

Let       and        be self-consistent solutionsu q
0),( =quRM
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Let       and        be some initial guess0u 0q
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∂
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Full-Newton Technique

Neglecting h.o.t
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Full Newton Algorithm
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Full Newton Algorithm
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Microfluidics: Gas Flows
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Microfilter properties:
Openings of various shapes
Thickness between 1 and 5µm
Opening size as small as 2nm
High burst pressure achieved

Introduction to Microfilters

Design issues:
Flow profiles
Estimation of flow rate
Dependence of flow rate on:

geometry
surface properties
pressure difference

Rarefaction effects observed due to small
dimensions
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Characteristics of Flows in Micro-Channels

Typical Characteristics:

• Compressible

• High Kn #

• Small Re #

• Small Ma #

• Wide range of  Kn # 

• Reacting

Effects of high Knudsen Number:

• Slip velocity

• Thermal jump

• Strong interaction with walls
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DSMC Flow Chart
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Micro-Filter Elements

1x1 1x5 0.2x1 1x10 0.05x1 0.2x2
hc (µm) 1 1 0.2 1 0.05 0.2
lc (µm) 1 5 1 10 1 2
hp (µm) 5 5 1 5 1 1
lin (µm) 4 6 4 4 4 4
lout (µm) 7 7 5 7 7 5
Kn 0.054 0.054 0.27 0.054 1.1 0.27

hp

lc

hc

lin lout
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1µmX1µm Filter Element

X Velocity Y Velocity

TemperaturePressure
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Knudsen Number and Length Effects

Effect of Kn:
Slip velocity increases 
with Kn

Effect of Length:
As lc/hc increases, 2D 
channel approximation
holds good for smaller Kn

@ y=hc/2

@ x=lc/2
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Effect of Surface Accommodation
1x1 µm filter

Smaller accomodation coefficients:
Strong increase in slip velocity
Temperature drop increases

@ x=lc/2
Velocity

@ y=hc/2
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Flow Rate vs. Pressure Difference

Dependence of flow rate on
pressure is linear 
Qualitative behavior is
captured by 2D channel 
formula + 1st order slip BC
(Arkilic & Breuer, 1997)
Good agreement for large 
lc/hc
Effective length can be used 
for smaller lc/hc
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Conclusions

MEMS design is still an art
Critical issues

Mixed-domain simulation tools
Multiscale approaches
System level modeling tools

Need fast and radically simpler techniques for MEMS 
modeling


