Computational Methods for MEMS

N. R. Aluru
Beckman Institute for Advanced Science and Technology

Thanks to: Xiaozhong Jin
Gang Li
Rui Qiao
Vaishali Shrivastava

Course Objectives

\Rightarrow Understand how MEMS are designed
\Rightarrow Understand some of the computational techniques that go into the development of MEMS simulation tools
\Rightarrow Specific examples: electrostatic MEMS, microfluidics

Outline

\Rightarrow Some MEMS Examples
Mixed-Domain Simulation of electrostatic MEMS and microfluidics
\Rightarrow Techniques for interior problems (e.g. FEM)
\Rightarrow Techniques for exterior problems (e.g. BEM)
\Rightarrow Algorithms

Pressure Sensor

\Rightarrow Applications
\Rightarrow Biomedical (e.g. blood pressure)

Accelerometer

Micro Mirror

\Rightarrow Applications
\Rightarrow High performance projection displays

Outline

\checkmark Some MEMS Examples
Mixed-Domain Simulation of electrostatic MEMS and microfluidics
\Rightarrow Techniques for interior problems (e.g. FEM)
\Rightarrow Techniques for exterior problems (e.g. BEM)
\Rightarrow Algorithms
\Rightarrow Dynamic Analysis

Is Electrostatics a good idea?

Scaling Laws

\Rightarrow Useful to understand where macro-theories start requiring corrections with the aim of better understanding the physical consequences of downscaling
\Rightarrow Develop an understanding of how systems are likely to behave when they are downsized
\Rightarrow Examples

- By reducing the size of a device, the structural stiffness generally increases relative to inertially imposed loads
- The mass or weight scales as l^{3}, while the surface tension scales as 1 as the system size becomes smaller
- More difficult to empty liquids from a capillary compared to spilling coffee from a cup because of increased surface tension in a capillary
\Rightarrow Heat loss is proportional to I^{2}; Heat generation is proportional to l^{3}; As animals get smaller, a greater percentage of their intake is required to balance heat loss; Insects are cold blooded

Scaling in Electrostatics

Distance	L
Velocity	L
Mass	L^{3}
Gravity	L^{3}
Surface Tension	L
Electrostatic force	L^{2}

Consider a capacitor

The electrostatic P.E. stored in a capacitor is: $\boldsymbol{E}_{e, \boldsymbol{m}}=\frac{\varepsilon_{0} \varepsilon_{r} \boldsymbol{h} w V_{b}^{2}}{2 d}$
$\boldsymbol{V}_{\boldsymbol{b}}=$ electrical breakdown voltage

Friction	L^{2}
van der Waals	$\mathrm{L}^{1 / 4}$
Time	L^{0}
Muscle force	L^{2}
Power	L^{3}
Torque	L^{3}

Scaling in Electrostatics

Assume $\boldsymbol{V}_{\boldsymbol{b}}$ scales linearly with d (the gap)

$$
E_{e, m}=\frac{l^{0} l^{1} l^{1} l^{2}}{l^{1}} \rightarrow l^{3}
$$

The maximum energy stored in the capacitor scales as L^{3}

If L decreases by a factor of 10 , the stored energy in the capacitor decreases by a factor of 1000

Electrostatic Force

$$
F_{x}=-\frac{\partial}{\partial x}\left(\frac{1}{2} C V^{2}\right) \quad F_{y}=-\frac{\partial}{\partial y}\left(\frac{1}{2} C V^{2}\right) \quad F_{z}=-\frac{\partial}{\partial z}\left(\frac{1}{2} C V^{2}\right)
$$

Electrostatic force scales as L^{2}; This is an advantage

$$
F_{x}=\frac{l^{3}}{l} \rightarrow l^{2} \quad \begin{aligned}
& \text { because mass and ine } \\
& \text { electrostatic force gai } \\
& \text { the system decreases }
\end{aligned}
$$

Scaling Laws: Vertical Bracket Notation

Different possible forces can be written as

$$
\begin{aligned}
& \boldsymbol{F}=\left\{\begin{array}{l}
\boldsymbol{l}^{1} \\
\boldsymbol{l}^{2} \\
\boldsymbol{l}^{3} \\
\boldsymbol{l}^{4}
\end{array}\right\} \quad \begin{array}{l}
\text { case where the force scales as } \mathrm{L}^{1} \\
\text { case where the force scales as } \mathrm{L}^{2}
\end{array} \\
& \frac{P}{V_{0}}=\left(F \frac{x}{t}\right)\left(\frac{1}{V_{0}}\right)=\frac{l^{F} l}{\sqrt{l^{4-F}}} \frac{1}{l^{3}} \\
& F=\left\{\begin{array}{l}
l^{1} \\
l^{2} \\
l^{3} \\
l^{4}
\end{array}\right\} \rightarrow a=\left\{\begin{array}{c}
l^{-2} \\
l^{-1} \\
l^{0} \\
l^{1}
\end{array}\right\} \quad t=\left\{\begin{array}{c}
l^{3 / 2} \\
l \\
l^{1 / 2} \\
1
\end{array}\right\} \quad \frac{P}{V_{0}}=\left\{\begin{array}{c}
l^{-2.5} \\
l^{-1} \\
l^{0.5} \\
l^{2.0}
\end{array}\right\}
\end{aligned}
$$

Scaling Laws: Remarks

\Rightarrow Even in the worst case when $\mathrm{F}=\mathrm{L}^{4}$, the time required to perform a task remains constant when the system is scaled down
\Rightarrow Under more favorable force scaling (e.g. $F=L^{2}$), the time required decreases as L (a system 10 times smaller can perform an operation 10 times faster i.e. small things tend to be quick)

For Electrostatics $\quad \boldsymbol{l}^{F}=\boldsymbol{l}^{2} \quad \boldsymbol{a}=\boldsymbol{l}^{-1} \quad \boldsymbol{t}=\boldsymbol{l}^{\mathbf{1}} \quad \frac{\boldsymbol{P}}{\boldsymbol{V}_{0}}=\boldsymbol{l}^{-1.0}$
\Rightarrow When the force scales as $F=L^{2}$, the power per unit volume scales as $L^{-1}=>$ When the scale decreases by a factor of 10 , the power that can be generated per unit volume increases by a factor of 10

Outline

\checkmark Some MEMS Examples
Mixed-Domain Simulation of electrostatic MEMS and microfluidics
(1) Techniques for interior problems (e.g. FEM)
\Rightarrow Techniques for exterior problems (e.g. BEM)
\Rightarrow Algorithms

Elastostatics

\Rightarrow Finite-difference methods
\Rightarrow Finite-element methods

- Meshless methods

Finite Element Method: Introduction

Key steps in FEM:
-Construct a weak or a variational form of the problem

- Obtain an approximate solution of the variational equations through the use of finite element functions

1-D Example: Strong and Weak Forms

- Strong form

$$
\begin{array}{ll}
u_{, x x}+f=0 & 0 \leq x \leq 1 \\
\boldsymbol{u}(1)=q & \text { Dirichlet B.C. } \tag{array}\\
-u_{, x}(0)=h & \text { Neumann B.C. }
\end{array}
$$

- Trial function

$$
\delta=\left\{u \mid u \in H^{1}, u(1)=q\right\}
$$

-Test function (or weighting functions) $\quad v=\left\{w \mid w \in H^{1}, w(1)=0\right\}$

- Derive weak form

$$
\int_{0}^{1} w\left(u_{, x x}+f\right) d x=0
$$

- Integrate by parts

$$
\left.w u_{, x}\right|_{0} ^{1}-\int_{0}^{1} w_{, x} u_{, x} d x+\int_{0}^{1} w f d x=0
$$

Weak form

$$
\begin{equation*}
\int_{0}^{1} w_{, x} u_{, x} d x=\int_{0}^{1} w f d x+w(0) h \tag{w}
\end{equation*}
$$

1-D Example: Galerkin Form

-Notations: $\quad a(w, u)=\int_{0}^{1} w_{, x} u_{, x} d x \quad(w, f)=\int_{0}^{1} w f d x$
-The weak form can be rewritten as

$$
a(w, u)=(w, f)+w(0) h
$$

- Galerkin Approximation Method

$$
\begin{aligned}
& u^{h} \in \delta^{h} \\
& w^{h} \in v^{h}
\end{aligned}
$$

Galerkin form $\quad a\left(w^{h}, u^{h}\right)=\left(w^{h}, f\right)+w^{h}(0) h$
$\begin{aligned} & \text { Apply the } \\ & \text { interpolation }\end{aligned} \quad w^{h}=\sum_{A=1}^{N} N_{A} C_{A} \quad u^{h}=\sum_{B=1}^{N} N_{B} d_{B}$

$$
a\left(\sum_{A=1}^{N} N_{A} C_{A}, \sum_{B=1}^{N} N_{B} d_{B}\right)=\left(\sum_{A=1}^{N} N_{A} C_{A}, f\right)+\sum_{A=1}^{N} N_{A}(0) C_{A} h
$$

1-D Example: Matrix Form

$$
\sum_{A=1}^{N} C_{A}\left\{\sum_{B=1}^{N} \int_{\Omega} N_{A, x} N_{B, x} d \Omega d_{B}-\int_{\Omega} N_{A} f d \Omega-N_{A}(0) h\right\}=0
$$

C_{A} 's are arbitrary, so

$$
\sum_{B=1}^{N} \int_{\Omega} N_{A, x} N_{B, x} d \Omega d_{B}=\int_{\Omega} N_{A} f d \Omega+N_{A}(0) h \quad \text { for } \mathrm{A}=1,2, \ldots, \mathrm{~N}
$$

where

$$
\begin{array}{cc}
\sum_{B=1}^{N} K_{A B} d_{B}=F_{A} & \text { for } \mathrm{A}=1,2, \ldots, \mathrm{~N} \\
K_{A B}=\int_{\Omega} N_{A, x} N_{B, x} d \Omega & F_{A}=\int_{\Omega} N_{A} f d \Omega+N_{A}(0) \boldsymbol{h}
\end{array}
$$

$$
\begin{equation*}
\text { The matrix form } \quad K d=F \tag{M}
\end{equation*}
$$

1-D Example: Matrix Form

$$
\begin{gathered}
K=\left[K_{A B}\right]=\left[\begin{array}{cccc}
K_{11} & K_{12} & \cdots \cdots & K_{1 N} \\
K_{21} & K_{22} & & K_{2 N} \\
\vdots & & & \\
K_{N 1} & K_{N 2} & & K_{N N}
\end{array}\right] \\
F=\left\{F_{A}\right\}=\left[\begin{array}{c}
F_{1} \\
F_{2} \\
\vdots \\
F_{N}
\end{array}\right]
\end{gathered}
$$

Remarks:

- K is symmetric;
- For any given problem, $\quad(S) \Leftrightarrow(W) \approx(G) \Leftrightarrow(M)$

Shape Functions

Shape functions

$$
N_{A}(x)=\left\{\begin{array}{cl}
\frac{x-x_{A-1}}{h_{A-1}}, & x_{A-1} \leq x \leq x_{A} \\
\frac{x_{A+1}-x}{h_{A}}, & x_{A} \leq x \leq x_{A+1} \\
0, & \text { otherwize }
\end{array}\right.
$$

$$
N_{1}(x)=\frac{x_{2}-x}{h_{1}}, \quad x_{1} \leq x \leq x_{2} \quad N_{N}(x)=\frac{x-x_{N-1}}{h_{N-1}}, \quad x_{n-1} \leq x \leq x_{n}
$$

Local/Element Point of View

For a linear finite element

Domain	global	local
Nodes	$\left[x_{A}, x_{A+1}\right]$	$\left[\xi_{1}, \xi_{2}\right]$
Degree of freedom	$\left\{x_{A}, x_{A+1}\right\}$	$\left\{\xi_{1}, \xi_{2}\right\}$
Shape functions	$\left\{d_{A}, d_{A+1}\right\}$	$\left\{d_{1}, d_{2}\right\}$
Interpolation function	$\left.N_{A}, N_{A+1}\right\}$	$\left\{N_{1}, N_{2}\right\}$
	$N_{A+1}(x) d_{A+1}$	$\boldsymbol{u}^{h}(\xi)=N_{1}(\xi) d_{1}$
		$+N_{2}(\xi) d_{2}$

Mapping

Mapping

- Local Shape function

$$
N_{a}(\xi)=\frac{1}{2}\left(1+\xi_{a} \xi\right)
$$

$$
N_{1}=\frac{1}{2}(1-\xi) \quad N_{2}=\frac{1}{2}(1+\xi)
$$

where $\quad \xi(x)=\frac{2 x-x_{A}-x_{A-1}}{h_{A}}$

$$
\begin{aligned}
& x_{, \xi}^{e}=\frac{\boldsymbol{h}^{e}}{2}=\frac{x_{2}{ }^{e}-x_{1}^{e}}{2} \quad \xi_{, x}^{e}=\left(x_{, \xi}^{e}\right)^{-1}=\frac{2}{\boldsymbol{h}^{e}} \\
& x^{e}(\xi)=\sum_{a=1}^{2} N_{a}(\xi) x_{a}^{e}=N_{1}(\xi) x_{1}^{e}+N_{2}(\xi) x_{2}^{e}
\end{aligned}
$$

- Derivative of the Shape function

$$
N_{a, \xi}=\frac{\xi_{a}}{2}=\frac{(-1)^{a}}{2}
$$

Matrix Assembly

- Global stiffness

$$
\begin{aligned}
\boldsymbol{K} & =\sum_{e=1}^{n e l} \boldsymbol{K}^{e} \\
\boldsymbol{F} & =\sum_{e=1}^{n e l} \boldsymbol{F}^{e}=\left[\boldsymbol{K}_{A B}^{e}\right] \\
& \boldsymbol{F}^{e}=\left[\boldsymbol{F}_{A}^{e}\right]
\end{aligned}
$$

- Force vector
where

$$
\begin{gathered}
K^{e}{ }_{A B}=a\left(N_{A}, N_{B}\right)^{e}=\int_{\Omega^{e}} N_{A, x} N_{B, x} d x \\
F_{A}^{e}=\left(N_{A}, f\right)^{e}+N_{A}(0) h
\end{gathered}
$$

where $\Omega^{e}=\left[\boldsymbol{x}^{e}{ }_{1}, \boldsymbol{x}^{e}{ }_{2}\right] \quad$ is the domain of the e-th element

$$
\begin{aligned}
K_{a b}^{e} & =\int_{\Omega^{e}} N_{a, x}(x) N_{b, x}(x) d x \\
& =\int_{-1}^{+1} N_{a, x}(x(\xi)) N_{b, x}(x(\xi)) x_{, \xi} d \xi=\int_{-1}^{+1} N_{a, \xi} N_{b, \xi}\left(x_{, \xi}\right)^{-1} d \xi
\end{aligned}
$$

local stiffness

$$
K^{e}=\frac{1}{h^{e}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

Assembly Process

example

local stiffness

$$
K^{(1)}=\frac{1}{h^{(1)}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \quad K^{(2)}=\frac{1}{h^{(2)}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

Global stiffness

$$
\boldsymbol{K}=\left[\begin{array}{ccccccc}
& & \vdots & \vdots & \vdots & & \\
& & \vdots & \vdots & \vdots & & \\
\cdots & \cdots & \boldsymbol{X} & -\boldsymbol{X} & & \cdots & \cdots \\
\cdots & \cdots & -\boldsymbol{X} & \boldsymbol{X}+\boldsymbol{Y} & -\boldsymbol{Y} & \cdots & \cdots \\
\cdots & \cdots & & -\boldsymbol{Y} & \boldsymbol{Y} & \cdots & \cdots \\
& & \vdots & \vdots & \vdots & & \\
& & \vdots & \vdots & \vdots & &
\end{array}\right] 12
$$

FEM: Multidimensional Problems

Divergence theorem $\quad \int_{\Omega} f_{, i} d \Omega=\oint_{\Gamma} f n_{i} d \Gamma$
Integration by parts

$$
\int_{\Omega} f_{, i} g d \Omega=\oint_{\Gamma} g f n_{i} d \Gamma-\int_{\Omega} f g_{, i} d \Omega
$$

Heat Conduction

Strong form: given $\quad f: \Omega \rightarrow \Re, \quad g: \Gamma_{g} \rightarrow \Re, \quad h: \Gamma_{h} \rightarrow \mathfrak{R}$

$$
\begin{aligned}
& \text { find } \boldsymbol{u}: \Omega \rightarrow \Re \quad \text { such that } \\
& \qquad \begin{array}{l}
\boldsymbol{q}_{i, i}=\boldsymbol{f} \quad \text { in } \Omega \\
\boldsymbol{u}=\boldsymbol{g} \quad \text { on } \Gamma_{g} \\
-\boldsymbol{q}_{i} \boldsymbol{n}_{\boldsymbol{i}}=\boldsymbol{h} \quad \text { on } \Gamma_{h}
\end{array}
\end{aligned}
$$

where

$$
\boldsymbol{q}_{i}=-\boldsymbol{K}_{i j} \boldsymbol{u}_{, j} \quad K_{i j} \text { are the conductivities }
$$

Weak Form: Heat Conduction Problem

$$
\begin{gathered}
\int_{\Omega} w\left(q_{i, i}-f\right) d \Omega=0 \\
\int_{\Gamma} w q_{i} n_{i} d \Gamma-\int_{\Omega} w_{i} q_{i} d \Omega-\int_{\Omega} w f d \Omega=0
\end{gathered}
$$

Apply the property of the weighting function $\boldsymbol{w}=\boldsymbol{0}$ on Γ_{g}

$$
-\int_{\Omega} w_{, i} q_{i} d \Omega=\int_{\Omega} w f d \Omega+\int_{\Gamma_{n}} w h d \Gamma
$$

Notation:

$$
\begin{gathered}
a(w, u)=\int_{\Omega} w_{, i} K_{i j} u_{, j} d \Omega \\
(w, f)=\int_{\Omega} w f d \Omega \quad(w, h)_{\Gamma}=\int_{\Gamma_{h}} w h d \Gamma
\end{gathered}
$$

- Weak form $\quad a(w, u)=(w, f)+(w, h)_{\Gamma_{n}}$
- Galerkin form $\quad a\left(w^{h}, u^{h}\right)=\left(w^{h}, \boldsymbol{f}\right)+\left(w^{h}, \boldsymbol{h}\right)_{\Gamma_{h}}$

Heat Conduction Problem: Matrix Form

Substitute the interpolation

$$
w^{h}=\sum_{A=1}^{N} N_{A} C_{A} \quad u^{h}=\sum_{B=1}^{N} N_{B} d_{B}
$$

$$
\begin{gathered}
a\left(\sum_{A=1}^{N} N_{A} C_{A}, \sum_{B=1}^{N} N_{B} d_{B}\right)=\left(\sum_{A=1}^{N} N_{A} C_{A}, f\right)+\left(\sum_{A=1}^{N} N_{A} C_{A}, h\right)_{\Gamma} \\
\sum_{B=1}^{N} a\left(N_{A}, N_{B}\right) d_{B}=\left(N_{A}, f\right)+\left(N_{A}, h\right)_{\Gamma}
\end{gathered}
$$

- Matrix form

$$
K d=F
$$

where

$$
\begin{gathered}
K_{A B}=a\left(N_{A}, N_{B}\right) \\
F_{A}=\left(N_{A}, f\right)+\left(N_{A}, h\right)_{\Gamma}
\end{gathered}
$$

FEM for Elastostatics

Strong form: given f_{i}, g_{i} and h_{i}, find u_{i} such that

$$
\begin{array}{ll}
\sigma_{i j, j}+f_{i}=0 \quad \text { in } \Omega \\
u_{i}=g_{i} & \text { on } \Gamma_{g i} \\
\sigma_{i j} n_{j}=h_{i} & \text { on } \Gamma_{h}
\end{array}
$$

The stress is related to the strain by Hooke's law

$$
\begin{gathered}
\sigma_{i j}=c_{i j k l} \varepsilon_{k l} \\
\text { Strain tensor } \quad \varepsilon_{i j}=\frac{u_{i, j}+u_{j, i}}{2}=u(i, j) \\
\int_{\Omega} w_{i}\left(\sigma_{i j, j}+f_{i}\right) d \Omega=-\int_{\Omega} w_{i, j} \sigma_{i j} d \Omega+\int_{\Gamma} w_{i} \sigma_{i j} n_{j} d \Gamma+\int_{\Omega} w_{i} f_{i} d \Omega=0
\end{gathered}
$$

- Weak form

$$
\int_{\Omega} w(i, j) \sigma_{i j} d \Omega=\int_{\Omega} w_{i} f_{i} d \Omega+\sum_{i=1}^{n s d}\left(\int_{\Gamma} w_{i} h_{i} d \Gamma\right)
$$

FEM for Elastostatics

Why

$$
\boldsymbol{w}_{i, j} \sigma_{i j}=\boldsymbol{w}(\boldsymbol{i}, \boldsymbol{j}) \sigma_{i j}
$$

rewrite

$$
w_{i, j}=w(i, j)+w[i, j]
$$

where

$$
w(i, j)=\frac{w_{i, j}+w_{j, i}}{2}
$$

(symmetric)

$$
w[i, j]=\frac{w_{i, j}-w_{j, i}}{2} \quad \text { (skew symmetric) }
$$

since

$$
\begin{aligned}
w_{i, j} \sigma_{i j} & =(w(i, j)+w[i, j]) \sigma_{i j} \\
& =w(i, j) \sigma_{i j}+w[i, j] \sigma_{i j}
\end{aligned}
$$

and

$$
\begin{gathered}
w[i, j] \sigma_{i j}=-w[j, i] \sigma_{i j}=-w[j, i] \sigma_{j i}=-w[i, j] \sigma_{i j} \\
w[i, j] \sigma_{i j}=0
\end{gathered}
$$

So

$$
w_{i, j} \sigma_{i j}=w(i, j) \sigma_{i j}
$$

FEM for Elastostatics

Notation:

$$
\begin{gathered}
a(w, u)=\int_{\Omega} w(i, j) c_{i j k l} u(k, l) d \Omega \\
(w, f)=\int_{\Omega} w_{i} f_{i} d \Omega \quad(w, h)_{\Gamma}=\sum_{i=1}^{n s d}\left(\int_{\Gamma_{h i}} w_{i} h_{i} d \Gamma\right)
\end{gathered}
$$

- Weak form $\quad a(w, u)=(w, f)+(w, h)_{\Gamma} \quad$ for all $w \in v$
- Galerkin form $\quad a\left(w^{h}, u^{h}\right)=\left(w^{h}, f\right)+\left(w^{h}, h\right)_{\Gamma}$

$$
u_{i}^{h}=\sum_{A=1}^{n} N_{A} d_{i A} \quad i=1,2,3\left(3 d o f^{\prime} s\right)
$$

- Matrix form

$$
K d=F
$$

Bilinear Quadrilateral Element

Shape Functions

- Shape functions

$$
\begin{aligned}
& N_{1}(\xi, \eta)=\frac{1}{4}(1-\xi)(1-\eta) \\
& N_{2}(\xi, \eta)=\frac{1}{4}(1+\xi)(1-\eta) \\
& N_{3}(\xi, \eta)=\frac{1}{4}(1+\xi)(1+\eta) \\
& N_{4}(\xi, \eta)=\frac{1}{4}(1-\xi)(1+\eta)
\end{aligned}
$$

Property of the shape function

$$
\begin{aligned}
\sum_{a=1}^{n e n} N_{a}(\xi, \eta) & =\frac{1}{4}(1-\xi)(1-\eta)+\frac{1}{4}(1+\xi)(1-\eta)+\frac{1}{4}(1+\xi)(1+\eta)+\frac{1}{4}(1-\xi)(1+\eta) \\
& =1
\end{aligned}
$$

Numerical Integration

Numerical integration

$$
\int_{-1}^{+1} g(\xi) d \xi=\sum_{l}^{n_{\text {int }}} g\left(\xi_{l}\right) w_{l}+R \cong \sum_{l}^{n_{\text {int }}} g\left(\xi_{l}\right) w_{l}
$$

- Trapezoidal rule

$$
\begin{aligned}
& n_{\text {int }}=2 \\
& \bar{\xi}_{1}=-1 \quad w_{l}=1 \quad l=1,2 \\
& \bar{\xi}_{2}=+1 \\
& R=-\frac{2}{3} g_{, \xi \xi}(\bar{\xi})
\end{aligned}
$$

- Simpson's rule

$$
\begin{aligned}
& n_{\mathrm{int}}=3 \\
& \bar{\xi}_{1}=-1 \\
& \bar{\xi}_{2}=0 \\
& \bar{\xi}_{3}=1
\end{aligned}
$$

$$
w_{1}=w_{3}=\frac{1}{3}
$$

$$
w_{2}=\frac{4}{3}
$$

$$
R=-\frac{1}{90} g^{(4)}(\bar{\xi})
$$

Gaussian Quadrature Rules

$$
\begin{array}{ll}
n_{\text {int }}=1 \quad & \bar{\xi}_{1}=0 \quad w_{1}=2 \\
& R=\frac{g_{, \xi \xi}(\bar{\xi})}{3}
\end{array}
$$

$$
\begin{array}{ll}
n_{\text {int }}=2 \quad & \bar{\xi}_{1}=-\frac{1}{\sqrt{3}} \quad \bar{\xi}_{2}=\frac{1}{\sqrt{3}} \\
& w_{1}=w_{2}=1 \\
& R=\frac{g^{(4)}(\bar{\xi})}{135}
\end{array}
$$

$$
\begin{aligned}
& \bar{\xi}_{1}=-\sqrt{\frac{3}{5}} \quad \bar{\xi}_{2}=0 \quad \bar{\xi}_{3}=\sqrt{\frac{3}{5}} \\
& w_{1}=w_{3}=\frac{5}{9} \quad w_{2}=\frac{8}{9} \\
& R=\frac{g^{(6)}(\bar{\xi})}{15750}
\end{aligned}
$$

Gaussian Quadrature Rules in 2-D

$$
\begin{aligned}
\int_{-1}^{+1} \int_{-1}^{+1} g(\xi, \eta) d \xi d \eta & \cong \int_{-1}^{+1}\left\{\sum_{l^{(1)}=1}^{n_{i n t}^{(1)}} g\left(\bar{\xi}_{l^{(l)}}^{(1)}, \eta\right) \boldsymbol{w}_{l^{(l)}}^{(1)}\right\} d \eta \\
& \cong \sum_{l^{(1)}=1}^{n_{\text {int }}^{(1)}} \sum g\left(\bar{\xi}_{l^{(l)}}^{(1)}, \bar{\eta}_{l^{(2)}}^{(2)}\right) \boldsymbol{w}_{l^{(1)}}^{(1)} \boldsymbol{w}_{l^{(2)}}^{(2)}
\end{aligned}
$$

examples

$$
\int_{-1}^{+1} \int_{-1}^{+1} g(\xi, \eta) d \xi d \eta=4 g(0,0)
$$

$$
\int_{-1}^{+1} \int_{-1}^{+1} g(\xi, \eta) d \xi d \eta=g\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)+g\left(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)+g\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)+g\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)
$$

Finite Deformation Elastodynamics

Transformation function $\mathbf{x}=\varphi(\mathbf{X}) \quad d \mathbf{x}=\mathbf{F} d \mathbf{X}$

Deformation gradient

$$
\mathbf{F}=D \varphi(\mathbf{X})=\left[\begin{array}{lll}
\frac{\partial \varphi_{1}}{\partial X_{1}} & \frac{\partial \varphi_{1}}{\partial X_{2}} & \frac{\partial \varphi_{1}}{\partial X_{3}} \\
\frac{\partial \varphi_{2}}{\partial X_{1}} & \frac{\partial \varphi_{2}}{\partial X_{2}} & \frac{\partial \varphi_{2}}{\partial X_{3}} \\
\frac{\partial \varphi_{3}}{\partial X_{1}} & \frac{\partial \varphi_{3}}{\partial X_{2}} & \frac{\partial \varphi_{3}}{\partial X_{3}}
\end{array}\right]
$$

$$
J(\varphi)=\operatorname{det}[\mathbf{F}]
$$

Volume transformation $\quad d v=J d V$
Area transformation $\quad(d \mathbf{s}) \mathbf{n}=J(d \mathbf{S})\left(\mathbf{F}^{T}\right)^{-1} \mathbf{N}$
Density transformation $\quad \rho=\frac{1}{J} \rho_{0}$
Velocity

$$
\mathbf{V}=\frac{\partial \varphi}{\partial t}
$$

Cauchy stress
$\sigma=\frac{1}{J} \mathbf{P} \mathbf{F}^{T}$

Elastodynamics: Governing Equations

Strong form:

$$
\rho_{0} \frac{\partial^{2} \varphi}{\partial t^{2}}=\operatorname{Div}[\mathbf{P}]+\rho_{0} \mathbf{B}
$$

where

$$
\mathbf{P}=\mathbf{F S}
$$

$$
\mathbf{S}=\mathbf{C} \mathbf{E} \quad \mathbf{C}=\mathbf{F}^{T} \mathbf{F} \quad \mathbf{E}=\frac{1}{2}[\mathbf{c}-\mathbf{I}]
$$

- Boundary conditions:

$$
\begin{aligned}
& \varphi=\mathbf{g} \text { on } \Gamma_{g} \text { at }[0, T] \\
& P_{i A} n_{A}=h_{i} \text { on } \Gamma_{h_{i}} \text { at }[0, T]
\end{aligned}
$$

- Initial conditions:

$$
\begin{aligned}
& \left.\varphi\right|_{t=0}=\varphi^{0} \text { in } \Omega \\
& \left.\mathbf{V}\right|_{t=0}=\mathbf{V}^{(0)} \text { in } \Omega
\end{aligned}
$$

FEM for Elastodynamics

- Weak form:

$$
G(\varphi, \eta)=\int_{\Omega} G r a d[\eta]:[D \varphi \mathbf{S}(\mathbf{E}(\varphi))] d V-\int_{\Omega} \rho_{0} \mathbf{B} \cdot \eta d V-\int_{\Gamma_{h}} \eta \cdot \mathbf{h} d \Gamma=0
$$

- Galerkin form:

$$
G\left(\varphi^{h}, \eta^{h}\right)=\int_{\Omega} G r a d\left[\eta^{h}\right]:\left[D \varphi^{h} \mathbf{S}^{h}\right] d V-\int_{\Omega} \rho_{0} \mathbf{B} \cdot \eta^{h} d V-\int_{\Gamma_{h}} \eta^{h} \cdot \mathbf{h} d \Gamma=0
$$

Nonlinear equations: $\quad F^{\text {int }}(\mathbf{d})-F^{\text {ext }}=0$
Where

$$
\mathcal{F}^{\text {int }}(\mathbf{d})=\int_{\Omega} \mathscr{B}^{T} \hat{\mathbf{S}} d V \quad F^{\text {ext }}=\int_{\Omega} \rho_{0} \mathbf{B} \cdot \mathbf{N} d V+\int_{\Gamma_{h}} \mathbf{h} \cdot \mathbf{N} d \Gamma
$$

Solution of Nonlinear Systems: Newton Methods

The scalar problem: $\boldsymbol{r}(\boldsymbol{d})$ is a scalar nonlinear function of \boldsymbol{d}. Find \bar{d} such that

$$
r(d)=0
$$

Possibilities:

one unique solution

several solutions

no solutions

Newton's Method

- Solution strategy:

Guess a "good" d_{0} close to the solution;

$$
\begin{aligned}
& \qquad \begin{aligned}
r(\bar{d}) & =r\left(d_{0}\right)+\left.\frac{d}{d \varepsilon} r\left(d_{0}+\varepsilon \Delta d\right)\right|_{\varepsilon=0}+\left.\frac{1}{2!} \frac{d^{2}}{d \varepsilon^{2}} r\left(d_{0}+\varepsilon \Delta d\right)\right|_{\varepsilon=0}+\ldots \ldots \\
r(\bar{d}) & \cong r\left(d_{0}\right)+\left.\frac{d}{d \varepsilon} r\left(d_{0}+\varepsilon \Delta d\right)\right|_{\varepsilon=0} \\
& =r\left(d_{0}\right)+K\left(d_{0}\right) \Delta d=0 \\
\Delta d & =-\frac{r\left(d_{0}\right)}{K\left(d_{0}\right)} \\
d_{1} & =d_{0}+\Delta d
\end{aligned} \\
& \text { Geometric interpretation }
\end{aligned}
$$

Algorithm: Newton's Method

$$
\begin{aligned}
& i=0 \\
& d_{i}=d_{0} \\
& \text { for } i=1,2, \ldots \ldots \text { until convergence } \\
& \text { if }\left|r\left(d_{i}\right)\right|<\text { tol } \\
& \quad \bar{d}=d_{i} \\
& \text { else } \\
& \qquad \Delta d=-\frac{r\left(d_{i}\right)}{r^{\prime}\left(d_{i}\right)} \\
& \quad d_{i+1}=d_{i}+\Delta d \\
& \text { end if } \\
& \text { end for }
\end{aligned}
$$

The error at the i -th iteration is given by $\quad e^{(i)}=d_{i}-\bar{d}$

$$
\text { if }\left|e^{(i+1)}\right| \leq C\left|e^{(i)}\right|^{k} \quad \text { then we say the algorithm converges with order } \mathrm{k}
$$

Newton's method has quadratic convergence, i.e. $k=2$

Modified Newton's Method

Advantages of Newton's method

- Optimal (quadratic) convergence close to solution

Disadvantages of Newton's method

- Poor or no convergence far away from the solution;
- Computation of $\mathrm{K}\left(d_{\mathrm{i}}\right)$ is very expensive in the general multidimensional case ($\mathrm{K}\left(d_{\mathrm{i}}\right)$ is a matrix).

Algorithm: modified Newton's method

$$
\begin{aligned}
& i=0 \\
& d_{i}=d_{0} \\
& \text { for } i=1,2, \ldots \ldots \text { until convergence } \\
& \text { if }\left|r\left(d_{i}\right)\right|<t o l \\
& \quad \bar{d}=d_{i}
\end{aligned}
$$

$$
\begin{aligned}
& i=0 \\
& d_{i}=d_{0} \\
& \text { for } i=1,2, \ldots \ldots \text { unti } \\
& \text { if }\left|r\left(d_{i}\right)\right|<t o l \\
& \quad \bar{d}=d_{i} \\
& \text { else } \\
& \qquad \Delta d=-\frac{r\left(d_{i}\right)}{r^{\prime}\left(d_{0}\right)} \\
& \qquad d_{i+1}=d_{i}+\Delta d \\
& \text { end if } \\
& \text { end }
\end{aligned}
$$

Newton Method: Multidimensional Case

Let $\underline{R}(\underline{d})$ be a n -dimensional vector valued nonlinear function of the n dimensional vector \underline{d}

$$
\begin{aligned}
& R_{1}=\hat{R}_{1}\left(d_{1}, d_{2}, \ldots \ldots, d_{n}\right) \\
& R_{2}=\hat{R}_{2}\left(d_{1}, d_{2}, \ldots \ldots, d_{n}\right) \\
& \vdots \\
& \vdots \\
& R_{n}=\hat{R}_{n}\left(d_{1}, d_{2}, \ldots \ldots, d_{n}\right)
\end{aligned}
$$

- Directional or Frechet derivative

$$
\left.\frac{d}{d \varepsilon} \underline{R}(\underline{d}+\varepsilon \underline{u})\right|_{\varepsilon=0}=\nabla \underline{R} \underline{u}
$$

Similar to the scalar case

$$
=\left[\begin{array}{cccc}
\frac{\partial R_{1}}{\partial d_{1}} & \frac{\partial R_{1}}{\partial d_{2}} & \cdots & \frac{\partial R_{1}}{\partial d_{n}} \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
\frac{\partial R_{n}}{\partial d_{1}} & \frac{\partial R_{n}}{\partial d_{n}} & \cdots & \frac{\partial R_{n}}{\partial d_{n}}
\end{array}\right]\left\{\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right\}
$$

$$
\begin{aligned}
\underline{R}(\overline{\bar{d}}) & \left.=\underline{R}\left(\underline{d_{0}}\right)+\left.\frac{d}{d \varepsilon} \underline{R}\left(\underline{d_{0}}+\varepsilon \Delta \underline{d}\right)\right|_{\varepsilon=0}+\frac{1}{2!} \frac{d^{2}}{d \varepsilon^{2}} \underline{R}\left(\underline{d_{0}}+\varepsilon \Delta \underline{d}\right)\right)_{\varepsilon=0}+\ldots \ldots \\
& \cong \underline{R}\left(d_{0}\right)+\left.\frac{d}{d \varepsilon} \underline{R}\left(\underline{d_{0}}+\varepsilon \Delta \underline{d}\right)\right|_{\varepsilon=0} \\
& =\underline{R}\left(d_{0}\right)+\underline{K}_{T}\left(\underline{d_{0}}\right) \Delta \underline{d}=0 \quad \underline{K}_{T}\left(\underline{d_{0}}\right) \text { is called the tangent stiffness matrix }
\end{aligned}
$$

Newton-Raphson Method: Algorithm

$n=0$

$$
\begin{aligned}
& \text { step loop (load stepping e.g) } \\
& i=0 \\
& \underline{d}^{(i)}=\underline{d}_{n} \\
& \text { do (iteration loop) } \\
& \qquad \underline{K}_{T}\left(\underline{d}^{(i)}\right) \Delta \underline{d}^{(i)}=-\underline{R}^{(i)} \\
& \quad:=\underline{F}_{n+1}^{e n t}-\underline{F}_{n+1}^{\text {int }}\left(\underline{d}^{(i)}\right) \\
& \quad \underline{d}^{(i+1)}=\underline{d}^{(i)}+\Delta \underline{d}^{(i)} \\
& \quad i=i+1 \\
& \text { until }\left\|\underline{R}^{(i+1)}\right\|<\varepsilon\left\|\underline{R}^{(i)}\right\| \\
& \underline{d}_{n+1}=\underline{d}^{(i)} \\
& n \leftarrow n+1
\end{aligned}
$$

Remarks:

- The load step is needed since the method might not converge if the entire load is applied at once. Instead the load is applied incrementally. Each increment is converged before the next step is applied.
- Likewise one might have to apply the "g" b.c.'s incrementally. This method is called "displacement control".
- In practice, the terminology "NewtonRaphson method"is often used to denote algorithms in which a new left hand size matrix is formed for each iteration. If KT is not updated in each iteration, but kept frozen for a couple of iterations, the term "modified Newton" method is used.

Outline

\checkmark Some MEMS Examples
Mixed-Domain Simulation of electrostatic MEMS and microfluidics
\checkmark Techniques for interior problems (e.g. FEM)
Techniques for exterior problems (e.g. BEM)
\Rightarrow Algorithms

BEM - Introduction

\square What is Boundary Element Method?
$>$ Boundary discretization only
$>$ Integral based method

Analysis of a turbine blade using FEM and BEM
\square Approaches available for solving boundary integral equations
$>$ BEM based on Collocation
$>$ BEM based on Galerkin

Comparison of FEM and BEM

FEM	BEM
Local approach	Global approach, Integral based
Domain mesh (2D/3D)	Boundary mesh (1D/2D)
Symmetric, sparse and large matrices	Unsymmetric, dense and smaller matrices
Lot of commercial packages available	Fewer packages available

Table 1

Problems $\left(\nabla^{2} \phi=0\right)$	Scalar function (ϕ)	Dirichlet b.c. $(\phi=\bar{\phi})$	$\begin{aligned} & \text { Neumann } \\ & \text { b.c. }\left(K \frac{\partial \phi}{\partial n}=\bar{q}\right) \end{aligned}$	Constant (K)
Heat Transfer	Temperature $(T \equiv D e g .)$	$(T=\bar{T})$	Heat flow $\left(-\lambda \frac{\partial T}{\partial \boldsymbol{n}}=\overline{\boldsymbol{q}}\right)$	Thermal conductivity (λ)
Elastic torsion	Warping function (ψ)		$(r \cos (r, t)=\bar{q})$	${ }_{\text {r }}$
Ideal fluid flow	Stream function $\left(\phi \equiv m^{2} s^{-1}\right)$	$(\phi=\bar{\phi})$	$\left(\frac{\partial \phi}{\partial n}=\bar{q}\right)$	
Electrostatic	Field potential $(V \equiv \text { volt })$	$(V=\bar{V})$	Electric flow $\left(-\varepsilon \frac{\partial V}{\partial n}=\bar{q}\right)$	Permittivity (ε)
Electric conduction	Electropotential ($E \equiv$ volt $)$	$(E=\bar{E})$	Electric current $\left(\frac{1}{k} \frac{\partial E}{\partial n}=\bar{q}\right)$	Resistivity (k)

Boundary Integral Formulation

$>$ Laplace equation represents many problems in engineering (Table 1)

$\nabla^{2} T=0 \quad$ inside
Temperature ' T ' known on the surface
Interior problem

$\nabla^{2} \phi=0 \quad$ outside
Potential ϕ known on the surface
Exterior problem

Boundary Integral Formulation

$>$ BEM is based on the Second Theorem of Green

$>$ Problem definition

- Governing equation:

$$
\nabla^{2} \phi=p(x) \quad x \in \Omega
$$

$$
p(x)\left\{\begin{array}{l}
=0 ; \text { Laplace } \\
\neq 0 ; \text { Poisson }
\end{array}\right.
$$

- Dirichlet boundary condition (b.c):

$$
\phi(y)=\bar{\phi}(y) \quad y \in \Gamma_{u}
$$

- Neumann boundary condition (b.c):

Definition of the problem

$$
\left.\frac{\partial \phi(x)}{\partial n}\right|_{x=y}=\bar{q}(y) \quad y \in \Gamma_{n}
$$

Boundary Integral Formulation

Derivation of BIE:

Multiplying ($\nabla^{2} \phi-p$) with ϕ^{*} and integrating over Ω

$$
\int_{\Omega}\left(\nabla^{2} \phi-p\right) \phi^{*} d \Omega=0
$$

Integrating by parts we get (2D case),

$$
\int_{\Gamma} \phi^{*} \nabla \phi \cdot \boldsymbol{n d} \Gamma-\int_{\Omega}\left(\nabla \phi \cdot \nabla \phi^{*}+\boldsymbol{p} \phi^{*}\right) d \Omega+=0
$$

Integrating by parts the second integral we get,

$$
\int_{\Gamma} \phi^{*} \nabla \phi \cdot \boldsymbol{n d} \Gamma-\int_{\Gamma} \phi \nabla \phi^{*} \cdot \boldsymbol{n d} \Gamma+\int_{\Omega}\left(\phi \nabla^{2} \phi^{*}-\boldsymbol{p} \phi^{*}\right) d \Omega=\mathbf{0}
$$

where \boldsymbol{n} is the outward normal to the boundary Γ

Boundary Integral Formulation

Therefore, Equation (1) can be written as,

$$
\int_{\Omega}\left(\nabla^{2} \phi-p\right) \phi^{*} d \Omega=\int_{\Omega}\left(\phi \nabla^{2} \phi^{*}-\boldsymbol{p} \phi^{*}\right) \mu \Omega+\int_{\Gamma} \phi^{*} \frac{\partial \phi}{\partial \boldsymbol{n}} d \Gamma-\int_{\Gamma} \phi \frac{\partial \phi^{*}}{\partial \boldsymbol{n}} d \Gamma=\boldsymbol{0}
$$

$$
\begin{equation*}
\Rightarrow \int_{\Omega}\left[\left(\nabla^{2} \phi\right) \phi^{*}-\left(\nabla^{2} \phi^{*}\right) \phi\right] d \Omega=\int_{\Gamma}\left(\phi^{*} \frac{\partial \phi}{\partial n}-\phi \frac{\partial \phi^{*}}{\partial n}\right) d \Gamma \tag{2}
\end{equation*}
$$

ϕ^{*} is the Fundamental Solution of Laplace equation.

Boundary Integral Formulation

Fundamental Solution ϕ * for Laplace equation :

$>$ satisfies Laplace equation
$>$ represents field generated by a concentrated unit charge acting at a point ' i '
$>$ effect of this charge is propagated from ' i ' to infinity

$$
\nabla^{2} \phi^{*}+\delta(i, j)=0 \quad \delta(\boldsymbol{i}, \boldsymbol{j})=\text { Dirac Delta function }
$$

Multiplying with ϕ and integrating we get,

$$
\int_{\Omega} \phi\left(\nabla^{2} \phi^{*}\right) d \Omega=\int_{\Omega} \phi(-\delta(i, j)) d \Omega=-\phi^{i}
$$

Therefore,

$$
\begin{equation*}
\phi^{i}+\int_{\Gamma} \phi\left(\frac{\partial \phi^{*}}{\partial n}\right) d \Gamma=\int_{\Gamma}\left(\frac{\partial \phi}{\partial n}\right) \phi^{*} d \Gamma \tag{3}
\end{equation*}
$$

Boundary Integral Formulation

Fundamental Solutions : One Dimensional Equations

	Equation	Fundamental Solution
Laplace	$\nabla^{2} \phi^{*}+\delta_{0}=0$	$\phi^{*}=\frac{r}{2}, r=\|x\|$
Helmholtz	$\nabla^{2} \phi^{*}+\lambda^{2} \phi^{*}+\delta_{0}=0$	$\phi^{*}=-\frac{1}{2 \lambda} \sin (\lambda r)$
Wave Equation	$c^{2} \nabla^{2} \phi^{*}-\frac{\partial^{2} \phi^{*}}{\partial t^{2}}+\delta_{\theta} \delta(t)=0$	$\phi^{*}=\frac{1}{2 \boldsymbol{c}} \boldsymbol{H}(c t-r)$
$H=H$ eaviside function		
Diffusion Equation	$\nabla^{2} \phi^{*}-\frac{1}{\boldsymbol{k}} \frac{\partial \phi^{*}}{\partial t^{2}}+\delta_{\theta} \delta(t)=0$	$\phi^{*}=\frac{-\boldsymbol{H}(t)}{\sqrt{4 \pi k t}} \exp \left(\frac{-r^{2}}{4 \boldsymbol{k} t}\right)$
Convection/decay Equation	$\frac{\partial \phi^{*}}{\partial \boldsymbol{t}}+\bar{\phi} \frac{\partial \phi^{*}}{\partial \boldsymbol{x}}+\beta \phi^{*}+\delta_{0} \delta(t)=0$	$\phi^{*}=-\boldsymbol{e}^{-\beta \frac{r}{\phi}} \delta\left(t-\frac{r}{\phi}\right)$

Boundary Integral Formulation

Fundamental Solutions : Two Dimensional Equations

	Equation	Fundamental Solution
Laplace	$\nabla^{2} \phi^{*}+\delta_{0}=0$	$\phi^{*}=\frac{1}{2 \pi} \ln \left(\frac{1}{r}\right), r=\sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}}$
Helmholtz	$\nabla^{2} \phi^{*}+\lambda^{2} \phi^{*}+\delta_{0}=0$	$\begin{aligned} & \phi^{*}=\frac{1}{4 i} H_{0}{ }^{(2)}(\lambda r) \\ & H_{0}=\text { Hankel function } \end{aligned}$
D'Arcy (orthotropic case)	$k_{1} \frac{d^{2} \phi^{*}}{d x_{1}{ }^{2}}+k_{2} \frac{d^{2} \phi^{*}}{d x_{2}{ }^{2}}+\delta_{\theta}=0$	$\phi^{*}=-\frac{1}{\sqrt{k_{1} \boldsymbol{k}_{2}} \frac{1}{2 \pi} \ln \left[\left(\frac{x_{1}{ }^{2}}{\boldsymbol{k}_{1}}+\frac{x_{2}{ }^{2}}{k_{2}}\right)^{\frac{1}{2}}\right]}$
Wave Equation	$c^{2} \nabla^{2} \phi^{*}-\frac{\partial^{2} \phi^{*}}{\partial t^{2}}+\delta_{\theta} \delta(t)=0$	$\phi^{*}=-\frac{H(c t-r)}{2 \pi c\left(c^{2} t^{2}-r^{2}\right)}$
Plate Equation	$\left(\frac{\partial^{2}}{\partial t^{2}}-\mu^{2} \nabla^{4}\right) \phi^{*}+\delta_{\theta} \delta(t)=0$	$\begin{aligned} & \phi^{*}=+\frac{H(t)}{4 \pi \mu} S_{i}\left(\frac{r}{4 \pi t}\right) \\ & S_{i}=\text { Integral sine function } \end{aligned}$
Navier's Equation	$\frac{\partial \sigma_{j k}}{\partial x_{j}}+\delta_{l}=0$	$\phi_{k}{ }^{*}=U_{k}{ }_{k}{ }^{\text {a }}$

Boundary Integral Formulation

Fundamental Solutions: Three Dimensional Equations

	Equation	Fundamental Solution
Laplace	$\nabla^{2} \phi^{*}+\delta_{0}=0$	$\phi^{*}=\frac{1}{4 \pi r}, r=\sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}}$
Helmholtz	$\nabla^{2} \phi^{*}+\lambda^{2} \phi^{*}+\delta_{0}=0$	$\phi^{*}=\frac{1}{4 \pi r} e^{-i \pi r}$
D'Arcy	$k_{1} \frac{d^{2} \phi^{*}}{d x_{1}^{2}}+\boldsymbol{k}_{2} \frac{d^{2} \phi^{*}}{d x_{2}^{2}}+k_{3} \frac{d^{2} \phi^{*}}{d x_{3}^{2}}+\delta_{0}=0$	
Wave Equation	$c^{2} \nabla^{2} \phi^{*}-\frac{\partial^{2} \phi^{*}}{\partial t^{2}}+\delta_{\rho} \delta(t)=0$	$\phi^{*}=\frac{\delta\left(t-\frac{r}{c}\right)}{4 \pi r}$
Navier's Equation (Isotropic homogenous)	$\frac{\partial \sigma_{j k}^{*}}{\partial x_{j}}+\delta_{l}=0$	$\phi_{k}{ }^{*}=U_{l k}{ }^{*} e_{l}$

Boundary Integral Formulation

What happens when point ' \boldsymbol{i} ' is on Γ ?

3D case - Hemisphere around point ' \boldsymbol{i} '

2D case - Semicircle around point ' i '

Augment the boundary with
$>$ Hemisphere of radius ε in 3D
$>$ Semicircle of radius ε in 2D

Boundary Integral Formulation

Consider equation (3) before any boundary conditions have been applied,

$$
\phi^{i}+\int_{\Gamma} \phi\left(\frac{\partial \phi^{*}}{\partial n}\right) d \Gamma=\int_{\Gamma} \phi^{*}\left(\frac{\partial \phi}{\partial n}\right) d \Gamma
$$

- RHS integral easy to deal (lower order singularity),

$$
\lim _{\varepsilon \rightarrow 0}\left\{\int_{\Gamma_{\varepsilon}} \frac{\partial \phi}{\partial n} \phi^{*} d \Gamma\right\}=\lim _{\varepsilon \rightarrow 0}\left\{\int_{\Gamma_{\varepsilon}} \frac{\partial \phi}{\partial n} \frac{1}{4 \pi \varepsilon} d \Gamma\right\}=\lim _{\varepsilon \rightarrow 0}\left\{\frac{\partial \phi}{\partial n} \frac{2 \pi \varepsilon^{2}}{4 \pi \varepsilon}\right\} \equiv 0
$$

- LHS integral behaves as,

$$
\lim _{\varepsilon \rightarrow 0}\left\{\int_{\Gamma_{\varepsilon}} \phi \frac{\partial \phi^{*}}{\partial n} d \Gamma\right\}=\lim _{\varepsilon \rightarrow 0}\left\{-\int_{\Gamma_{\varepsilon}} \phi \frac{1}{4 \pi \varepsilon^{2}} d \Gamma\right\}=\lim _{\varepsilon \rightarrow 0}\left\{-\phi \frac{2 \pi \varepsilon^{2}}{4 \pi \varepsilon^{2}}\right\}=-\frac{1}{2} \phi^{i}
$$

Boundary Integral Formulation

Therefore,

$$
\begin{equation*}
c \phi^{i}+\int_{\Gamma} \phi\left(\frac{\partial \phi^{*}}{\partial n}\right) d \Gamma=\int_{\Gamma} \phi^{*}\left(\frac{\partial \phi}{\partial n}\right) d \Gamma \tag{4}
\end{equation*}
$$

$c=\frac{1}{2}, \quad$ for smooth boundaries

$$
c=\frac{\theta}{2 \pi} \quad \text { for corner points }
$$

Boundary with corner point

Boundary Integral Formulation (contd.)

Exterior Problem - Electrostatics,

Potential ϕ known on the surface of each conductor
For 3D Electrostatic problem the boundary integral equation is,

$$
\phi^{i}=\sum_{j=1}^{N_{c}} \int_{\Gamma_{j}} \frac{\partial \phi}{\partial n} \phi^{*} d \Gamma
$$

Boundary Element Method

Equation (4) is discretized to find system of equations
Boundary is divided into N elements

Discretized form of equation (3) at point ' i ' is given as,

$$
c \phi^{i}+\sum_{j=1}^{N} \int_{\Gamma_{j}} \phi \frac{\partial \phi^{*}}{\partial n} d \Gamma=\sum_{j=1}^{N} \int_{\Gamma_{j}} \frac{\partial \phi}{\partial n} \phi^{*} d \Gamma
$$

Boundary Element Method

In matrix form,

$$
[\boldsymbol{H}]\{\Phi\}=[\boldsymbol{G}]\left\{\frac{\partial \Phi}{\partial \boldsymbol{n}}\right\}
$$

where $H^{i j}$ and $G^{i j}$ are the influence coefficients given as,
' i ' is the source point (where fundamental solution is acting)
' j ' is the field point (any other nodes on the boundary)

Boundary Element Method

Constant Elements:

$>\phi$ and ϕ^{*} are assumed to be constant over each element
$>$ The value of ϕ and ϕ^{*} is assumed equal to that at mid-element node

The influence coefficients, $H^{i j}$ and $G^{i j}$ are given as,

$$
\begin{aligned}
\boldsymbol{H}^{i j} & =\frac{1}{2} \delta(i, j)+\int_{\Gamma_{j}} \frac{\partial \phi^{*}}{\partial n} d \Gamma \\
G^{i j} & =\int_{\Gamma_{j}} \phi^{*} d \Gamma
\end{aligned}
$$

' i ' is the source point (where fundamental solution is acting)
' j ' is the field point (any other nodes on the boundary)

Boundary Element Method

Evaluation of integrals:

$>H^{i j}$ and $G^{i j}$ can be calculated numerically, for the case $\boldsymbol{i} \neq \boldsymbol{j}$
$>$ For the case $i=j, H^{i j}$ and $G^{i j}$ are evaluated analytically

$$
\begin{gathered}
H^{i i}=\frac{\mathbf{1}}{2}+\int_{\Gamma_{j}} \frac{\partial \phi^{*}}{\partial n} d \Gamma=\frac{\mathbf{1}}{2}+\int_{\Gamma}\left(\frac{\partial \phi^{*}}{\partial r} \frac{\partial y}{\partial n}\right) d \Gamma=\frac{1}{2} \\
G^{i i}=\int_{\Gamma_{i}} \phi^{*} d \Gamma=\frac{1}{2 \pi} \int_{\Gamma_{i}} \ln \left(\frac{1}{r}\right) d \Gamma=\frac{1}{\pi}\left(\frac{l}{2}\right)\left[\ln \left(\frac{1}{l / 2}\right)+1\right]
\end{gathered}
$$

Boundary Element Method

Linear Elements:

$>\phi$ and ϕ^{*} are assumed to vary linearly over each element

Therefore,

$$
\begin{aligned}
& H^{i j}=\frac{1}{2} \delta(i, j)+\int_{\Gamma_{j}}\left[\begin{array}{ll}
N_{1} & N_{2}
\end{array}\right] \frac{\partial \phi^{*}}{\partial n} d \Gamma \\
& G^{i j}=\int_{\Gamma_{j}}\left[\begin{array}{ll}
N_{1} & N_{2}
\end{array}\right] \phi^{*} d \Gamma
\end{aligned}
$$

Element ' \boldsymbol{j} '

Boundary Element Method

Putting all the unknowns on LHS we get,

$$
[A]\{x\}=\{F\}
$$

Note: \boldsymbol{A} is a dense matrix

$$
\begin{aligned}
& \left(\begin{array}{c}
\text { Dense Matrix } \\
\mathbf{A} \\
(N \times N)
\end{array}\right) \\
& \left\{\begin{array}{ll}
x & z \\
\dot{0} & x \\
0 & x \\
0 & z
\end{array}\right\}=\left\{\begin{array}{l}
x \\
x \\
x \\
z \\
z
\end{array}\right\} \\
& \text { DIRECT } \\
& O\left(N^{3}\right) \\
& \text { ITERATIVE } \\
& O\left(N^{2}\right)
\end{aligned}
$$

Fast Integral Equation Solver

Results: 2-Conductor Problem

Matrix-Vector multiplication: $O\left(N(\log N)^{2}\right)$
Storage: $O\left(N(\log N)^{2}\right)$

Fast Integral Equation Solver

Results : Mirror Problem

murmun rROBLEM (Storage plot)
MIRROR PROBLEM (FLOPS plot)

Matrix-Vector multiplication: $O\left(N(\log N)^{2}\right)$
Storage: $O\left(N(\log N)^{2}\right)$

Fast Integral Equation Solver

Results: Comb-Drive Problem

Matrix-Vector multiplication: $O(N \log N)$ Storage: $O(N \log N)$

References

$>$ P.K. Banerjee, The Boundary Element Method in Engineering, McGraw Hill, 1994
$>$ G. Beer, Programming the Boundary Element Method, Wiley, 2001
$>$ C.A. Brebbia and J. Dominguez Boundary Elements An Introductory Course, Mc-Graw Hill, 1996
$>$ J.H. Kane, Boundary Element Analysis in Engineering Continuum Mechanics, Prentice Hall, 1994

Outline

\checkmark Some MEMS Examples

Mixed-Domain Simulation of electrostatic MEMS and microfluidics

\checkmark Techniques for interior problems (e.g. FEM)
\checkmark Techniques for exterior problems (e.g. BEM)
Algorithms

Coupled Electromechanical Analysis

\Rightarrow We need to self-consistently solve the coupled electrical and mechanical equations to compute the equilibrium displacements and forces. Three approaches -
\Rightarrow Relaxation technique
\Rightarrow Full-Newton method
\Rightarrow Multi-level Newton method
\Rightarrow Solution of elastostatic equations is represented by

$$
u=R_{M}(P(q))
$$

\Rightarrow Solution of electrostatic equations is represented by

$$
q=R_{E}(u, V)
$$

Relaxation Technique

\Rightarrow Simplest black-box approach
Data is passed back and forth between black-box electrostatic and elastostatic analysis programs until a converged solution is obtained

$$
k=1 ; u^{k}=\mathbf{0}
$$

Repeat

$$
\text { Compute } \boldsymbol{q}^{k}=\boldsymbol{R}_{E}\left(\boldsymbol{u}^{k}\right)
$$

$$
\text { Compute } \boldsymbol{u}^{(k+1)}=\boldsymbol{R}_{M}\left(\boldsymbol{P}\left(\boldsymbol{q}^{k}\right)\right)
$$

$$
k=k+1
$$

Until $\left\|\boldsymbol{u}^{k}-\boldsymbol{u}^{k+1}\right\| \leq \varepsilon \quad\left\|\boldsymbol{q}^{k}-\boldsymbol{q}^{k+1}\right\| \leq \varepsilon$

Relaxation Technique

\Rightarrow Advantages
\Rightarrow Very quick implementation based on black-boxes
\Rightarrow Existing mechanical and electrical solvers can be used
\Rightarrow Disadvantages
\Rightarrow Fails to converge for strong coupling between electrical and mechanical domains

Multi-Level Newton Algorithm

\Rightarrow Matrix-free approaches: Matrix-vector product involving a Jacobian and a vector can be computed as

$$
\frac{\partial \boldsymbol{R}}{\partial u} \Delta u=\frac{\boldsymbol{R}(\boldsymbol{u}+\varepsilon \Delta u)-\boldsymbol{R}(u)}{\varepsilon}
$$

\Rightarrow Define a new residual

$$
\boldsymbol{R}(u, q)=\left\{\begin{array}{l}
q-\boldsymbol{R}_{E}(u) \\
u-\boldsymbol{R}_{M}(\boldsymbol{q})
\end{array}\right\}
$$

\Rightarrow The Jacobian of the residual is given by

$$
\boldsymbol{J}(\boldsymbol{u}, \boldsymbol{q})=\left[\begin{array}{cc}
\frac{\partial \boldsymbol{R}_{1}}{\partial \boldsymbol{q}} & \frac{\partial \boldsymbol{R}_{1}}{\partial u} \\
\frac{\partial \boldsymbol{R}_{2}}{\partial \boldsymbol{q}} & \frac{\partial \boldsymbol{R}_{2}}{\partial \boldsymbol{u}}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{I} & -\frac{\partial \boldsymbol{R}_{E}}{\partial \boldsymbol{u}} \\
-\frac{\partial \boldsymbol{R}_{M}}{\partial \boldsymbol{q}} & \boldsymbol{I}
\end{array}\right]
$$

Multi-Level Newton Algorithm

$$
\begin{aligned}
& \boldsymbol{k}=\mathbf{1} ; \boldsymbol{u}^{k}=\mathbf{0} ; \boldsymbol{q}^{k}=\mathbf{0} \quad \text { use an iterative solver } \\
& \text { Repeat } \\
& \text { solve } \boldsymbol{J}\left(\boldsymbol{u}^{k}, \boldsymbol{q}^{k}\right)\left\{\begin{array}{l}
\delta \boldsymbol{q} \boldsymbol{q}\}=-\boldsymbol{R}\left(\boldsymbol{u}^{k}, \boldsymbol{q}^{k}\right) \\
\delta \boldsymbol{u}
\end{array}\right\} \\
& \text { set } \boldsymbol{u}^{k+1}=\boldsymbol{u}^{k}+\delta \boldsymbol{u} \\
& \text { set } \boldsymbol{q}^{k+1}=\boldsymbol{q}^{k}+\delta \boldsymbol{q} \\
& \boldsymbol{k}=\boldsymbol{k}+\mathbf{1} \\
& \text { until }\left|\boldsymbol{u}^{k}-\boldsymbol{u}^{k+1} \leq \varepsilon \quad\right| \boldsymbol{q}^{k}-\boldsymbol{q}^{k+1} \leq \varepsilon
\end{aligned}
$$

Iterative Solution of Linear Systems

\Rightarrow Lets say we need to solve $P q=p$
\Rightarrow Key steps in GMRES algorithm
make an initial guess to the solution, \boldsymbol{q}_{0}
set $k=0$
do \{
compute the residual, $\boldsymbol{r}^{\boldsymbol{k}}=\overline{\boldsymbol{p}}-\boldsymbol{P} \boldsymbol{q}^{\boldsymbol{k}}$ if $\|\boldsymbol{r}\| \leq \boldsymbol{t o l}$, return $\boldsymbol{q}^{\boldsymbol{k}}$ as the solution else \{
choose $\alpha^{\prime} \boldsymbol{s}$ and β in
$\boldsymbol{q}^{k+1}=\sum_{j=0}^{k} \alpha_{j} \boldsymbol{q}^{j}+\beta r^{k}$
to minimize $\left\|\boldsymbol{r}^{k+1}\right\|$
set $\boldsymbol{k}=\boldsymbol{k}+\mathbf{1}$
\}

Multi-Level Newton Algorithm

$$
\frac{\partial \boldsymbol{R}}{\partial u} * r=\frac{\boldsymbol{R}(u+\theta * r)-\boldsymbol{R}(u)}{\theta}
$$

$$
\begin{aligned}
& \theta=\operatorname{sign}(u * r) * a \frac{\|u\|}{\|r\|} \\
& a \in(\mathbf{0 . 0 1 , 0 . 5})
\end{aligned}
$$

$$
\boldsymbol{J}(\boldsymbol{u}, \boldsymbol{q})\left\{\begin{array}{l}
\delta \boldsymbol{q} \\
\delta \boldsymbol{u}
\end{array}\right\}=\left[\begin{array}{cc}
\boldsymbol{I} & -\frac{\partial \boldsymbol{R}_{E}}{\partial u} \\
-\frac{\partial \boldsymbol{R}_{M}}{\partial \boldsymbol{q}} & \boldsymbol{I}
\end{array}\right]\left\{\begin{array}{l}
\delta \boldsymbol{q} \\
\delta \boldsymbol{u}
\end{array}\right\}=\left\{\begin{array}{l}
\delta q-\frac{1}{\theta}\left[\boldsymbol{R}_{E}(\boldsymbol{u}+\theta \delta u)-\boldsymbol{R}_{E}(\boldsymbol{u})\right] \\
\delta u-\frac{1}{\theta}\left[\boldsymbol{R}_{M}(\boldsymbol{q}+\theta \delta \boldsymbol{q})-\boldsymbol{R}_{M}(\boldsymbol{q})\right]
\end{array}\right\}
$$

Multi-Level Newton Algorithm

\Rightarrow Advantages
\Rightarrow Black box based approach
\Rightarrow Superior global convergence

Disadvantages

\Rightarrow Can be sensitive to the choice of the matrix-free parameter

Full-Newton Technique

\Rightarrow Represent the mechanical and electrical equations as

$$
\begin{gathered}
R_{M}(u, q)=f^{\text {int }}(u)-f^{e x t}(q)=0 \\
R_{E}(u, q)=P(u) q-V=0
\end{gathered}
$$

\Rightarrow Let \bar{u} and \bar{q} be self-consistent solutions

$$
\begin{aligned}
& \boldsymbol{R}_{M}(\bar{u}, \bar{q})=\mathbf{0} \\
& \boldsymbol{R}_{E}(\bar{u}, \bar{q})=\mathbf{0}
\end{aligned}
$$

\Rightarrow Let u_{0} and q_{0} be some initial guess

$$
\begin{aligned}
& \boldsymbol{R}_{M}(\boldsymbol{u}, \boldsymbol{q})=\boldsymbol{R}_{M}\left(\boldsymbol{u}_{0}, \boldsymbol{q}_{0}\right)+\frac{\partial \boldsymbol{R}_{M}}{\partial u} \Delta u+\frac{\partial \boldsymbol{R}_{M}}{\partial \boldsymbol{q}} \Delta \boldsymbol{q}+\text { h.o.t }=0 \\
& \boldsymbol{R}_{E}(\boldsymbol{u}, \boldsymbol{q})=\boldsymbol{R}_{E}\left(\boldsymbol{u}_{0}, \boldsymbol{q}_{0}\right)+\frac{\partial \boldsymbol{R}_{E}}{\partial u} \Delta u+\frac{\partial \boldsymbol{R}_{E}}{\partial \boldsymbol{q}} \Delta \boldsymbol{q}+\text { h.o.t }=0
\end{aligned}
$$

Full-Newton Technique

\Rightarrow Neglecting h.o.t

$$
\begin{aligned}
& \frac{\partial \boldsymbol{R}_{M}}{\partial \boldsymbol{u}} \Delta \boldsymbol{u}+\frac{\partial \boldsymbol{R}_{M}}{\partial \boldsymbol{q}} \Delta \boldsymbol{q}=-\boldsymbol{R}_{M}\left(\boldsymbol{u}_{0}, \boldsymbol{q}_{0}\right) \\
& \frac{\partial \boldsymbol{R}_{E}}{\partial \boldsymbol{u}} \Delta \boldsymbol{u}+\frac{\partial \boldsymbol{R}_{E}}{\partial \boldsymbol{q}} \Delta \boldsymbol{q}=-\boldsymbol{R}_{E}\left(\boldsymbol{u}_{0}, \boldsymbol{q}_{0}\right)
\end{aligned}
$$

In matrix form

$$
\left[\begin{array}{cc}
\frac{\partial \boldsymbol{R}_{M}}{\partial \boldsymbol{u}} & \frac{\partial \boldsymbol{R}_{M}}{\partial \boldsymbol{q}} \\
\frac{\partial \boldsymbol{R}_{E}}{\partial \boldsymbol{u}} & \frac{\partial \boldsymbol{R}_{E}}{\partial \boldsymbol{q}}
\end{array}\right]\left\{\begin{array}{l}
\Delta \boldsymbol{u} \\
\Delta \boldsymbol{q}
\end{array}\right\}=-\left\{\begin{array}{l}
\boldsymbol{R}_{M}\left(\boldsymbol{u}_{0}, \boldsymbol{q}_{0}\right) \\
\boldsymbol{R}_{E}\left(\boldsymbol{u}_{0}, \boldsymbol{q}_{0}\right)
\end{array}\right\}
$$

Full Newton Algorithm

$$
i=0 ; u^{(i)}=0 ; q^{(i)}=0
$$

Repeat

$$
\begin{aligned}
& \text { solve }\left[\begin{array}{cc}
\frac{\partial \boldsymbol{R}_{M}}{\partial \boldsymbol{u}} & \frac{\partial \boldsymbol{R}_{M}}{\partial \boldsymbol{q}} \\
\frac{\partial \boldsymbol{R}_{E}}{\partial \boldsymbol{u}} & \frac{\partial \boldsymbol{R}_{E}}{\partial \boldsymbol{q}}
\end{array}\right]\left\{\begin{array}{l}
\Delta \boldsymbol{u}^{(i)} \\
\Delta \boldsymbol{q}^{(i)}
\end{array}\right\}=-\left\{\begin{array}{l}
\boldsymbol{R}_{M}\left(\boldsymbol{u}^{(i-1)}, \boldsymbol{q}^{(i-1)}\right) \\
\boldsymbol{R}_{E}\left(\boldsymbol{u}^{(i-1)}, \boldsymbol{q}^{(i-1)}\right)
\end{array}\right\} \\
& \text { set } \boldsymbol{u}^{(i)}=\boldsymbol{u}^{(i-1)}+\Delta \boldsymbol{u}^{(i)} \\
& \text { set } \boldsymbol{q}^{(i)}=\boldsymbol{q}^{(i-1)}+\Delta \boldsymbol{q}^{(i)} \\
& \boldsymbol{i}=\boldsymbol{i}+\boldsymbol{1} \\
& \text { until } \quad\left|\boldsymbol{u}^{(i)}\right| \leq \varepsilon \quad\left|\Delta \boldsymbol{q}^{(i)}\right| \leq \varepsilon
\end{aligned}
$$

Full Newton Algorithm

$$
\begin{aligned}
\frac{\partial \boldsymbol{R}_{\boldsymbol{M}}}{\partial \boldsymbol{u}} \rightarrow \frac{\partial \boldsymbol{f}^{\text {int }}(\boldsymbol{u})}{\partial \boldsymbol{u}} \rightarrow \text { entirely elastostatic part } \\
\frac{\partial \boldsymbol{R}_{E}}{\partial \boldsymbol{q}} \rightarrow \frac{\partial(\boldsymbol{P q}-\boldsymbol{V})}{\partial \boldsymbol{q}}=\boldsymbol{P} \rightarrow \text { entirely electrostatic part } \\
\frac{\partial \boldsymbol{R}_{M}}{\partial \boldsymbol{q}} \rightarrow \frac{\partial \boldsymbol{f}^{e x t}(\boldsymbol{q})}{\partial \boldsymbol{q}} \rightarrow \text { electrical to mechanical coupling term } \\
\frac{\partial \boldsymbol{R}_{E}}{\partial \boldsymbol{u}} \rightarrow \frac{\partial(\boldsymbol{P q}-\boldsymbol{V})}{\partial \boldsymbol{u}}=\frac{\partial \boldsymbol{P}(\boldsymbol{u})}{\partial \boldsymbol{u}} \boldsymbol{q} \rightarrow \begin{array}{l}
\text { mechanical to electrical coupling } \\
\text { term }
\end{array}
\end{aligned}
$$

Microfluidics: Gas Flows

Introduction to Microfilters

Microfilter properties:

\square Openings of various shapes
\square Thickness between 1 and $5 \mu \mathrm{~m}$
\square Opening size as small as 2 nm
\square High burst pressure achieved

Design issues:
Flow profiles
\square Estimation of flow rate
\square Dependence of flow rate on:
\square geometry
\square surface properties
\square pressure difference

Rarefaction effects observed due to small dimensions

Characteristics of Flows in Micro-Channels

Typical Characteristics:

- Compressible
- High Kn \#
- Small Re \#
- Small Ma \#
- Wide range of Kn \#
- Reacting

Effects of high Knudsen Number:

- Slip velocity
- Thermal jump
- Strong interaction with walls

DSMC Flow Chart

$\left[\begin{array}{l}\text { initialize particle positions \& velocities } \\ \text { initial domain decomposition } \\ \text { set initial estimate for self-consistent } \\ \text { boundary-conditions }\end{array}\right]$

Micro-Filter Elements

	1×1	1×5	0.2×1	1×10	0.05×1	0.2×2
$h_{c}(\mu \mathrm{~m})$	1	1	0.2	1	0.05	0.2
$I_{c}(\mu \mathrm{~m})$	1	5	1	10	1	2
$\mathrm{~h}_{\mathrm{p}}(\mu \mathrm{m})$	5	5	1	5	1	1
$\mathrm{I}_{\text {in }}(\mu \mathrm{m})$	4	6	4	4	4	4
$\mathrm{I}_{\text {out }}(\mu \mathrm{m})$	7	7	5	7	7	5
Kn	0.054	0.054	0.27	0.054	1.1	0.27

$1 \mu \mathrm{mX} 1 \mu \mathrm{~m}$ Filter Element

Knudsen Number and Length Effects

Effect of Kn:
ㄱ Slip velocity increases with Kn

Effect of Length:
\square As le/hc increases, 2D channel approximation holds good for smaller Kn

Effect of Surface Accommodation

Smaller accomodation coefficients:
\square Strong increase in slip velocity
ㄱ Temperature drop increases

Flow Rate vs. Pressure Difference

〕 Dependence of flow rate on pressure is linear
\square Qualitative behavior is captured by 2D channel formula $+1^{\text {st }}$ order slip BC (Arkilic \& Breuer, 1997)
\square Good agreement for large le/hc
\square Effective length can be used for smaller le/hc

Conclusions

\Rightarrow MEMS design is still an art
\Rightarrow Critical issues
\Rightarrow Mixed-domain simulation tools
\Rightarrow Multiscale approaches
\Rightarrow System level modeling tools
\Rightarrow Need fast and radically simpler techniques for MEMS modeling

