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Recent developments in nanotechnology have made it possible to measure the resistance of individual
molecular wires self-assembled between two metallic pads. In this paper we present a simple expression for the
resistance of a symmetric molecule in terms of a set ofM phase shifts,M being the number of conducting
channels connecting the molecule to the metallic pads. These phase-shifts are related by a sum rule toNd

5Neven2Nodd, whereNeven andNodd are the number of electrons occupying the even and odd eigenstates
respectively. For many molecular wires of interest all the phase shifts are nearly zero except for one~per spin!,
allowing us to write a particularly simple relation for the resistance:R215(2e2/h)sin2(pNd/2). The relations
presented here are based on the Friedel sum rule and should be valid even in the presence of interactions.
@S0163-1829~97!50104-4#

A number of experimental groups have recently reported
the observation of electronic conduction through ‘‘molecular
wires’’ attached to two metallic contacts by special func-
tional groups at the ends~Fig. 1!.1–7Some of these molecular
wires are based on alkane chains and are strongly insulating.
Others are based on conjugated polymers like polyparaphe-
nylene and could possibly be engineered to provide good
electronic coupling, although so far the measured resistance
has been at least several megohms per molecule. Theoretical
work in this area has been based on the Landauer formula
which relates the measured resistanceR to the transmission
function at the Fermi energy:8

R215~e2/h! T~Ef !5~25.8 kV!21T~Ef !. ~1!

Different authors use different methods for calculating the
transmission function but their results are similar and in gen-
eral agreement with the available experimental data.9–11Note
that the minimum possible resistance predicted by Eq.~1! is
~25.8/M! kilo-ohms corresponding to a ‘‘ballistic’’ molecule
with T(Ef)5M , M being the number of conducting chan-
nels or transverse modes~including spin! that connect the
molecule to the metallic pads at each end. This represents the
contact resistance at the metal-molecule interface.

In this paper we will combine the Landauer formula with
the Friedel sum rule12–15 to show that the resistance of any
symmetric molecule can be written as

R215
e2

h (
m51

M

sin2fm , ~2a!

where

(
m51

M

fm5p~Neven2Nodd![pNd , ~2b!

NevenandNodd being the number of electrons occupying the
even and odd states, respectively. The important point about
Eq. ~2! is that it should hold in general regardless of the
detailed nature of the electron-electron interactions, although
the functionNd(Ef! or T(Ef) might change drastically. This
is because it is based on a general principle like the Friedel
sum rule which has been shown to be valid for interacting
systems assuming that the single-particle-like states do not
decay.4 Consequently, we expect Eq.~2! to be accurate as

long as the broadening of the molecular levels due to the
coupling to the leads is larger than any broadening due to
interactions within the molecule. The generality of Eq.~2!
could make it particularly useful in describing open shell
molecules for which correlation effects can be quite com-
plex. Also, the charge on a molecule~and hence the number
of electrons! is experimentally observable so that it is more
useful to know the transmissionT as a function of the num-
ber of electrons rather than as a function of the Fermi energy
Ef .

Equation~2! expresses the transmission in terms of the
phase shiftsfm in a manner reminiscent of the well-known
expression for the scattering cross section~s! of an impurity
in a metal derived from the Friedel sum rule~here the trans-
verse modes ‘‘m’’ are given by the spherical harmonics!:

s5 (
m50

`

sin2dm ,

where (
m50

`

dm5pN.

This relation is particularly useful if one can guess the indi-
vidual dm using general symmetry considerations. The same
is true of Eq.~2!. For example, for the molecule shown in
Fig. 1~a!, only two of the phase shifts are nonzero in the
energy range around the HOMO-LUMO gap. For this mol-
ecule, we can identify the sulphur atoms at each end as the
‘‘leads,’’ since electrons flow out into the reservoir from
these sites. Since a sulphur atoms has ones level and three
p levels this means that, including spin, the molecule has
eight modes in each lead:M58.16 But as we will see, of the
eight distinct phase shiftsfm , six are approximately zero.
Noting that due to spin degeneracy the other two phase shifts
are equal, it is easy to see that in this case we can write
approximately from Eq.~2!:

R21' ~2e2/h! sin2~pNd/2!. ~3!

The reason only one phase shift per spin is significant is that
conduction takes place primarily through thepz orbitals only
so that the molecule effectively has only a single mode per
spin. From this point of view,the number of nonzero phase
shifts is the real indicator of the number of modesin a struc-
ture. The number of modesM in the leads is arbitrary, since
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it would change if we were to include a few gold atoms from
the pads as part of the molecule. The gold atoms would then
form the leads and not the sulphur atoms. But the current
would still have to funnel through individualpz orbitals giv-
ing only one nonzero phase shift per spin. In general, if there
areMeff number of nonzero phase shifts that are approxi-
mately equal then we can write

R21' ~e2/h! Meff sin
2~pNd/Meff!, ~4!

which reduces to Eq.~3! if Meff52 corresponding to single-
moded spin degenerate conduction.

Closed shell molecules:Most molecular wires that have
been investigated so far involve closed-shell molecules for
whichNd is an even number in the isolated state, and Eq.~3!
predicts infinite resistance as we would expect. Connecting
the molecule to the metallic pads has two distinct effects.
Firstly, a fractional number~ aT) of electrons are transferred
to or from the molecule depending on the work function of
the metal. For the structure considered in this paper@Fig.
1~a!# we expect very little charge to be transferred into or out
of the molecule since the work function of gold~5.3 eV! is
slightly smaller than the average of the ionization potential

FIG. 1. ~a! Chemical structure.~b! Phase
shifts fm(E) ~m51–4! calculated from the ei-
genvalues of the@r1t#@r12t1#. Also shown is
the functionpNd5p(Neven2Nodd) ~divided by 2
for spin!, which is equal to the sum of the four
phase shifts as we would expect from Eq.~2b!.
The different functions have been offset horizon-
tally for clarity. ~c! Transmission functionT(E).
The solid curve represents the exactT(E) calcu-
lated using the method described in Ref. 11. The
crosses represent an approximate calculation
based on the relationT5sin2(pNd/2).
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~8.3 eV! and the electron affinity~2.4 eV! of the molecule.17

Experimentally, the amount of charge transferred has been
measured for many metal-molecule complexes and is usually
quite small.

Secondly, connecting to the metallic pads makes the lev-
els broaden, causing the highest occupied molecular orbital
~HOMO! to lose a fraction of its electrons, since part of its
spectrum now lies above the Fermi energy. The lowest un-
occupied molecular orbital~LUMO!, on the other hand,
gains a fraction of electrons, since part of its spectrum lies
below the Fermi energy. Assuming the HOMO to be an odd
level and the LUMO to be an even level~the two usually
have opposite parities!, we can write~a12a25aT):

Neven5Even integer1a1

Nodd5Even integer2a1→R215
2e2

h
sin2

p~a11a2!

2
.

If we assume the molecule to remain neutral (aT50)
thena1 anda2 are equal. If we further ignore the effect of
all the levels other than the HOMO and the LUMO then we
can show thatpa15pa2.2G0 /Eg , whereG0 is the total
broadening of the HOMO and LUMO levels,Eg is the sepa-
ration between them, and the ratioG0 /Eg is assumed to be
much less than 1. With these approximations we can write

R21> ~2e2/h! ~2G0/Eg!
2.

This equation is often not accurate because it ignores all
levels other than the HOMO and the LUMO. But it is still
useful in a qualitative sense. It shows that the resistance of a
neutral molecule is essentially determined by the parameter,
G0 /Eg , equal to the ratio of the broadening to the band gap.
This parameter can be adjusted through the functional groups
that bind the molecule to the metallic contacts. A localized
state in the middle of a molecule contributes very little to the
conductance because it is hardly broadened by the coupling
to the metal. The level broadening is also smaller for longer
molecules because the clips at the ends represent a smaller
perturbation. Longer molecules also have a smaller bandgap
but usually the reduction inEg is small compared to the
reduction inG0, leading to an overall increase in resistance
with length as noted by several authors.10,11

Open-shell molecules:For an open-shell molecule with an
odd number of electrons,Nd is an odd number. Equation~3!
then predicts a low resistance even if the molecule is very
weakly coupled. This is because the Fermi energy is pinned
to the middle of a level leading to a large transmission re-
gardless of the level broadening. In practice, however, if the
level broadeningG is small compared to the charging energy
U then one enters the Coulomb blockade regime where con-
duction is suppressed by single-electron charging effects.18

This can be viewed as the molecular analog of the Mott
transition that occurs in band conduction when the band-
width becomes smaller than the charging energy. The ques-
tion is whether Eq.~3! is still valid in this regime. To answer
this question let us assume for simplicity that conduction
takes place primarily through a single energy level. The
problem is then analogous to the well-known ‘‘Anderson
impurity’’ problem for which the transmission can be shown
to be given byT5n sin2(pN/n), N being the number of elec-
trons occupying ann-fold degenerate level.18 It is well

known that if the charging energyU is large compared to the
level broadeningG then this relation is valid only at low
temperatures when the transmission is due to the Kondo
peak. But at temperatures that are high compared to the
Kondo temperature, it is not valid as noted in Ref. 15. Simi-
larly we would expect that in the regimeU@G, Eqs.~3! or
~4! would describe the Kondo peak and can be used if the
resistance is measuredbelow the Kondo temperature. But it
is not relevant as far as the high-temperature resistance is
considered. The problem is that in this ‘‘local moment re-
gime’’ we cannot assume the phase shifts for the two spins to
be equal, as we did in obtaining Eq.~3! from Eq.~2!. Instead
we obtain

R215~e2/h! @sin2~pNd,↑!1sin2~pNd,↓!#.

However, we will not consider this local moment regime
further in this paper, assuming that the coupling of the mol-
ecules to the metallic pads is large enough thatG>U.

Derivation of Eq. (2):For a symmetric molecule theS
matrix @s# can be written as

s5F r t
t r G→T5trace~ t1t !5M2trace~r1r !. ~5!

Each of the matricest andr is of order@M3M ]. We can use
a unitary transformation to transform theS matrix into the
form

s̃5
1

2 F I I

I 2I G F r t

t r G F I I

I 2I G5F r1t 0

0 r2tG , ~6!

where@ I # and@0# are the identity and null matrices, each of
orderM3M . The matrix@r1t# represents theS matrix for
symmetry inputs that excite the leads on the two sides with
the same sign, while the matrix@r2t# represents theS ma-
trix for antisymmetric inputs that excite the leads with oppo-
site signs. The eigenstates of a symmetric molecule can also
be classified as even and odd and we useNeven andNodd to
denote the total number of electrons occupying each group of
states. We note that the even and odd subspaces are com-
pletely decoupled from each other so that we can apply the
Friedel sum ruleto each part individually:

1
2 arg~det@r1t# !5pNeven

and 1
2 arg~det@r2t# !5pNodd.

Combining the two relations we can write

1
2 arg~det@r1t#@r12t1# !5 (

m51

M

fm5pNd , ~7!

where Nd[Neven2Nodd

and exp@i2fm# are the eignevalues of the~ M3M ) matrix
@r1t#@r12t1#~this can be taken as the formaldefinitionof
the phase shifts!. We can write

trace~@r1t#@r12t1# !5 (
m51

M

ei2fm ~8a!

and trace~@r12t1#@r1t# !5 (
m51

M

e2 i2fm. ~8b!

Adding Eqs.~8a! and ~8b! we obtain
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trace~r1r2t1t !5 (
m51

M

cos~2fm!. ~9!

Since trace (r1r1t1t)5M , we obtain

T[trace~ t1t !5 (
m51

M

sin2fm . ~10!

Combining with Eq.~1! we obtain Eq.~2a!. Equation~2b! is
the same as Eq.~7! above.

Numerical Example:We now present a simple illustrative
example based on a noninteracting Hamiltonian. As we have
discussed, the molecule shown in Fig. 1~a! has eight modes
in each lead:M58. Figure 1~b! shows the four distinct
phase shifts~due to spin degeneracy the phase shifts come in
pairs that are equal! obtained from the eigenvalues of
@r1t#@r12t1#. The point to note is that three of the four
phase shifts are nearly equal to zero in the energy range from
212 eV to24 eV. This is because the conduction through
the molecule in this energy range occurs primarily through
thepz orbitals of the sulphur and carbon atoms. The structure
is thus effectively single moded and we can use Eq.~3! with
good accuracy at least around the HOMO-LUMO gap.

In Fig. 1~b! we have also shownNd(E! ~per spin!, which
is equal to the sum of the four phase shifts as we would
expect from Eq.~2b!. Nd(E) is calculated as follows. We
first obtain the eigenenergies of the molecule which are com-
plex due to the coupling to the metallic contact:Ei5« i
1 iG i . The imaginary partG i determines the broadening of
level ‘‘ i ’’ due to the coupling. Its magnitude depends on
how effectively the level can empty into the metallic reser-
voir. Knowing « i andG i , we can calculateNevenandNodd:

Neven,odd52~ for spin!3 (
even,odd levels

@q~E2« i !

2 ~1/p! tan21~G i /E2« i !#. ~11!

The first term~q is the unit step function! gives the number
of electrons that would be present if the molecule were iso-
lated ~ G i50! while the second term gives the gain or loss
due to the coupling to the contacts. This relation can be
obtained simply by integrating a Lorentzian of widthG i cen-
tered around« i , but it is valid for non-Lorentzian line shapes
too. It applies even to interacting many-body systems if we
can identify the one-particle excitation energies~« i! and their
escape rates~G i).

Figure 1~c! compares the transmission calculated from
Eq. ~3! with the actual calculation.19 The agreement is excel-
lent above212 eV. The discrepancy below the HOMO at
212 eV is expected since all four phase shifts are significant
in this energy range@see Fig. 1~b!# and Eq.~3! is not appli-
cable.

Summary:We have presented a simple expression for the
resistance of a symmetric molecule in terms of a set ofM
phase shifts which are related by a sum rule toNd5Neven
2Nodd, NevenandNodd being the number of electrons occu-
pying the even and odd eigenstates, respectively. This rela-
tion is based on the Friedel sum rule and as such should be
valid even in the presence of interactions, as long as the
broadening of the molecular levels due to the coupling to the
leads is larger than any broadening due to interactions within
the molecule. Many molecular wires of interest are effec-
tively single moded, allowing us to write a particularly
simple relation@Eq. ~3!# that lends insight into the factors
affecting the resistance of a molecule. A simple example is
presented to illustrate the use of these relations.

The authors are deeply indebted to Cliff Kubiak for many
helpful discussions on molecular conduction. This work was
supported by the Army Research Office under a University
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