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Application of the Friedel sum rule to symmetric molecular conductors
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Recent developments in nanotechnology have made it possible to measure the resistance of individual
molecular wires self-assembled between two metallic pads. In this paper we present a simple expression for the
resistance of a symmetric molecule in terms of a selMophase shiftsM being the number of conducting
channels connecting the molecule to the metallic pads. These phase-shifts are related by a sumdjule to
= Neveri Nodd,» Where Ngyen and Nggq are the number of electrons occupying the even and odd eigenstates
respectively. For many molecular wires of interest all the phase shifts are nearly zero except(frerapn,
allowing us to write a particularly simple relation for the resistariRel= (2e?/h)sirf(#Ny/2). The relations
presented here are based on the Friedel sum rule and should be valid even in the presence of interactions.
[S0163-182697)50104-4

A number of experimental groups have recently reportedong as the broadening of the molecular levels due to the
the observation of electronic conduction through “molecularcoupling to the leads is larger than any broadening due to
wires” attached to two metallic contacts by special func-interactions within the molecule. The generality of Ef)
tional groups at the end§&ig. 1).1~" Some of these molecular could make it particularly useful in describing open shell
wires are based on alkane chains and are strongly insulatingiolecules for which correlation effects can be quite com-
Others are based on conjugated polymers like polyparaphelex. Also, the charge on a molecul@nd hence the number
nylene and could possibly be engineered to provide goodf electron$ is experimentally observable so that it is more
electronic coupling, although so far the measured resistanagseful to know the transmissioh as a function of the num-
has been at least several megohms per molecule. Theoretidsér of electrons rather than as a function of the Fermi energy
work in this area has been based on the Landauer formulg;.

which relates the measured resistaftéo the transmission Equation(2) expresses the transmission in terms of the
function at the Fermi enerdy: phase shiftsp,, in a manner reminiscent of the well-known
expression for the scattering cross secfighof an impurity
R™'=(e?h) T(Ef)=(25.8 K) 'T(Ey). (1) in a metal derived from the Friedel sum ruleere the trans-

Different authors use different methods for calculating the'¢75€ modes 'm” are given by the spherical harmonjcs

transmission function but their results are similar and in gen- - )

eral agreement with the available experimental datiNote o= mzzo sinf 8y,

that the minimum possible resistance predicted by (Egis

(25.8/M) kilo-ohms corresponding to a “ballistic” molecule

with T(E;)=M, M being the number of conducting chan- Where mz—:o Om=N.

nels or transverse modésicluding spin that connect the -

molecule to the metallic pads at each end. This represents tthis relation is particularly useful if one can guess the indi-

contact resistance at the metal-molecule interface. vidual 6, using general symmetry considerations. The same
In this paper we will combine the Landauer formula with is true of Eq.(2). For example, for the molecule shown in

the Friedel sum rufé=°to show that the resistance of any Fig. 1(a), only two of the phase shifts are nonzero in the

o

symmetric molecule can be written as energy range around the HOMO-LUMO gap. For this mol-
> M ecule, we can identify the sulphur atoms at each end as the
e [ bRl H H H
R 1=— 2 Sif ¢, (2a) leads,” since electrons flow out into the reservoir from
h =1 these sites. Since a sulphur atoms has ©fevel and three

p levels this means that, including spin, the molecule has
eight modes in each leat¥! =8 1% But as we will see, of the
M . .. . . .
eight distinct phase shiftg,,, six are approximately zero.
mE: ¢m=(Neveri Nogd) = 7Nq (2b) Noting that due to spin degeneracy the other two phase shifts
are equal, it is easy to see that in this case we can write
Nevenand Nygq being the number of electrons occupying the approximately from Eq(2):
even an_d odd states, respecti\{ely. The important point about R™1~ (2e?/h) sif(7Ny/2). @)
Eq. (2) is that it should hold in general regardless of the
detailed nature of the electron-electron interactions, althougfihe reason only one phase shift per spin is significant is that
the functionNy4(E;) or T(E;) might change drastically. This conduction takes place primarily through thgorbitals only
is because it is based on a general principle like the Friededo that the molecule effectively has only a single mode per
sum rule which has been shown to be valid for interactingspin. From this point of viewthe number of nonzero phase
systems assuming that the single-particle-like states do nehifts is the real indicator of the number of modes struc-
decay* Consequently, we expect E(R) to be accurate as ture. The number of moded in the leads is arbitrary, since

where

1
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(a) Metal Molecule Metal

(b)
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FIG. 1. (@) Chemical structure(b) Phase
shifts ¢,(E) (m=1-4) calculated from the ei-
genvalues of thér+t][r*—t*]. Also shown is
. the functionmNg= 7(Neyer Nogo) (divided by 2
for spin), which is equal to the sum of the four
phase shifts as we would expect from ERb).

1 The different functions have been offset horizon-
tally for clarity. (c) Transmission functiol (E).
The solid curve represents the exa¢g) calcu-

(¢)

6 lated using the method described in Ref. 11. The
crosses represent an approximate calculation
based on the relatiof=sir?(mNy/2).

8- LUMO

HOMO
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it would change if we were to include a few gold atoms from Closed shell moleculesvost molecular wires that have
the pads as part of the molecule. The gold atoms would theheen investigated so far involve closed-shell molecules for
form the leads and not the sulphur atoms. But the currentvhich Ny is an even number in the isolated state, and(Bp.

would still have to funnel through individugl, orbitals giv-

predicts infinite resistance as we would expect. Connecting

ing only one nonzero phase shift per spin. In general, if theréhe molecule to the metallic pads has two distinct effects.
are M.z number of nonzero phase shifts that are approxiFirstly, a fractional numbef 1) of electrons are transferred

mately equal then we can write
R™ 1~ (€2/h) Mg SifP(7Ng/Mgg), (4

which reduces to Eq.3) if M =2 corresponding to single-
moded spin degenerate conduction.

to or from the molecule depending on the work function of
the metal. For the structure considered in this pdjbdg.
1(a)] we expect very little charge to be transferred into or out
of the molecule since the work function of gal8.3 eV) is
slightly smaller than the average of the ionization potential
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(8.3 eV) and the electron affinity2.4 eV) of the moleculé’”  known that if the charging enerdy is large compared to the
Experimentally, the amount of charge transferred has beelevel broadeningl” then this relation is valid only at low
measured for many metal-molecule complexes and is usuallegmperatures when the transmission is due to the Kondo
quite small. peak. But at temperatures that are high compared to the
Secondly, connecting to the metallic pads makes the levKondo temperature, it is not valid as noted in Ref. 15. Simi-
els broaden, causing the highest occupied molecular orbitdhrly we would expect that in the regimé>TI", Eqgs.(3) or
(HOMO) to lose a fraction of its electrons, since part of its (4) would describe the Kondo peak and can be used if the
spectrum now lies above the Fermi energy. The lowest unresistance is measuréglow the Kondo temperatur8ut it
occupied molecular orbitalLUMO), on the other hand, is not relevant as far as the high-temperature resistance is
gains a fraction of electrons, since part of its spectrum liegonsidered. The problem is that in this “local moment re-
below the Fermi energy. Assuming the HOMO to be an oddyime” we cannot assume the phase shifts for the two spins to
level and the LUMO to be an even levéhe two usually be equal, as we did in obtaining E@) from Eq.(2). Instead

have opposite paritig¢swe can write(a;— a>= at): we obtain
Never= Even integet a; R™1=(€?/h) [sir?(mNy ;) +si?(mNg ) ].
B . o, 2€? 2 m(a+ay) However, we will not consider this local moment regime
Nogg=Even integef ay—R™*=——si 2 : further in this paper, assuming that the coupling of the mol-
ecules to the metallic pads is large enough fhal.
If we assume the molecule to remain neutrak€0) Derivation of Eq. (2):For a symmetric molecule th8

thena; anda, are equal. If we further ignore the effect of matrix[s] can be written as
all the levels other than the HOMO and the LUMO then we

can show thatra,=ma,=2I'y/Ey, wherel'y is the total s=
broadening of the HOMO and LUMO levelg, is the sepa-

ration between them, and the rafig/E4 is assumed to be Each of the matricesandr is of order[M X M]. We can use
much less than 1. With these approximations we can write a unitary transformation to transform ttf&matrix into the

t N N
) —T=tracdt™t)=M —tracdr™r). (5)

t

R 1= (2€%/h) (2T'o/Eg)>. form
. . o o1l rotf||l | r+t O
This equation is often not accurate because it ignores all S=— = , (6)
levels other than the HOMO and the LUMO. But it is still 210 =t o fr —l 0 r—t

useful in a qualitative sense. It shows that the resistance Of\i?rhere[l] and[0] are the identity and null matrices, each of
neutral molecule is essentially determined by the parameteg,qyorM x M. The matrix[r +t] represents th& matrix for
I'o/E4, equal to the ratio of the broadening to the band 9apgymmetry inputs that excite the leads on the two sides with
This parameter can be adjusted through the functional grougge same sign, while the matrix —t] represents th& ma-

that b_|nd the _molecule to the metalllc_ contacts. A_ localizedyiy for antisymmetric inputs that excite the leads with oppo-
state in the middle of a molecule contributes very little to theg;;q signs. The eigenstates of a symmetric molecule can also
conductance because it is hardly broadened by the coupling, q|5ssified as even and odd and we NS, and Nygg to

to the metal. The level bro_adenlng is also smaller for longelanote the total number of electrons occupying each group of
molecules because the clips at the ends represent a smallgL:~s \We note that the even and odd subspaces are com-

perturbation. Longer m.olec_ules_also have a smaller bandga@etmy decoupled from each other so that we can apply the
but usually the reduction ifEy is small compared to the Eriadel sum rulgo each part individually

reduction inT", leading to an overall increase in resistance N
with length as noted by several authd?s? z argdefr +1])=7Neyen
Open-shell moleculegor an open-shell molecule with an 1 _

. . and 5 argdefr —t])=mNgyqq-
odd number of electrond\4 is an odd number. Equatid) 2 argdefr—t])=mNogy
then predicts a low resistance even if the molecule is veryCombining the two relations we can write
weakly coupled. This is because the Fermi energy is pinned M
to the middle of a level leading to a large transmission re- 1 ) — _

X . . s argdefr+t]r —tT])= =7Ny, 7

gardless of the level broadening. In practice, however, if the z argdet I D mzzl m d 0
level broadeningd’ is small compared to the charging energy
U then one enters the Coulomb blockade regime where corl?

duction is suppressed by single-electron charging effécts. gnq expi2¢,,] are the eignevalues of tHeM X M) matrix

This can be viewed as the molecular analog of the Mott, 4 ¢[* —t*](this can be taken as the formafinition of
transition that occurs in band conduction when the bandie phase shifis We can write

width becomes smaller than the charging energy. The ques-

here NdE Neven_ Nodd

M
tion is whether Eq(3) is still valid in this regime. To answer e 260,
this question let us assume for simplicity that conduction tracg[r +t]{r"—t ])_mE:l € (8a)
takes place primarily through a single energy level. The y
problem is then analogous to the well-known “Anderson - _ _i2¢
impurity” problem for which the transmission can be shown @nd tracelr™ —t ][VH])—mZ:l e %om. (8b)

to be given byT =n sir’(wN/n), N being the number of elec-
trons occupying am-fold degenerate levéf It is well ~ Adding Egs.(8a and(8b) we obtain
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M
fr—ttt)= N + 2(for spin) X HE—¢;
tracerr—t*t) mE_l coS2¢,,). 9) even,oad™ 2(for spin) even’% Ievels[ (E—¢)

— (1/m) tan Y(T'}/E—g))]. (11)

The first term(? is the unit step functiongives the number
of electrons that would be present if the molecule were iso-
lated ( I';=0) while the second term gives the gain or loss

Since trace ("r+t"t)=M, we obtain

M due to the coupling to the contacts. This relation can be
_ iy ; obtained simply by integrating a Lorentzian of widthcen-
T=tracdt™t) 2:1 Sif’ . (10 tered around;, but it is valid for non-Lorentzian line shapes

too. It applies even to interacting many-body systems if we
can identify the one-particle excitation energieg and their
- : . . : escape rated’;).
Combining with Eq(1) we obtain Eq(2a). Equation(2b) is Figure Xc) compares the transmission calculated from
the same as Ed7) above. _ _ _ Eq.(3) with the actual calculatio’? The agreement is excel-
Numerical ExampIeWQ now present a.S|mpIe illustrative |ant above—12 eV. The discrepancy below the HOMO at
example based on a noninteracting Hamiltonian. As we have 13 ey is expected since all four phase shifts are significant
discussed, the molecule shown in Figajlhas eight modes i this energy rangésee Fig. )] and Eq.(3) is not appli-
in each lead:M=8. Figure 1b) shows the four distinct cgple.
phase shiftsdue to spin degeneracy the phase shifts come in - SummaryWe have presented a simple expression for the
pairs that are equplobtained from the eigenvalues of resistance of a symmetric molecule in terms of a seMof
[r+t][r"—t"]. The point to note is that three of the four phase shifts which are related by a sum ruleNig= Ny,
phase shifts are nearly equal to zero in the energy range from Nygq, Neven@ndNyqq being the number of electrons occu-
—12 eV to —4 eV. This is because the conduction throughpying the even and odd eigenstates, respectively. This rela-
the molecule in this energy range occurs primarily througHion is based on the Friedel sum rule and as such should be
the p, orbitals of the sulphur and carbon atoms. The structurgralid even in the presence of interactions, as long as the
is thus effectively single moded and we can use Bpwith broadening of the molecular levels due to the coupling to the
good accuracy at least around the HOMO-LUMO gap. leads is larger than any broadenin_g due to interactions within
In Fig. 1(b) we have also showN4(E) (per spin, which ~ the molecule. Many molecular wires of interest are effec-
is equal to the sum of the four phase shifts as we wouldVely single moded, allowing us to write a particularly

expect from Eq.(2b). N4(E) is calculated as follows. We simple relation[Eqg. (3)] that lends insight into the factors

first obtain the eigenenergies of the molecule which are com@€Cting the resistance of a molecule. A simple example is
presented to illustrate the use of these relations.

plex due to the coupling to the metallic conta&;=z¢;

+iT’;. The imaginary parl’; determines the broadening of  The authors are deeply indebted to Cliff Kubiak for many
level “ i” due to the coupling. Its magnitude depends onhelpful discussions on molecular conduction. This work was
how effectively the level can empty into the metallic reser-supported by the Army Research Office under a University
voir. Knowing g; andT’;, we can calculat®g,e,and Nyqq4: Research Initiative Grant No. DAAL-03-92-G-0144.
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