BIOLOGICAL ION CHANNELS
AS NANOSCALE DEVICES

Approaches to Simulation:
Continuum and Particle Methods

T.A. van der Straaten

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

Department of Molecular Biophysics and Physiology
Rush Medical College, Chicago
OUTLINE

• Background on Protein chemistry, Ion Channels etc
• Simulation Methods
• Continuum (Drift-Diffusion) simulations
 – gramicidin
 – porin
• Monte-Carlo simulations – gramicidin
BIOLOGICAL ION CHANNELS

Proteins that form **nanoscopic** aqueous tunnels in cell membrane
Physiological Role – regulate **ion flow** and composition inside cell control, **electrical signaling** in the nervous system, muscle contraction, **drug delivery**
Disease – malfunctioning channels
Amino acids – building blocks of proteins

Side-chain distinguishes the amino acid

Some of the side-chains are ionizable – **proteins are highly charged**. Strong and steeply varying charge density is critical to the I-V characteristics of the open channel.

neutral pH: \(\text{NH}_2 \to \text{NH}_3^+ \)

\(\text{COOH} \to \text{COO}^- \)

Amino acids are linked together by **peptide bonds**

Polypeptide chains **fold** to form proteins
<table>
<thead>
<tr>
<th>AMINO ACID</th>
<th>SIDE CHAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspartic acid</td>
<td>Asp D negative</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>Glu E negative</td>
</tr>
<tr>
<td>Arginine</td>
<td>Arg R positive</td>
</tr>
<tr>
<td>Lysine</td>
<td>Lys K positive</td>
</tr>
<tr>
<td>Histidine</td>
<td>His H positive</td>
</tr>
<tr>
<td>Asparagine</td>
<td>Asn N uncharged polar</td>
</tr>
<tr>
<td>Glutamine</td>
<td>Gln Q uncharged polar</td>
</tr>
<tr>
<td>Serine</td>
<td>Ser S uncharged polar</td>
</tr>
<tr>
<td>Threonine</td>
<td>Thr T uncharged polar</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Tyr Y uncharged polar</td>
</tr>
</tbody>
</table>

Polar Amino Acids

<table>
<thead>
<tr>
<th>AMINO ACID</th>
<th>SIDE CHAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>Ala A nonpolar</td>
</tr>
<tr>
<td>Glycine</td>
<td>Gly G nonpolar</td>
</tr>
<tr>
<td>Valine</td>
<td>Val V nonpolar</td>
</tr>
<tr>
<td>Leucine</td>
<td>Leu L nonpolar</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Ile I nonpolar</td>
</tr>
<tr>
<td>Proline</td>
<td>Pro P nonpolar</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Phe F nonpolar</td>
</tr>
<tr>
<td>Methionine</td>
<td>Met M nonpolar</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>Trp W nonpolar</td>
</tr>
<tr>
<td>Cysteine</td>
<td>Cys C nonpolar</td>
</tr>
</tbody>
</table>

Nonpolar Amino Acids
PROTEIN FOLDING

- Ionic bonds
- Hydrogen bonds
- van der Waals attraction

3D structure is determined by order of amino acids in sequence and energy considerations - folded structure is that which minimizes free energy.

Conformational changes can occur when protein interacts with other molecules - crucial to function of protein.
GRAMICIDIN

Small simple channel forming molecule
Each monomer is made up of 15 amino acids (~500 atoms) folded into a helical structure.
Expressed by certain bacteria perhaps to kill other microorganisms by collapsing the ion gradients that are required for their survival. Useful as antibiotic

ompF PORIN

Large trimeric channel, sits in the outer membrane of *e. coli*
Each monomer is made up of 340 amino acids (~90,000 atoms)

RASMOL www.umass.edu/microbio/rasmol/
PROTEIN DATABANK www.rcsb.org/pdb/
Many channels exhibit **switching** properties similar to electronic devices. “open/close” or “on/off” states – response to environment
PATCH-CLAMP MEASUREMENTS

Allows single channel currents to be recorded

Channel is either fully open or fully closed

Open channel conductance is constant - aggregate current reflects the total number of channels open at any given time
PATCH-CLAMP MEASUREMENTS

 Allows single channel currents to be recorded

 Channel is either fully open or fully closed

 Open channel conductance is constant - aggregate current reflects the total number of channels open at any given time
GATING MECHANISMS

Voltage Gating – the open probability is a function of voltage – e.g., Na\(^+\), K\(^+\), and Ca\(^{2+}\) channels are essential for conducting a nerve pulse down an axon and to another nerve cell (or neuron).

pH Gating – open probability is a function of pH

Ligand Gating – small molecule binding to the channel affects its open probability. Important in chemical synaptic transmission (the most common way of transferring a signal from one neuron to another). These channels are gated by neurotransmitters, molecules that actually carry the signal between two nerve cells.

Mechanical Gating – channel is directly gated by a mechanical trigger – e.g., cation channel in the hair cell of the inner ear, which is directly gated by a mechanical vibration caused by sound. Not well studied because of technical difficulties.
GRAMICIDIN FORMS DIMERS

Lipid bilayer

Open

Closed

Current (pA)

Time (s)

Single channel

Two channels

Three channels
KcsA CHANNEL - a natural pH sensor

pH induced conformational changes causes KcsA channel to switch between conducting and non-conducting states
Changes in pH → protein charge → electrostatic fields → conformational changes → lowering energy barrier to permeation

(Jay Mashl, computational biology)
Permeation features of an open KcsA Model

Electrostatic ion potential energy

- Energy surface results from charge distribution / pKa’s
- Channel geometry creates dielectric barrier to ion entry

SELECTIVITY

Many channels selectively transmit or block a particular ion species

• Gramicidin passes only small monovalent positive ions (e.g., H\(^+\), Li\(^+\), Na\(^+\), K\(^+\)) – electrostatic and steric barriers
• Porin ompF channel shows a mild preference for cations
• Potassium channel selects K\(^+\) over Na\(^+\) by a factor of 10\(^4\), even though these ions are similar in size – dehydration of Na\(^+\) presents an energy barrier
Currently only ~ 50 known channel structures
~ 30% of all the genes in the human genome code for ion channels

Device feature sizes are shrinking, how much further can we go?

Channels are naturally occurring device elements
 – self-assembled
 – perfectly reproducible
 – have many specific built-in features and functions
 – can be mutated

Design channels with specific conductances, selectivities and functions.
Bio-devices – circuit elements, biosensors
AMBRI® BIOSENSOR

- Chemical to be detected binds to the antibodies
- Prevents the formation of current-conducting dimers
- Marked reduction in aggregate current

www.ambri.com.au
ION CHANNELS AS NANODEVICES

<table>
<thead>
<tr>
<th>solid state</th>
<th>ion channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal bandstructure</td>
<td>Water solution.</td>
</tr>
<tr>
<td>Carriers are quasi-particles</td>
<td>Carriers are ions with relatively large mass and finite volume</td>
</tr>
<tr>
<td>with a small effective mass</td>
<td></td>
</tr>
<tr>
<td>Conduction channel is delimited by depletion layers or potential energy steps at heterojunctions</td>
<td>Conduction channel is delimited by a highly charged protein membrane</td>
</tr>
<tr>
<td>Ultra-scaled structures suffer from fluctuations of doping and sizes</td>
<td>Channel structures are always perfect replicas. Stable mutations can be used to modify channel behavior.</td>
</tr>
<tr>
<td>Energetic carriers may cause structural damage</td>
<td>Ion are thermalized by interaction with water.</td>
</tr>
</tbody>
</table>
COMPUTATIONAL ISSUES

Permeation takes place on timescales of the order of milliseconds
Scattering rates are high \((10^{13} - 10^{14} \text{ Hz})\)

System length scales \(\sim 100 \, \text{Å}\)
Feature length scales \(\sim 1 \, \text{Å} \) (steep gradients)
Complicated, temporally fluctuating structures, difficult to mesh

Representation of trace ionic concentrations

Dielectric constant - protein? lipid? inside channel?
Ion-water scattering rates? Other types of interaction with water?
Water behavior at the nanoscale?
IRREGULAR PROTEIN GEOMETRY

topology and charge varies on scale-length of $\lesssim 1\text{Å}$
molecular “surface” rendered with GRASP
SIMULATION HIERARCHY

Quantum Chemistry
- Partial charges

Molecular Dynamics
- Transport parameters

Monte-Carlo Models
- Transport, corrections for ion size

Brownian Dynamics
- Langevin Eq, overdamped limit, $\Delta t \sim 100$ fs
- $T_{\text{sim}} \sim 0.1-1 \mu s$ CPU days, problems with $\varepsilon(r)$

Continuum Models
- IV curve

Compact Models
- Circuit Models

Single amino acid (10 to 20 atoms), no dynamics
- $O(N^2)$ $N \sim 10^5$ $\Delta t \sim 1$ fs $T_{\text{sim}} \sim 1-10$ ns
- CPU weeks-months

$O(M)$ $M \sim 10^4$ $N \sim 100$ $\Delta t \sim 10$ fs
- $T_{\text{sim}} \sim 100$ ns CPU days-weeks

full IV curve CPU mins-hours, overestimates ion densities, requires transport parameters
BECKMAN INSTITUTE

• combine computational electronics and computational biochemistry tools to simulate the behavior of ionic channels as devices.

• study how ion channels could be incorporated in traditional electronic systems performing functions, and learn how to simulate wet/dry interfaces.

• **understand** how specialized functions are accomplished by natural channels, and investigate how to **embed** similar function in **synthetic** channels.

• **exploit self-assembly feature** of molecular structure to arrive at new device architectures.
DRIFT-DIFFUSION

Poisson’s Equation
\[\nabla \cdot (\varepsilon \nabla \psi) = - (\rho_{\text{fixed}} + \rho_+ + \rho_-) \]

Drift-diffusion Equation
\[j_\pm = -(D_\pm / kT) \rho_\pm \nabla \phi_\pm \]

Electrochemical potential
\[\phi_\pm = q\psi \pm kT \ln \rho_\pm + \phi_{\text{ex}}^\pm \]
Continuity Equation

\[\nabla \cdot j_\pm + \frac{\partial \rho_\pm}{\partial t} = S_\pm \]

Boundary Conditions

\[\psi_{right} - \psi_{left} = V_{bias} \]

\[\rho_{\pm, right} = C_{right} \]

\[\rho_{\pm, left} = C_{left} \]
PROPHET SIMULATOR

- **PROPHET** – a rapid prototyping computational environment developed at Lucent Technologies (Conor Rafferty) for solving **multi-dimensional systems of PDEs**.

- **Dial-an-Operator** scripting language allows user to construct a system of equations at an abstract level, using standard ‘building blocks’ (e.g., Laplacian operator).

- **Database hierarchy** for numerical and physical parameters with ‘inheritance’ features – data can be created or modified ‘on the fly’.

- Physical models can be developed independently of the details of the discretization library, solvers, grid structure, etc.

- Handles **arbitrary multi-dimensional geometries** and physical systems.
Application of PROPHET to Ion Channels

- The Stanford group (R.W. Dutton, Z.Yu, D.Yergeau) are developing the new generation of PROPHET with extensions to general device simulations.

- A three-way collaboration (UIUC, Stanford, Rush) is underway to apply PROPHET to simulate ion permeation through protein ‘nano-channels’ embedded in cell membranes, using a continuum transport model.

- Detailed protein geometry and fixed charge distribution are constructed using a variety of existing molecular biology and chemistry software tools (UHBD, GROMOS). This structural information is then translated into PROPHET native mesh format using a customized mesh generator.
PROTEIN STRUCTURE → IV CURVE

Download protein structure (protein databank) atomic coordinates, radii amino acid sequence

Define protein surface flag grid points (UHBD) in protein, lipid bilayer

Generate customized PROPHET mesh

Assign charge to each atomic coordinate

Interpolate charge to grid ρ_{fixed}

PROPHET script
- Specify solver parameters
- Input physical domain
- Assemble PDE system
- Input BCs & physical parameters
- Solve (Newton’s method)
- Write output

Postprocessor reconstruct j_\pm and I current to electrodes.

D, μ fluctuation analysis of MD ion trajectories (GROMOS)
dbase prefix=library/math/systems/default_numerical_parameters
dbase create name=method sval=iterative
dbase create name=maxNewton ival=50
dbase create name=accel sval=bicg
dbase create name=precon sval=ilu
dbase create name=maxfil ival=1
dbase create name=dynfil ival=0
dbase create name=NewtonMaxUpd rval=1.0e11

dbase prefix=""
dbase create name=/options/ignoreFPE ival=0
dbase create name=library/math/memory.size ival=770

dbase createlist name=library/physics/channel
dbase create name=library/physics/channel/max.process.temperature rval=1500
dbase createlist name=library/physics/protein
dbase create name=library/physics/protein/max.process.temperature rval=1500
dbase createlist name=library/physics/lipid
dbase create name=library/physics/lipid/max.process.temperature rval=1500

load pas=/home/amiga/trudy/prophet_examples/porin_NLP.pas

boundary name=left
+ xmin=-48.0 xmax=48.0
+ ymin=-48.0 ymax=48.0
+ zmin=-48.0 zmax=-48.0

boundary name=right
+ xmin=-48.0 xmax=48.0
+ ymin=-48.0 ymax=48.0
+ zmin=48.0 zmax=48.0

specify solver parameters

input domain

define electrodes
system name=pnp
+ sysvars=K,Cl,phi
+ nterm=10
#
Solve transport in channel only
#
+ term0=box_div.sg_ddTherm(phi,K,tl,K_mobility|K){channel}
+ term1=box_div.sg_ddTherm(phi,Cl,tl,Cl_mobility|Cl){channel}
#
Dirichlet B.C. for carrier densities at left & right boundaries
#
+ term2=dirichlet.default_dirichlet(0|K){channel/left,channel/right}
+ term3=dirichlet.default_dirichlet(0|Cl){channel/left,channel/right}
#
Solve Poisson everywhere
#
+ term4=-1*box_div.lapflux(phi|phi){channel,protein,lipid}
+ term5=nodal.copy(K|phi){channel}
+ term6=-1*nodal.copy(Cl|phi){channel}
+ term7=nodal.copy(rho_fixed|phi){protein,lipid}
#
Dirichlet B.C. for phi at left & right boundaries
#
+ term8=dirichlet.default_dirichlet(0|phi){channel/left,channel/right}
#
constrain phi to be continuous across channel/protein/lipid interfaces
#
+ term9=constraint.continuity(phi|phi){channel/protein,protein/lipid,channel/lipid}
define the K in channel

dbase createlist name=library/physics/channel/K
dbase prefix=library/physics/channel/K
dbase create name=background rval=1.0e-5
dbase create name=Cstar rval=1 # ?
dbase create name=esign rval=1 # ?
dbase create name=scale rval=1.0e-5 # ?
dbase create name=dirichlet.left rval=0.602214e6 # 100 mM
dbase create name=dirichlet.right rval=0.602214e6 # 100 mM
dbase prefix=""

... similarly for Cl ...

define the phi in channel

dbase createlist name=library/physics/channel/phi
dbase prefix=library/physics/channel/phi
dbase create name=scale rval=1.0e-7
dbase create name=background rval=0.0
dbase create name=Cstar rval=1
dbase create name=Dix rval= 0.4425e10 # Dix = eps/q eps = 80*eps0
dbase create name=dirichlet.left rval=0.0 # zero bias
dbase create name=dirichlet.right rval=0.0
dbase prefix=""

... similarly for phi in protein and lipid ...
field set=rho_fixed profile3d="porin_charge"
field set=K_mobility profile3d="K_mobility"
field set=Cl_mobility profile3d="Cl_mobility"
field set=tl val=300

dump out flux data
field set=flux solvar=K type=edge
field set=flux solvar=Cl type=edge

print out the Newton convergence behavior
dbase create name=/options/loops ival=1

solve system=pnp
save pas=porin.0mV.pas

dbase prefix=library/physics/channel/phi
dbase modify name=dirichlet.left rval=0.0
dbase modify name=dirichlet.right rval=0.01 # bias 10 mV
dbase prefix=""
solve system=pnp
save pas=porin.10mV.pas
Slice through the channel of the 3D mesh used in PROPHET. (48x48x64 grid points, 0.5Å mesh spacing)
Potential distribution, on a slice through the channel.

Large positive and negative potential spikes in the protein region are due to the fixed charges.

GRAMICIDIN

1.0 molar NaCl solution

\[+V_{bias} = 150 \text{ mV} \]
GRAMICIDIN 3-D PROPHET SIMULATION

Cl⁻ Anion distribution

BIAS = 150 mV

Bath solution = 1.0 molar NaCl

$6.02 \times 10^6 = 1 \text{ molar}$
GRAMICIDIN 3-D PROPHET SIMULATION

Na^+ Cation distribution

$\text{BIAS} = 150 \text{ mV}$

$\text{Bath solution} = 1.0 \text{ molar NaCl}$

$6.02 \times 10^6 = 1 \text{ molar}$
Gramicidin - PROPHET Simulation

Bias = 0 mV

potential (V)

position along channel axis (Å)
Gramicidin - PROPHET Simulation

Bias = 150mV

potential (V)

position along channel axis (Å)
Gramicidin - PROPHET Simulation

Bias = 0 mV

- **Cations (Na⁺)**
- **Anions (Cl⁻)**

Ion densities (Moles)

Position along channel axis (Å)
Gramicidin - PROPHET Simulation

Bias = 150 mV

cations (Na⁺)
anions (Cl⁻)

ion densities (Moles)

position along channel axis (Å)
ompF (OUTER MEMBRANE PORIN)

- **Trimeric** protein that resides in the outer membrane of *e-coli* bacterium.
- Well-known, **very stable** structure
- Net charge of $\sim -30|e|$
 - Highly charged pore constriction. Moderate cation selectivity.
- Unknown gating mechanism
- Can be **mutated**. Ideal for experimental and simulation studies of ion permeation. Template for biodevices
CALCULATING PROTEIN CHARGES
(Jakobsson group)

Amino acids …

Side chains are ionizable P_{ion}

P_{ion} depends on local electric field, salt concentration and pH

How to compute P_{ion} inside the folded protein?

1. Δ (Free Energy): amino acid in $H_2O \rightarrow$ amino acid in protein

 Nonlinear Poisson (Poisson-Boltzmann) equation (UHBD)

2. Effect of interaction of amino acids with each other
IONIZATION STATES FOR ompF PORIN

Ionic Strength = 100 mM

- Arg 42
- Arg 82
- Arg 132
- Lys 16
- Lys 80

partial charge on residues vs pH of bath

Ionic Strength = 100 mM

- Asp 113
- Glu 117
- Glu 296
- Glu 312
- Asp 312

partial charge on residues vs pH of bath
MOLECULAR DYNAMICS (Jakobsson group)

- System is represented by charged balls (atoms) connected by springs (bonds)
- System is initialized with a Maxwellian distribution and allowed to evolve according to Newtonian mechanics.
- Gromacs - efficient, scalable open source MD package
ESTIMATING DIFFUSIVITY FROM ION TRAJECTORIES

$$\text{MSD}(au) = \left\langle (x(t + \tau) - x(t))^2 \right\rangle = 6D\tau$$
DIFFUSIVITY INSIDE CHANNEL

![Graph showing diffusivity inside a channel with polynomial fit and 3-level average.](image-url)

- **$D_{K^+(z)}$**
- **$D_{Cl^-(z)}$**
- **Bulk KCl**
- Position along channel (Angstroms)
- D (10^{-5} cm^2/sec)

The graph illustrates the variation of diffusivity along the channel, with polynomial fitting and 3-level average techniques applied. The channel and bulk KCl regions are also indicated.
CURRENT-VOLTAGE CURVES

experiment (Rush) vs. simulation (UIUC)

Trimer current (pA)

V_{bias}(mV)

-200 -150 -100 -50 0 50 100 150 200

-150 -100 -50 0 50 100 150 200

polynomial fit
3-level average
D=0.67\times10^{-5}\text{cm}^2/\text{sec}

ompF 100mM KCl
ASYMMETRIC BATH CONCENTRATIONS

Trimer Current (pA) vs. V_bias (mV) for ompF (C_left=0.1M KCl)

- C_right=0.25M D=0.64x10^-5 cm^2/sec
- C_right=0.5M D=0.65x10^-5 cm^2/sec
- C_right=1M D=0.63x10^-5 cm^2/sec
- C_right=3M D=0.61x10^-5 cm^2/sec
ASYMMETRIC BATH CONCENTRATIONS

ompF \((C_{\text{left}}=0.25\text{M KCl})\)

- \(C_{\text{right}}=0.1\text{M} D=0.74\times10^{-5}\text{cm}^2/\text{sec}\)
- \(C_{\text{right}}=0.5\text{M} D=0.67\times10^{-5}\text{cm}^2/\text{sec}\)
- \(C_{\text{right}}=1\text{M} D=0.67\times10^{-5}\text{cm}^2/\text{sec}\)
- \(C_{\text{right}}=3\text{M} D=0.67\times10^{-5}\text{cm}^2/\text{sec}\)
ASYMMETRIC BATH CONCENTRATIONS

ompF (C_{left}=0.5M KCl)

- $C_{right}=0.1M$ $D=0.66 \times 10^{-5}$ cm2/sec
- $C_{right}=0.25M$ $D=0.58 \times 10^{-5}$ cm2/sec
- $C_{right}=1M$ $D=0.60 \times 10^{-5}$ cm2/sec
- $C_{right}=3M$ $D=0.60 \times 10^{-5}$ cm2/sec
OmpF → G119D: replace an uncharged glycine G119 (white), located in the pore constriction, with an aspartate D119 (red).

(visualization – VMD: http://www.ks.uiuc.edu/Research/vmd/)
EQUILIBRIUM K⁺ DENSITY

ompF

Mutation G119D
Effect of mutation: narrower channel, lower conductance (15-40% lower), higher cation selectivity

Separate geometric & electrostatic effects of the mutation by scaling down the charge distribution on the aspartate to zero - ‘virtual’ channel that is structurally identical to G119D but has the same charge as ompF.

Simulations at 1M reveal no change in the conductance.

Cation selectivity reduced
CONTINUUM SIMULATIONS – SUMMARY

• Combine existing methods of computational biochemistry and computational electronics to study ion channels.

• Current-voltage characteristics computed for \(ompF \) in \(KCl \) agree reasonably well with experiments.

• Conductance sensitive to the diffusion coefficient profile, especially in the pore constriction

• Disagreement attributed to uncertainty in the diffusion coefficient and finite ion volume effects – work in progress
MONTE CARLO PARTICLE SIMULATION

• Particle trajectories are resolved in 3D. Electrostatic forces calculated self-consistently from Poisson equation (P3M)

• Water is assumed to be a continuum background with a given permittivity ε. Interaction between ions and water is accounted for by a scattering rate. Flight-times between collisions are generated statistically from an average scattering rate. Scattering events are assumed to thermalize the ions.

• Finite size of the ions is accounted for by associating a radius and a Lennard-Jones potential to the ions.
initialize \(t = 0 \)
grid, protein charges
calculate \(\rho_{\text{fixed}} \)
\[\tilde{r}_{\text{ions}} \rightarrow \rho_{\text{ions}} \]
solve \text{POISSON}
\[\nabla \cdot (\varepsilon \nabla \phi) = -\left(\rho_{\text{fixed}} + \rho_{\text{ions}} \right) \]
update \(E \)
short range forces
Move ions \((E + F_{LJ}) \)
scattering with water
scattering off protein/lipid
update \(\tilde{r}_{\text{ions}} \)
\[t \rightarrow t + dt \]

Lennard Jones 6-12 potential
\[\varphi_{LJ} = -4\varepsilon_{LJ} \left(\left(\frac{\sigma}{r} \right)^6 - \left(\frac{\sigma}{r} \right)^{12} \right) \]

![Lennard Jones 6-12 potential graph](image-url)
Na⁺ trajectories that cross the channel are rare events
CHALLENGES

Poisson → computational bottleneck
Small ensemble size (1M, 28000 Å³ → ~ 40 ions) Coulomb (N² = 1600) is much faster than Poisson (N_{mesh} = 28000)
How to evaluate \(F_{\text{coulomb}} \) when ions are separated by \(\varepsilon(r) \)?
Use a coarser mesh and include correction for short-range forces?
OK for baths – but close to protein need to have dielectric interface resolved properly. Coarse mesh also alters the channel cross-section and crossing probability.
→ 2 grids (fine grid for defining ion accessible volume, coarser grid for fields)
→ non-uniform, non-rectilinear mesh

Channel crossings are rare events (1pA → 6 ions crossing per μs)
Extended-ions (spheres) greatly reduces the probability of ion crossing channel – most CPU spend tracking ions that don’t go anywhere near the channel mouth.
High ion-water scattering rate \(10^{13} \) to \(10^{14} \) Hz, \(\Delta t < 10\text{fs} \) so need about \(10^8 \Delta t \)
(1GHz processor, say Δt → 1s, 1 μs → 1yr)

Boundary conditions – what to do when ion hits electrode? Ion injection from electrodes? How far away from the protein do we need to put the electrodes?
Ions are not point charges

Ion-protein/lipid interaction modeled as hard-wall potential – ions within one ionic radius of protein/lipid surface are scattered randomly.

How is ionic charge distributed on the ion? How is this charge distribution mapped to grid? How to handle the short-range correction?

Test trajectories in *prescribed* field (PROPHET)
bias = 150 mV, 100 mM NaCl, 1µs simulation time

ions modelled as point charges: ~ 25 % current carried by Cl−
ions modelled as “hard” spheres: < 4 % current carried by Cl−
experimentally: Cl− is zero
Simple 1-D PNP (drift-diffusion) solver for ionic-channel

On line at: http://lipidraft.ncsa.uiuc.edu

Welcome to the PNP Workbench

This site is intended for scientists involved in the PNP Program.
You must register in order to have access. If you have already registered, please login now.

Here you may run the PNP program online!
You may graph, save and share the results. Communication with peers is also supported through forums.

webmaster