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Particle Monte Carlo simulation of quantum phenomena
In semiconductor nanostructures
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Quantum effects in semiconductor devices are usually described in terms of wave functions
obtained from the solution of the Scldinger equation. However, it is difficult to simulate practical
devices where clear semiclassical and quantum features coexist, as is the case for nanoscale devices
at normal temperatures. We present here a particle description of quantum phenomena derived
starting from Wigner's transport formalism, where the dynamics of particles are treated
semiclassically, but with an effective force added to account for quantum effects. The resulting
model is solved by using a particle Monte Carlo approach, which we apply to describe transport
across a single tunneling barrier. Results of the numerical calculations indicate that size quantization
and tunneling effects can be well resolved by the combined Monte Carlo/quantum force approach,
yielding quantitative agreement with Schinger equation results. @001 American Institute of
Physics. [DOI: 10.1063/1.1354653

I. INTRODUCTION technique to simulate electron transport throtgihomoge-

, neous potential profilesncluding abrupt heterointerfaces,
In the usual quantum approaches, the physical state of afjnere quantum size effects such as tunneling and quantum

individual system is completely specified by a wave function,onfinement become important. This technique would really
from which the probabilities associated with observablepg needed for theoretical description and practical design of
quantities can be derived. In alternative, a particle descripmtigimensional ultrasmall integrated devices. In this ar-
tion of quantum theory has also been exairqnlnef_j in terms Aficie, 1o demonstrate the validity of our approach, we present
the quantum potential, as introduced by BonRor instance, ¢ solutions of electron transport through a single tunneling
it was successfully demonstrated that the quantum potentig|, rier consisting of GaAs and AlGaAs. With this simple
produces a clear bunching of particle trajectories in the tWomodel, we can carefully identify tunneling and quantum con-

slit interference experimeRtwhich is required to obtain the finement effects, and also can discuss the correspondence
usual fringe intensity pattern. Such a quantum potential apg;ith Schralinger's wave theory in detail.
proach accounts for the quantum interference effects while

reta!mng the notion of a'well-deflned partlcle trajgctory: A Il. QUANTUM-CORRECTED MONTE CARLO METHOD
particle-based approach is very attractive for practical simu-
lation of nanoscale semiconductor devices at normal tem- The Wigner distribution function, which corresponds to
peratures, since one would expect to see an admixture @& quantum mechanical distribution function, is generally de-
semiclassical and quantum transport features. It is very diffined in the space and momentum coordintteas

ficult to resolve the two regions separately and it is even

- * u u .
more difficult to formulate a global model approach that cov-f(k,r,t)= E “f dug| r+ =ty r— —,t) g ik
ers these regions together. In this article, we propose a par- n e 2 2
ticle description of quantum phenomena based upon a quan- @

tum force derived from the Wigner’s transport formalidm.  where y,, represents the state of the system dhgdis the
The quantum force can be incorporated into the driving forceprobability of occupying the state. The transport equation
term of the Boltzmann transport equatiéBTE),%° which  for the Wigner distribution function is given in the form of a
enables us to utilize the well-developed particle Monte Carlanodified BTE a&*

(MC) computational techniqué&!! A quantum correction

approach has been recently attemped to include the quantum 4 y. v f— EVrU-ka

mechanical electron-phonon interaction based upon the cor h

cept of Wigner paths in phase spaé&3 A MC technique = (pyett o

was utilized to solve the time evolution of the Wigner func- + —(V,- V)2 Wuf=|—| , 2
tion for spatially homogeneous casand it was shown that a=114%2a+1)! It/ e

the collisional b_roadenlng is reduced by considering thg,hareU denotes the spatially varying potential energy, rep-
quantum correction Con_t”b“_t'dﬁ' On the other hand, the | oqented by using the electrostatic potendigand band dis-
main subject of this article is to develop a computatlonalcominuity at heterointerfaceSE asU=q¢+ AE. Note that
V operates only offiandV, operates only on the potential
2Electronic mail: ravaioli@uiuc.edu U. Also, g= —|e| for electrons andj=|e| for holes wherje|
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is the elementary charge. In order to account for collisions, P
we introduce a collision integral describing the time varia- F)?:&—
tion of f due to scattering by y

1
24

— =+ + ;
My gy Myx IYIX Mx2y IX

262 92 6h2 92 6h2 az)

fd3k’[W(k’,k)f(k’)—W(k,k’)f(k)]. where

(3) 114
Kx  2h2

) -
). (2m)3

The functionsW(k’,k) represent the scattering rates ob-
tained from Fermi’s golden rule. We would include the same 1
types of scattering as in the classical Boltzmann equation. — _—_—_|3
An essential feature of the Wigner formalism is the presence My 2h?

of quantum effects through the inherently nonlocal driving

IExi\?

A
|

potential, in the expansion of the fourth term on the left-hand 1 1 [#°Ex-ic (ﬁEk—ﬂz 12
side of Eq.(2). In the limit of slow spatial variations, the szy_ 202 okZ B Ky '

nonlocal terms disappear and Eg) reduces to the conven-

tional BTE. Here, we indicate witlQ, the lowest-order 1 1 | Bk IE i\ ?

guantum correction term obtained by considering oaly 5 2% ok2 —,8( ok j ' (13
=1 in the expansion of Eq2). The lowest-order term gives Hy2x y Y

a major contribution in the quantum mechanical 1 1 1 PE

corrections*®° For a two-dimensional problen®; is writ- — (14)

= — = —2 —_—
ten explicitly, as Mxy Myx  #2 KK,

1 [ PU 5% PAU The physica] gffect of the quantum forcgs is to soften the
1= | — — +3—— potential variations that the particles feel in the quantum re-
240\ gx® ok axPay akZok, gions where the potential and the carrier density change
abruptly. Equationg8) and (9) can be extended to a full-
4) band description of quantum forces if the coefficients given
by Eqgs.(10)—(14) are evaluated using a complete numerical
band structure oE, .
Supposing that the system is relatively close to equilibrium, | this article, our goal is to make a comparison between
we introduce for simplicity a displaced Maxwell-Boltzmann e quantum force approach and Sainger’s wave theory.
distribution function in the correction term, as We consider a simple transport problem under the assump-
f(k,r)=exp{— B[Ex_i+ U(r) —E]}, (5) tion_of effective mass approximation. When we use the_ ef-
. . _ ~ fective massesn,, my, andm, to represent the energy dis-
whereEy is the Fermi energyp=1/kgT, Ey_i is the carri-  persion relation as

er's energy and indicates the average momentum of the

#U o3 +a3u °f
axay? gkyaks  ay® akS)

displaced distribution function. The carrier densitfr) is Evi= > H%(ki—k)(2m), (15)
obtained from integration of Ed5) over the momenturk, i=xy,z
as we can derive the following coefficients necessary for Egs.

n(r)=NcexpB[E;—U(N)1}, 6 (8 and(@):
whereN, indicates the effective density-of-states. We should 1 -1 —
mention that the earlier simplification is not a limitation of Iy thﬂ[yx(kx_kx) —3%d, (16)
the method, since other numerical improvements such as in-
clusion of detailed scattering and hot carrier effects can be 1 -1, _
added in practical simulation by coupling with a Monte PRETT [y (ky—ky)?=37,], (17)
Carlo technique described later. y B

By using these approximations in E¢,), we can obtain 1 -1 -
a two-dimensional quantum-corrected BTE, (ase Appen- = [v2(ke— k)%= 4], (18
dix) Mx2y 2h B

V4 (VU +F)-,f (af) (7) L Ak —K)2= 7] (19

J— Ve —(— Vi =| — . = — — ,

at N ' at) . iy 2128 Yy Ky TRy Yy
The quantum effects are incorporated in terms of quantum 1 1
mechanical driving force5°=(F? ,FY) represented by —=—=0, (20

Mxy  Myx
2 92 2 2 2 2 —
Q:i i ﬂﬁ_+ 61 9 4 6% ‘9_ In(n) wherek; is again the average momentum of the distribution
XX 24\ py gx2 Ry IXIY 2, Iy " function andy,= B42%/m; (i=x,y). The quantum forceE?
My2y OY

(8) under the effective mass approximation are
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T | PPN B
x_a m (vxAky yx)ﬁ o
(M
92 @ gz
+3(7§Ak§_7y)ﬁ In(n)], (21) P
y m
9 [ -1 072 -0.1 Classical }
FY=—2i52a| (AK—3%)— TR VR
y y= Ry T2y 0 10 20 30 40 50 60
Iy | 246 é’yz Distance (nm)
(92
2A1L2_ N2
+3(7><Akx ¥x) > In(n) ¢, (22
dX
with Ak =k;—k; (i=x,y). %
The momentum componentk, andk,, are explicitly ®) &
included in Egs.(21) and (22). In a previously proposed E
quantum force correctioh? the momentum terms were ap-
proximated by using the thermal energy as°(ky -0.1 Quantum
—ky)2/2m=#2(k,—k,)*/2m,~KkgT/2, and the correspond- 0 10 20 30 40 50 60

ing quantum forces were simply represented by Distance (nm)

ol 2 42 In(n) F_IG. 1. EIe_ctron distribqtions in space_and energy of GaAs/AIGaAs/GaA_s
FQ=— 7 (23) single barrier at zero bias voltage using the flatband model. The barrier
X9x 12nx (9)(2 ! width is 2.5 nm.(a) corresponds to the classical MC simulation dhgto
the quantum-corrected MC simulation. The conduction band profiles are
g K2 g2 |n(n) also plot_ted Wi_th solid Iines_, and the vertical axis denotes the totgl electron
FQ=— (24) energy, including the contribution of quantum for@giantum potential
y (?y 1Zny ayz

This formulation differs from the result in Eq&1) and(22)  ing barrier consisting of GaAs and AlGaAs, where tunneling

in the fact that it gives a force which depends only on theand quantum confinement effects can be carefully identified.
position but not on the momentum of the particles. The sim1in practical calculations, we used

plified quantum forces given by Eg23) and(24) could still
be useful when applied to the quantum hydrodynamic mod- Q_i __1
els described, for instance, in Refs. 7, 15, and 16. X x| 248

Based upon Eq(7), the velocity and the force for par-
ticles during the free flights are given, respectively, by th
following equations of motion

3%In(n)

NG

[Ya(ke—k0)?= 3% . @

ewhich corresponds to a one-dimensional version of E2(.
and(22). We consider here conduction band discontinuity of
0.22 eV atl' valley and room temperature800 K). The

dr doping density in the GaAs electrodes is given a€ ¢t 3.

at v (25 As a collisional process, the LO phonon scattering, the
K acoustic phonon scattering and the ionized impurity scatter-

d_: E(—VrU+ FQ) (26) ing are considered. The electron transport atalley is ne-

dt 7 '

glected for simplicity. The extension to the case involving

The velocity equation is the same as used in the standard Mi€ electron transfer between the two valleys is expected to
technique, but the force equation is modified so that the paf2® Possible even in the present quantum approach. To verify
ticles evolve under the influence of the classical driving forcéh€ Validity of our approach, we first simulated a thermal
—V,U, plus the quantum forceB?. An advantage of this eqwhbnum particle distribution Wlthout _spa'lce'—charge gf—
approach is that the quantum processes such as tunneling 4&tS, Which allows us to examine the intrinsic tunneling
automatically taken into account. In other words, we do noProperties through the potential barrier. Figure 1 shows a
need to solve the Schimger equation to calculate the quan- snapshot of the gomputed elec_tron dl_strlbutlons in space a_nd
tum force, a procedure which is indispensable in the originaBN€rgy at zero bias voltage using a simple flatband potential
quantum potential frameworkConsequently, a full particle Model, and a barrier width of 2.5 nm. Figuréal corre-

description of quantum processes may be attempted followsPonds to the classical MC simulation without guantum
ing our quantum force approach. force, and Fig. (b) to the quantum-corrected MC simulation

with quantum force. For reference, the conduction band pro-

files are also plotted with solid lines, which corresponds to

the potential energy of Eq. (2). Note that the vertical axis
We present here the results of computational experidenotes the total electron energy, including the contribution

ments based upon the inclusion of the equations of motionf quantum force.

(25 and (26) in a standard MC simulation with scattering. Comparing the two figures, we can observe two quantum

As a test case, we consider a one-dimensional single tunnebffects in Fig. 1b). The first one is quantum repulsion by the

Ill. SIMULATION RESULTS
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' ' ----:Present nlmdel " '
.- Simplified model o Presemtmodel |
o 100l implified mode
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L >
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Distance (nm) gy (V)
FIG. 2. Effective potential distributions for electrons shown in Figh)1 o 'presemlmodel '
The dashed line indicates the effective potential variation obtained by aver- & 10l Simplified model
aging over the particles using the quantum correction model of&g. For = ]
comparison, the result obtained with the simplified correction model of Eq. o
(23) is plotted by the thin dash-dotted line. 10l
(b) g X
2 o
g 107 7 ;
& !
i X . s L =4nm
potential barrier, where the low energy particles are reflected 103 i

. . . I'e} L 1 L

away from the barrier and very few particles with low energy 0 01 02 03 04
exist on the left and right of the barrier. The second effect is ' Energy (eV)
qu.antum tgnnellng throth the barrier. Ih the classical S!muT:IG. 3. Computed tunneling probabilities as a function of energy for simu-
lation of Fig. X&), only the thermally excited electrons with |ation conditions as in Fig. 1 with barrier widta) 2.5 and(b) 4.0 nm. The
energy larger than the barrier height are found in the barrieshaded areas indicate the energy range above the bdttied.e2 eV). The
region. On the other hand. in the quantum-corrected tran<gwen circles denote the result from the correction model of(Eg.and the

. . . ' . crosses the result from the simplified correction model of &§). For
port Slmu_latlon_(_)f Fig. (b) some tunne_llng electrons ar? comparison, the results from a transfer matrix solution of Stinger equa-
detected in addition to the thermally excited ones. To clarifyiion are plotted with the dashed lines.
the particle tunneling phenomenon observed in Fig),lhe
effective potential for the electrons in the simulation is

shown in Fig. 2. The quantum force correction depends on dicate the energy range above the barrgr-0.22 V).

the partllee momentum anq cannot b.e plgttgd d!rectly, SO Whe open circles denote the result from the present correction
present in Fig. 2 the effective potential distribution obtalnedmoOIeI of Eq.(27). For comparison, the results from a trans-

by averaging over the particles, using a dashed line. Foifr matrix solution of Schrdinger equation are plotted with

comparison, the result with the simplified space-dependery ashed lines. One can see that the results from the quantum-
model of Eq.(23) is represented by the thin dash-dotted I|ne.Corrected MC and Schdinger's wave theory are in good

The results in Fig. 2 show that the potential barrier is effec- .
. . -~ agreement, although the MC results fluctuate somewhat in
tively lowered due to the quantum force correction, enablin

Yhe higher energy region due to the discreteness of the par-

the particles to penetrate through the barrier. At the sam S 2
time, the effective potential increases outside the barrier I§C|e energy distribution. The quantum force MC approach

! : . describes well both the increasing tunneling probability with
cause the quantum repulsion mentioned earlier.

To quantify the effect of tunneling in the particle MC energy and the barrier thickness dependence. The earlier re-

simulation, we define a corresponding energy probability Ole_sults indicate that the statistical probability defined by Eq.

rived from the particle distribution. In steady-state, this prob-(28) 'S eqmy_ale_nt to the physical tunne_llng pr(_)bablhty _at
oo . . . 77 thermal equilibrium. The MC results obtained using the sim-
ability is obtained from a time average of the particles inside

the barrier, normalized with that at the left boundary of thepllfIed correction moqel OT .Eq23) are also plott_ed In Fig. 3
, ] using crosses. The simplified model underestimates the tun-
device k=0) as follows:

neling probability, which should be a consequence of the
1 enhanced quantum repulsion shown in Fig. 2.
L_BdeXU(X’E't» For practical device simulation, a nonequilibrium trans-
(FOED) , (28 port analysis with sp_ace-charge_ effec_ts is importan_t. We
e present next self-consistent MC simulations where Poisson’s
wherelL g is the barrier widthfzdx denotes spatial integra- equation is added and an external bias is applied. Figure 4
tion of the particle distribution functiori(x,E,t) over the shows the computed electron distributions in space and en-
barrier region, and---) denotes time average. The probabil- ergy at a bias voltage of 0.3 V with barrier width 2.5 nm.
ity P(E) is designed to represent statistically the particleHere, Fig. 4a) corresponds to the classical MC simulation
tunneling properties in a particle-based approach. Figure and Fig. 4b) to the quantum-corrected MC simulation. In
shows the computed tunneling probabilities as a function ofig. 4(b), we can observe size quantization in the triangular
energy at zero bias voltage using the flatband model. Thpotential well on the left of the barrier. The quantum force
results corresponding to the simulation for barrier width 2.5correction prevents the electrons from occupying energy
nm are given in Fig. &). For comparison, we report also the states below a certain level, as imposed by the formation of
results for a 4.0 nm barrier in Fig.(l3. The shaded areas quantized subbands in the triangular potential well. By solv-

P(E)=
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----- Present model
----- Simplified model }

®
Energy (eV)
Energy (eV)

v=0.3V
Classical

0 10 20 30 40 50 60 0.2 . .
Distance (nm) 20 25 30 35 40

Distance (nm)

0.3
0.2 FIG. 5. Effective potential distributions corresponding to Figh)4 The
e dashed line indicates the effective potential variation obtained by averaging
% 0. over the particles with the correction model of E27). For comparison, the
(b) > ok result with the simplified correction model of E@3) is plotted by the thin
%" S dash-dotted line.
g.0.1 LE= -35.4me
0
-0.2F  v=0.3V
-0.3f, Quantum Fig. 6. As before, the open circles denote the result from the

0 10 20 30 40 50 60

) present correction model, the crosses the result from the sim-
Distance (nm)

plified correction model, and the shaded area indicates the
FIG. 4. Self-consistent solutions of electron distribution in space and energgnergy range above the barrier, where the actual barrier

at bias voltage of 0.3 V. The barrier width is 2.5 nga). corresponds to the height reduces to about 0.1 eV due to the band bending. The
classical MC simulation an¢b) to the quantum-corrected MC simulation.

The conduction band profiles are plotted with solid lines, and the verticalr_eSUIt from a tranSfer matrix S(_)quon of Scldr_nger eq_ua-

axis denotes the total electron energy, including the contribution of quanturkion, plotted with the dashed line, was obtained using the

force (quantum potential potential distribution from the quantum-corrected MC simu-
lation. We can see the two major discrepancies between the

. . . . guantum-corrected MC and Schlinger's wave theory. One
ing the Schrdinger equation, we estimated the lowest quan-

ved level i the tri | il well Is the tunneling probability oscillation for the lower energy
itlrﬁca?;;[:g/ythzvgagﬁé cilrllir:e(iantlr:%?gau Ig(r)rgtﬁirgﬁcuvlvaiior?s electrons observed in Scliimger equation result, which is

: L2 . ' due to the interference effects related to the coherence of
we used the potential distribution data obtained from theelectron waves confined in the triangular potential well. The

quantum-correctec_i MC SlmUI"’_‘tlon’ setting the wave funCtlonestimates obtained from the quantum-corrected MC results
to be zero at the right barrier interface= 30.5 nim) and the

left boundary of the devicex=0). The lowest quantized do not show such an oscillatory behavior, which may be due

. to scattering effects destroying phase coherence, although it
energy level is reasonably close to the bottom of the cor- 9 ying p g

. . o Is not clear yet to which extent the present particle approach
repted potential energy for the MC partlcle @stnpuuon N thecan resolve quantum interference effects. This will be the
trlangu!ar potential vyell. Some .partlclefs exist slightly belowsubject of future investigations. Another discrepancy is the
the estimated quantized energies. This ShOU|d. be due to t erobability decay of the quantum-corrected MC results in the
resonant energy broadening caused by scattering and by tu

) : . . . nergy range above the barrier. As found in Figh)4a
neling leakage, which are both effectively mcludgd in thedepletion region is formed on the right of the barrier, and the
guantum-corrected MC results. The same quantization be-

havi b df ther bi It W | electrons are extracted from the barrier region quickly by the
avior-was observed lor ofner bias voltages. We can ais,q ¢ fie|d. This extraction works more effectively for the
detect a stream of tunneling particles in the distribution on

the right-hand side of the device. This feature was not visible
in a similar calculatioh performed using the simplified cor-

rection model of Eq(23), which does not include the de- o Presentlmodel I '
tailed effect of particle momentum. =) + Simplified model

Figure 5 shows the effective potential distribution aver- R R — 1
aged over the particles of Fig(l), where the result with the _%‘ O@W+, O QR 0
simplified correction model is also plotted. Inside the barrier, S o
the effective barrier height is reduced from the classical one e el b 3
as in Fig. 2. Here, note that the effective potential profile is B
almost constant in the region between 20.0 and 26.0 nm, 102 . . .
which leads to the size quantization of particles found in Fig. o 01 02 03 04

. e . E V
4(b). We can see that the simplified correction model creates nergy (V)

a higher repulsive potential in the triangular potential Well, FIG. 6. Computed tunneling probabilities corresponding to Fib).4The
and therefore a large difference exists between the tweghaded area indicates the energy range above the barrier considering band
curves near the left interface. bending. The open circles denote the result from the correction model of Eq.

. . A . (27) and the crosses the result from the simplified correction model of Eq.
We estimated the tunnellng pmbab'“t'es CorreSpond|ng(23). For comparison, the result from a transfer matrix solution of Schro

to Fig. 4b) by using Eq.(28), and the results are shown in dinger equation is plotted with the dashed line.
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higher energy electrons. Therefore, the probability decreases  2¢ PE, i IE,_ic df
as the electron energy becomes larger than the barrier height. —
These results mean that the definition of the tunneling prob-

a2 ke T

ability in Eq. (28) may not be strictly valid in the presence of 2 o ]
ali IEk-k\" Ex-x
hot electrons and should only be taken as a guideline for =pf| B - , (A2)
interpretation of the results. We also plotted in Fig. 6 the Ky (7k>2<
result from the simplified correction model. Due to the addi-
tional repulsion by the hump of effective potential on the left J3f of IEv_\%2 °Ex_i
of the barrier(Fig. 5), the probability estimate from the sim- 3 ZBT K - P
- : ok IKy IKy ok
plified model notably decreases in the energy range below x x
the barrier height E<0.1 eV). 0E, « PEp © PE, i
+ Bf| 2 — — — —
NP0 o e )
IV. CONCLUSION 2128 of
. L ==, (A3)
We have presented a particle description of quantum My Ky
phenomena based upon the Wigner’'s transport formalism,
where the dynamics of particles can be treated as in semf¥here
classical Monte Carlo simulation with a nonlocal quantum N )
force correction. The simulation results for transport across a i _ i 3(9 Ev—k —,3( 3Ekf) (Ad)
single tunneling barrier indicate that size quantization and uy 242 ak)z( IKy '

tunneling effects can be well resolved by the combined

Monte Carlo/quantum force approach, yielding quantitative  EquationgA2) and(A3) are obtained by using E¢AL),
agreement with Schdinger equation results. Moreover, our with third-order momentum derivatives &, _i neglected
particle-based quantum approach can simulate the admixtufer simplicity. Similarly, we can express the other momen-
of semiclassical and quantum transport features, which itum derivative terms of Eq4) as follows:

very difficult to describe when starting from a wave descrip-

tion. The particle description of quantum tunneling processes  §°f 2028 of
could be useful to explain single electron transport in Cou- ~3 =~ u 9K’ (A5)
lomb blockade phenomena, where the particle-wave duality Y Y Y
of a single electron plays an essential role in the individual 3 ) )
tunneling processes. The technique presented in this article il __ 20°B a_f_ 207 ﬂ (AB)
should also provide a practical way to include quantum ef- &kiaky Hx2y Ky pxy Ik
fects in multi-dimensional simulation of ultrasmall integrated
devices. It will be the subject of our future investigations to 93f 2628 of  2#2B of
see if the present particle approach can completely resolve z = K K (A7)
quantum interference effects such as in the two-slit interfer- IKxIKy Byzx O Hyx Oy
ence experiment.
where
2 — 2
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APPENDIX: LOWEST-ORDER QUANTUM ot LBk (A11)

CORRECTION Bxy Myx  H2 IKedky

By using the displaced Maxwell-Boltzmann distribution Notice that the third-order momentum derivatives of the dis-
function given by Eq(5), the momentum derivatives of the ipution function are expressed in terms of the first-order

distribution functionf can be transformed, as momentum derivatives in EqgA3), (A5)—(A7). On the
of of  9E. JE, other hand, the spatial derivative terms of the potential en-
—_—= =—p8 f, (A1) ergy U are represented in terms of the carrier dennityy
K 9B, _ic K« K using Eq.(6), as
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PU _ 143°In(n)
B

#U _ 14%In(n)
Coay® B ay3
#U 14%n(n) U 14%n(n)
ax2ay B oxPay  axay? B oxay?

By applying these relations to E@), the lowest-order quan-
tum correction ternQ; is represented by

v (A12)

(A13)

a| 1 [2a% 9> 6K &°
=0k 220 | iy e
X Mx gx Mxy IXIY
+6ﬁ2(92|()o’!f+(9 1 (242 92
My2y ay? Ky Y| 240\ py gy?
+6h2 > + on* - In(n) (A14)
Myx dYIX Mx2y ax? ak

The result of Eq.(A14) can be used to formulate the
guantum-corrected BTE as given by E¢8), (8), and(9).
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