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Particle Monte Carlo simulation of quantum phenomena
in semiconductor nanostructures
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Quantum effects in semiconductor devices are usually described in terms of wave functions
obtained from the solution of the Schro¨dinger equation. However, it is difficult to simulate practical
devices where clear semiclassical and quantum features coexist, as is the case for nanoscale devices
at normal temperatures. We present here a particle description of quantum phenomena derived
starting from Wigner’s transport formalism, where the dynamics of particles are treated
semiclassically, but with an effective force added to account for quantum effects. The resulting
model is solved by using a particle Monte Carlo approach, which we apply to describe transport
across a single tunneling barrier. Results of the numerical calculations indicate that size quantization
and tunneling effects can be well resolved by the combined Monte Carlo/quantum force approach,
yielding quantitative agreement with Schro¨dinger equation results. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1354653#
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I. INTRODUCTION

In the usual quantum approaches, the physical state o
individual system is completely specified by a wave funct
from which the probabilities associated with observa
quantities can be derived. In alternative, a particle desc
tion of quantum theory has also been examined in term
the quantum potential, as introduced by Bohm.1 For instance,
it was successfully demonstrated that the quantum pote
produces a clear bunching of particle trajectories in the tw
slit interference experiment,2 which is required to obtain the
usual fringe intensity pattern. Such a quantum potential
proach accounts for the quantum interference effects w
retaining the notion of a well-defined particle trajectory.
particle-based approach is very attractive for practical sim
lation of nanoscale semiconductor devices at normal t
peratures, since one would expect to see an admixtur
semiclassical and quantum transport features. It is very
ficult to resolve the two regions separately and it is ev
more difficult to formulate a global model approach that co
ers these regions together. In this article, we propose a
ticle description of quantum phenomena based upon a q
tum force derived from the Wigner’s transport formalism.3–7

The quantum force can be incorporated into the driving fo
term of the Boltzmann transport equation~BTE!,8,9 which
enables us to utilize the well-developed particle Monte Ca
~MC! computational techniques.10,11 A quantum correction
approach has been recently attemped to include the qua
mechanical electron-phonon interaction based upon the
cept of Wigner paths in phase space.12,13 A MC technique
was utilized to solve the time evolution of the Wigner fun
tion for spatially homogeneous case, and it was shown tha
the collisional broadening is reduced by considering
quantum correction contribution.12 On the other hand, the
main subject of this article is to develop a computatio

a!Electronic mail: ravaioli@uiuc.edu
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technique to simulate electron transport throughinhomoge-
neous potential profilesincluding abrupt heterointerfaces
where quantum size effects such as tunneling and quan
confinement become important. This technique would rea
be needed for theoretical description and practical desig
multidimensional ultrasmall integrated devices. In this
ticle, to demonstrate the validity of our approach, we pres
MC solutions of electron transport through a single tunnel
barrier consisting of GaAs and AlGaAs. With this simp
model, we can carefully identify tunneling and quantum co
finement effects, and also can discuss the correspond
with Schrödinger’s wave theory in detail.

II. QUANTUM-CORRECTED MONTE CARLO METHOD

The Wigner distribution function, which corresponds
a quantum mechanical distribution function, is generally d
fined in the space and momentum coordinates3–7 as

f ~k,r ,t !5(
n

PnE
2`

`

ducnS r1
u

2
,t Dcn* S r2

u

2
,t De2 ik•u,

~1!

where cn represents the state of the system andPn is the
probability of occupying the staten. The transport equation
for the Wigner distribution function is given in the form of
modified BTE as3,14

] f

]t
1v•“ r f 2

1

\
“ rU•“k f

1 (
a51

`
~21!a11

\4a~2a11!!
~“ r•“k!2a11U f 5S ] f

]t D
C

, ~2!

whereU denotes the spatially varying potential energy, re
resented by using the electrostatic potentialf and band dis-
continuity at heterointerfacesDE asU5qf1DE. Note that
¹k operates only onf and¹ r operates only on the potentia
U. Also, q52ueu for electrons andq5ueu for holes whenueu
3 © 2001 American Institute of Physics
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is the elementary charge. In order to account for collisio
we introduce a collision integral describing the time var
tion of f due to scattering by

S ] f

]t D
C

5
1

~2p!3 E d3k8@W~k8,k! f ~k8!2W~k,k8! f ~k!#.

~3!

The functionsW(k8,k) represent the scattering rates o
tained from Fermi’s golden rule. We would include the sa
types of scattering as in the classical Boltzmann equat
An essential feature of the Wigner formalism is the prese
of quantum effects through the inherently nonlocal drivi
potential, in the expansion of the fourth term on the left-ha
side of Eq.~2!. In the limit of slow spatial variations, the
nonlocal terms disappear and Eq.~2! reduces to the conven
tional BTE. Here, we indicate withQ1 the lowest-order
quantum correction term obtained by considering onlya
51 in the expansion of Eq.~2!. The lowest-order term give
a major contribution in the quantum mechanic
corrections.4,8,9 For a two-dimensional problem,Q1 is writ-
ten explicitly, as

Q15
1

24\ S ]3U

]x3

]3f

]kx
3

13
]3U

]x2]y

]3f

]kx
2]ky

13
]3U

]x]y2

]3f

]kx]ky
2

1
]3U

]y3

]3f

]ky
3D . ~4!

Supposing that the system is relatively close to equilibriu
we introduce for simplicity a displaced Maxwell–Boltzman
distribution function in the correction term, as

f ~k,r !5exp$2b@Ek2 k̄1U~r !2Ef #%, ~5!

whereEf is the Fermi energy,b51/kBT, Ek2 k̄ is the carri-
er’s energy andk̄ indicates the average momentum of t
displaced distribution function. The carrier densityn(r ) is
obtained from integration of Eq.~5! over the momentumk,
as

n~r !5Ncexp$b@Ef2U~r !#%, ~6!

whereNc indicates the effective density-of-states. We sho
mention that the earlier simplification is not a limitation
the method, since other numerical improvements such a
clusion of detailed scattering and hot carrier effects can
added in practical simulation by coupling with a Mon
Carlo technique described later.

By using these approximations in Eq.~4!, we can obtain
a two-dimensional quantum-corrected BTE, as~see Appen-
dix!

] f

]t
1v"“r f 1

1

\
~2“ rU1FQ!"“k f 5S ] f

]t D
C

. ~7!

The quantum effects are incorporated in terms of quan
mechanical driving forcesFQ5(Fx

Q ,Fy
Q) represented by

Fx
Q5

]

]x F 1

24S 2\2

mx

]2

]x2
1

6\2

mxy

]2

]x]y
1

6\2

my2x

]2

]y2D ln~n!G ,

~8!
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Fy
Q5

]

]y F 1

24S 2\2

my

]2

]y2
1

6\2

myx

]2

]y]x
1

6\2

mx2y

]2

]x2D ln~n!G ,

~9!

where

1

mx
5

1

2\2 F3
]2Ek2 k̄

]kx
2

2bS ]Ek2 k̄

]kx
D 2G , ~10!

1

my
5

1

2\2 F3
]2Ek2 k̄

]ky
2

2bS ]Ek2 k̄

]ky
D 2G , ~11!

1

mx2y

5
1

2\2 F ]2Ek2 k̄

]kx
2

2bS ]Ek2 k̄

]kx
D 2G , ~12!

1

my2x

5
1

2\2 F ]2Ek2 k̄

]ky
2

2bS ]Ek2 k̄

]ky
D 2G , ~13!

1

mxy
5

1

myx
5

1

\2

]2Ek2 k̄

]kx]ky
. ~14!

The physical effect of the quantum forces is to soften
potential variations that the particles feel in the quantum
gions where the potential and the carrier density cha
abruptly. Equations~8! and ~9! can be extended to a full
band description of quantum forces if the coefficients giv
by Eqs.~10!–~14! are evaluated using a complete numeric
band structure ofEk .

In this article, our goal is to make a comparison betwe
the quantum force approach and Schro¨dinger’s wave theory.
We consider a simple transport problem under the assu
tion of effective mass approximation. When we use the
fective massesmx , my and mz to represent the energy dis
persion relation as

Ek2 k̄5 (
i 5x,y,z

\2~ki2 k̄i !
2/~2mi !, ~15!

we can derive the following coefficients necessary for E
~8! and ~9!:

1

mx
5

21

2\2b
@gx

2~kx2 k̄x!
223gx#, ~16!

1

my
5

21

2\2b
@gy

2~ky2 k̄y!223gy#, ~17!

1

mx2y

5
21

2\2b
@gx

2~kx2 k̄x!
22gx#, ~18!

1

my2x

5
21

2\2b
@gy

2~ky2 k̄y!22gy#, ~19!

1

mxy
5

1

myx
50, ~20!

wherek̄i is again the average momentum of the distributi
function andg i5b\2/mi ( i 5x,y). The quantum forcesFQ

under the effective mass approximation are
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Fx
Q5

]

]x H 21

24b F ~gx
2Dkx

223gx!
]2

]x2

13~gy
2Dky

22gy!
]2

]y2G ln~n!J , ~21!

Fy
Q5

]

]y H 21

24b F ~gy
2Dky

223gy!
]2

]y2

13~gx
2Dkx

22gx!
]2

]x2G ln~n!J , ~22!

with Dki5ki2 k̄i ( i 5x,y).
The momentum components,kx and ky , are explicitly

included in Eqs.~21! and ~22!. In a previously proposed
quantum force correction,8,9 the momentum terms were ap
proximated by using the thermal energy as\2(kx

2 k̄x)
2/2mx.\2(ky2 k̄y)

2/2my.kBT/2, and the correspond
ing quantum forces were simply represented by

Fx
Q5

]

]x F \2

12mx

]2 ln~n!

]x2 G , ~23!

Fy
Q5

]

]y F \2

12my

]2 ln~n!

]y2 G . ~24!

This formulation differs from the result in Eqs.~21! and~22!
in the fact that it gives a force which depends only on
position but not on the momentum of the particles. The s
plified quantum forces given by Eqs.~23! and~24! could still
be useful when applied to the quantum hydrodynamic m
els described, for instance, in Refs. 7, 15, and 16.

Based upon Eq.~7!, the velocity and the force for par
ticles during the free flights are given, respectively, by
following equations of motion

dr

dt
5v, ~25!

dk

dt
5

1

\
~2¹ rU1FQ!. ~26!

The velocity equation is the same as used in the standard
technique, but the force equation is modified so that the p
ticles evolve under the influence of the classical driving fo
2¹ rU, plus the quantum forcesFQ. An advantage of this
approach is that the quantum processes such as tunnelin
automatically taken into account. In other words, we do
need to solve the Schro¨dinger equation to calculate the qua
tum force, a procedure which is indispensable in the origi
quantum potential framework.2 Consequently, a full particle
description of quantum processes may be attempted foll
ing our quantum force approach.

III. SIMULATION RESULTS

We present here the results of computational exp
ments based upon the inclusion of the equations of mo
~25! and ~26! in a standard MC simulation with scatterin
As a test case, we consider a one-dimensional single tun
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ing barrier consisting of GaAs and AlGaAs, where tunneli
and quantum confinement effects can be carefully identifi
In practical calculations, we used

Fx
Q5

]

]x H 21

24b
@gx

2~kx2 k̄x!
223gx#

]2 ln~n!

]x2 J , ~27!

which corresponds to a one-dimensional version of Eqs.~21!
and~22!. We consider here conduction band discontinuity
0.22 eV atG valley and room temperature~300 K!. The
doping density in the GaAs electrodes is given as 1018 cm23.
As a collisional process, the LO phonon scattering,
acoustic phonon scattering and the ionized impurity scat
ing are considered. The electron transport atL valley is ne-
glected for simplicity. The extension to the case involvi
the electron transfer between the two valleys is expecte
be possible even in the present quantum approach. To ve
the validity of our approach, we first simulated a therm
equilibrium particle distribution without space-charge e
fects, which allows us to examine the intrinsic tunneli
properties through the potential barrier. Figure 1 show
snapshot of the computed electron distributions in space
energy at zero bias voltage using a simple flatband poten
model, and a barrier width of 2.5 nm. Figure 1~a! corre-
sponds to the classical MC simulation without quantu
force, and Fig. 1~b! to the quantum-corrected MC simulatio
with quantum force. For reference, the conduction band p
files are also plotted with solid lines, which corresponds
the potential energyU of Eq. ~2!. Note that the vertical axis
denotes the total electron energy, including the contribut
of quantum force.

Comparing the two figures, we can observe two quant
effects in Fig. 1~b!. The first one is quantum repulsion by th

FIG. 1. Electron distributions in space and energy of GaAs/AlGaAs/Ga
single barrier at zero bias voltage using the flatband model. The ba
width is 2.5 nm.~a! corresponds to the classical MC simulation and~b! to
the quantum-corrected MC simulation. The conduction band profiles
also plotted with solid lines, and the vertical axis denotes the total elec
energy, including the contribution of quantum force~quantum potential!.
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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potential barrier, where the low energy particles are reflec
away from the barrier and very few particles with low ener
exist on the left and right of the barrier. The second effec
quantum tunneling through the barrier. In the classical sim
lation of Fig. 1~a!, only the thermally excited electrons wit
energy larger than the barrier height are found in the bar
region. On the other hand, in the quantum-corrected tra
port simulation of Fig. 1~b! some tunneling electrons ar
detected in addition to the thermally excited ones. To cla
the particle tunneling phenomenon observed in Fig. 1~b!, the
effective potential for the electrons in the simulation
shown in Fig. 2. The quantum force correction depends
the particle momentum and cannot be plotted directly, so
present in Fig. 2 the effective potential distribution obtain
by averaging over the particles, using a dashed line.
comparison, the result with the simplified space-depend
model of Eq.~23! is represented by the thin dash-dotted lin
The results in Fig. 2 show that the potential barrier is eff
tively lowered due to the quantum force correction, enabl
the particles to penetrate through the barrier. At the sa
time, the effective potential increases outside the barrie
cause the quantum repulsion mentioned earlier.

To quantify the effect of tunneling in the particle M
simulation, we define a corresponding energy probability
rived from the particle distribution. In steady-state, this pro
ability is obtained from a time average of the particles ins
the barrier, normalized with that at the left boundary of t
device (x50) as follows:

P~E!5

1

LB
E

B
dx^ f ~x,E,t !&

^ f ~0,E,t !&
, ~28!

whereLB is the barrier width,*Bdx denotes spatial integra
tion of the particle distribution functionf (x,E,t) over the
barrier region, and̂¯& denotes time average. The probab
ity P(E) is designed to represent statistically the parti
tunneling properties in a particle-based approach. Figur
shows the computed tunneling probabilities as a function
energy at zero bias voltage using the flatband model.
results corresponding to the simulation for barrier width 2
nm are given in Fig. 3~a!. For comparison, we report also th
results for a 4.0 nm barrier in Fig. 3~b!. The shaded area

FIG. 2. Effective potential distributions for electrons shown in Fig. 1~b!.
The dashed line indicates the effective potential variation obtained by a
aging over the particles using the quantum correction model of Eq.~27!. For
comparison, the result obtained with the simplified correction model of
~23! is plotted by the thin dash-dotted line.
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indicate the energy range above the barrier (E.0.22 eV!.
The open circles denote the result from the present correc
model of Eq.~27!. For comparison, the results from a tran
fer matrix solution of Schro¨dinger equation are plotted with
dashed lines. One can see that the results from the quan
corrected MC and Schro¨dinger’s wave theory are in goo
agreement, although the MC results fluctuate somewha
the higher energy region due to the discreteness of the
ticle energy distribution. The quantum force MC approa
describes well both the increasing tunneling probability w
energy and the barrier thickness dependence. The earlie
sults indicate that the statistical probability defined by E
~28! is equivalent to the physical tunneling probability
thermal equilibrium. The MC results obtained using the si
plified correction model of Eq.~23! are also plotted in Fig. 3
using crosses. The simplified model underestimates the
neling probability, which should be a consequence of
enhanced quantum repulsion shown in Fig. 2.

For practical device simulation, a nonequilibrium tran
port analysis with space-charge effects is important.
present next self-consistent MC simulations where Poisso
equation is added and an external bias is applied. Figu
shows the computed electron distributions in space and
ergy at a bias voltage of 0.3 V with barrier width 2.5 nm
Here, Fig. 4~a! corresponds to the classical MC simulatio
and Fig. 4~b! to the quantum-corrected MC simulation. I
Fig. 4~b!, we can observe size quantization in the triangu
potential well on the left of the barrier. The quantum for
correction prevents the electrons from occupying ene
states below a certain level, as imposed by the formation
quantized subbands in the triangular potential well. By so

r-

.

FIG. 3. Computed tunneling probabilities as a function of energy for sim
lation conditions as in Fig. 1 with barrier width~a! 2.5 and~b! 4.0 nm. The
shaded areas indicate the energy range above the barrier (E.0.22 eV!. The
open circles denote the result from the correction model of Eq.~27! and the
crosses the result from the simplified correction model of Eq.~23!. For
comparison, the results from a transfer matrix solution of Schro¨dinger equa-
tion are plotted with the dashed lines.
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



n

th
io

o
he
w
t
t

he
b
ls
o

ib
-
-

er

ier
on

i
nm
ig
te

ll,
tw

in
n

the
sim-
the

rrier
The

the
u-
the

y

e of
he
ults
ue

gh it
ach
the
the
the

the
the
e

er

.
ica
tu

ging

band
f Eq.
Eq.
ro

4027J. Appl. Phys., Vol. 89, No. 7, 1 April 2001 H. Tsuchiya and U. Ravaioli
ing the Schro¨dinger equation, we estimated the lowest qua
tized energy level (E1) in the triangular potential well as
indicated by the dashed line in Fig. 4~b!. For this calculation,
we used the potential distribution data obtained from
quantum-corrected MC simulation, setting the wave funct
to be zero at the right barrier interface (x530.5 nm! and the
left boundary of the device (x50). The lowest quantized
energy level is reasonably close to the bottom of the c
rected potential energy for the MC particle distribution in t
triangular potential well. Some particles exist slightly belo
the estimated quantized energies. This should be due to
resonant energy broadening caused by scattering and by
neling leakage, which are both effectively included in t
quantum-corrected MC results. The same quantization
havior was observed for other bias voltages. We can a
detect a stream of tunneling particles in the distribution
the right-hand side of the device. This feature was not vis
in a similar calculation9 performed using the simplified cor
rection model of Eq.~23!, which does not include the de
tailed effect of particle momentum.

Figure 5 shows the effective potential distribution av
aged over the particles of Fig. 4~b!, where the result with the
simplified correction model is also plotted. Inside the barr
the effective barrier height is reduced from the classical
as in Fig. 2. Here, note that the effective potential profile
almost constant in the region between 20.0 and 26.0
which leads to the size quantization of particles found in F
4~b!. We can see that the simplified correction model crea
a higher repulsive potential in the triangular potential we9

and therefore a large difference exists between the
curves near the left interface.

We estimated the tunneling probabilities correspond
to Fig. 4~b! by using Eq.~28!, and the results are shown i

FIG. 4. Self-consistent solutions of electron distribution in space and en
at bias voltage of 0.3 V. The barrier width is 2.5 nm.~a! corresponds to the
classical MC simulation and~b! to the quantum-corrected MC simulation
The conduction band profiles are plotted with solid lines, and the vert
axis denotes the total electron energy, including the contribution of quan
force ~quantum potential!.
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Fig. 6. As before, the open circles denote the result from
present correction model, the crosses the result from the
plified correction model, and the shaded area indicates
energy range above the barrier, where the actual ba
height reduces to about 0.1 eV due to the band bending.
result from a transfer matrix solution of Schro¨dinger equa-
tion, plotted with the dashed line, was obtained using
potential distribution from the quantum-corrected MC sim
lation. We can see the two major discrepancies between
quantum-corrected MC and Schro¨dinger’s wave theory. One
is the tunneling probability oscillation for the lower energ
electrons observed in Schro¨dinger equation result, which is
due to the interference effects related to the coherenc
electron waves confined in the triangular potential well. T
estimates obtained from the quantum-corrected MC res
do not show such an oscillatory behavior, which may be d
to scattering effects destroying phase coherence, althou
is not clear yet to which extent the present particle appro
can resolve quantum interference effects. This will be
subject of future investigations. Another discrepancy is
probability decay of the quantum-corrected MC results in
energy range above the barrier. As found in Fig. 4~b!, a
depletion region is formed on the right of the barrier, and
electrons are extracted from the barrier region quickly by
electric field. This extraction works more effectively for th

gy

l
m

FIG. 5. Effective potential distributions corresponding to Fig. 4~b!. The
dashed line indicates the effective potential variation obtained by avera
over the particles with the correction model of Eq.~27!. For comparison, the
result with the simplified correction model of Eq.~23! is plotted by the thin
dash-dotted line.

FIG. 6. Computed tunneling probabilities corresponding to Fig. 4~b!. The
shaded area indicates the energy range above the barrier considering
bending. The open circles denote the result from the correction model o
~27! and the crosses the result from the simplified correction model of
~23!. For comparison, the result from a transfer matrix solution of Sch¨-
dinger equation is plotted with the dashed line.
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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4028 J. Appl. Phys., Vol. 89, No. 7, 1 April 2001 H. Tsuchiya and U. Ravaioli
higher energy electrons. Therefore, the probability decrea
as the electron energy becomes larger than the barrier he
These results mean that the definition of the tunneling pr
ability in Eq. ~28! may not be strictly valid in the presence
hot electrons and should only be taken as a guideline
interpretation of the results. We also plotted in Fig. 6 t
result from the simplified correction model. Due to the ad
tional repulsion by the hump of effective potential on the l
of the barrier~Fig. 5!, the probability estimate from the sim
plified model notably decreases in the energy range be
the barrier height (E,0.1 eV!.

IV. CONCLUSION

We have presented a particle description of quant
phenomena based upon the Wigner’s transport formali
where the dynamics of particles can be treated as in se
classical Monte Carlo simulation with a nonlocal quantu
force correction. The simulation results for transport acros
single tunneling barrier indicate that size quantization a
tunneling effects can be well resolved by the combin
Monte Carlo/quantum force approach, yielding quantitat
agreement with Schro¨dinger equation results. Moreover, o
particle-based quantum approach can simulate the admix
of semiclassical and quantum transport features, which
very difficult to describe when starting from a wave descr
tion. The particle description of quantum tunneling proces
could be useful to explain single electron transport in C
lomb blockade phenomena, where the particle-wave dua
of a single electron plays an essential role in the individ
tunneling processes. The technique presented in this ar
should also provide a practical way to include quantum
fects in multi-dimensional simulation of ultrasmall integrat
devices. It will be the subject of our future investigations
see if the present particle approach can completely res
quantum interference effects such as in the two-slit inter
ence experiment.
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APPENDIX: LOWEST-ORDER QUANTUM
CORRECTION

By using the displaced Maxwell-Boltzmann distributio
function given by Eq.~5!, the momentum derivatives of th
distribution functionf can be transformed, as
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where

1

mx
5

1

2\2 F3
]2Ek2 k̄

]kx
2

2bS ]Ek2 k̄

]kx
D 2G . ~A4!

Equations~A2! and~A3! are obtained by using Eq.~A1!,
with third-order momentum derivatives ofEk2 k̄ neglected
for simplicity. Similarly, we can express the other mome
tum derivative terms of Eq.~4! as follows:
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where
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Notice that the third-order momentum derivatives of the d
tribution function are expressed in terms of the first-ord
momentum derivatives in Eqs.~A3!, ~A5!–~A7!. On the
other hand, the spatial derivative terms of the potential
ergy U are represented in terms of the carrier densityn by
using Eq.~6!, as
AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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By applying these relations to Eq.~4!, the lowest-order quan
tum correction termQ1 is represented by

Q1 5
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The result of Eq.~A14! can be used to formulate th
quantum-corrected BTE as given by Eqs.~7!, ~8!, and~9!.
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