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A numerical procedure based on the time-dependent Schrijdinger equation for the modeling 
of multidimensional mesoscopic devices is presented. The primary features of this 
numerical method are a tight-binding formulation of the quantum mechanical Hamiltonian, 
an alternating direction implicit generalization of the Crank-Nicholson method for 
solving the discretized multidimensional time-dependent Schriidinger equation, and a 
numerical implementation of absorbing boundary conditions for propagating wavefunctions at 
the open boundaries of the simulated region. To show the capabilities of the absorbing 
boundary scheme, numerical results are presented for the diffusion of localized wavepackets 
out of open simulation regions. As an ,application to mesoscopic systems, results are 
presented for the switching in a T-structure quantum modulated transistor with a continuous 
input wavefunction. 

I. INTRODUCTION 

The transient behavior of one-dimensional quantum 
devices, such as the resonant tunneling diode, often is sim- 
ulated using numerical Wigner function methods.“2 This 
technique is appealing because the Wigner distribution 
function can be regarded to some extent as the quantum 
equivalent of a classical distribution function. However, 
since both spatial coordinates and momentum are simulta- 
neously considered, for the simulation of an n-dimensional 
structure the Wigner function is 2n-dimensional. Thus, the 
simulation of novel quantum devices, such as the T-struc- 
ture3 and Aharonov-Bohm effect4 transistors, quickly be- 
comes prohibitive using the Wigner function approach be- 
cause at least two spatial dimensions must be included in 
the simplest models. An alternative approach is the direct 
solution of the n-dimensional Schriidinger equation. While 
a summation over incident states is required, this summa- 
tion will be limited in many cases. In this paper a numer- 
ical method suitable for the solution. of the multidimen- 
sional time-dependent Schriidinger equation in mesoscopic 
structures is presented. To provide an unambiguous treat- 
ment of quantum mechanics for the spatially discretized 
coordinate system that must be employed, a tight-binding 
formalism is used. To ensure stability and unitary time 
evolution of the wavefunction, a half-implicit Crank- 
Nicholson scheme is employed. To allow simulation of 
transport through device structures, absorbing boundary 
conditions are included within this scheme. Results. are 
presented first for the diffusion of localized wavepackets 
out of the open simulation regions, to demonstrate bound- 
ary absorption of transient current flow. Then results are 
presented for switching in a T-structure quantum modu- 
lated transistor, where the quantum interference pattern of 
the wavefunction is varied by changing the effective length 
of a side arm in a quantum wire. In this last example, in 
addition to boundary absorption, a continuous incoming 
wavefunction is included in the boundary conditions. 

II. NUMERICAL APPROACH . T 
A. Discretization of Schrudinger’s equation 

The time evolution of the spatially and temporally con- 
tinuous carrier wavefunction $(r,t) = (r 1 q(t)) is emu- 
lated by that of a discretized wavefunction (R 1 +(tJ ) on a 
uniform virtual tight-binding lattice. The tight-binding 
Hamiltonian used here is of the form’ 

+ .c ( 1 RMR+$AI + 1 WR-%I >, 
R.i 

where R are the lattice sites, A is the lattice spacing, 3 are 
the set of orthogonal unit vectors of the multidimensional 
space, and R*iA are the corresponding nearest neighbor 
sites, as depicted in Fig. 1. The “hopping potential” Y and 
the site potentials en are defined by 

vz - &/2m*A2 

and 

(2) 

ER= - c 2v+ V(R), j 
respectively, where V(R) is the potential energy. Thus, by 
applying this tight-binding Hamiltonian to the wavefunc- 
tion (RI $), with the condition (RI R’) E&&, one obtains 

-I- W-;AIW -I- V(R)(RIIlr). (4) 

This result is equivalent to a uniform mesh finite difference 
discretization of the continuum effective mass Hamiltonian 
H = (fi2/2m*) V2 + V(r). The tight-binding formalism is 
used here because it provides an unambiguous treatment of 
quantum mechanics for the spatially discretized system 
that must be employed, and because it provides compati- 
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reflecting boundary sites reveals that the .x- and y-components are alternatively im- 
plicit in the two subiterations. This procedure requires only 
the solution of tridiagonal matrices along the horizontal or 
vertical mesh lines. Furthermore, since such sets of matrix 
solutions are decoupled from each other, a very efficient 
implementation on a supercomputer is possible. 

B. Absorbing boundary conditions 

Realistic modeling of mesoscopic devices requires sim- 
ulation- of both open and closed boundaries. Numerical 
simulation of closed (reflecting) boundaries is straightfor- 
ward; the coupling potential v to the boundary tight-bind- 
ing lattice sites simply can be reset to zero, or equivalently 
the boundary wavefunctions flxed at zero. The challenge 
here, a challenge common to all fields concerned with wave 
propagation, lo is numerical simulation of outflow of wave- 

I I I 
functions through the simulation region open boundaries 
without introducing spurious reflections due to the numer- 
ical scheme. The work of Mains and Haddad in one-di- 

FIG. 1. Simulation region of the virtual tight-binding lattice showing the 
coupling of sites to their neighbors. Departures from the nearest-neighbor 
coupling, Eq. (l), occur at the boundaries, particularly for the absorbing 
boundaries where complicated coupling patterns may result from the 
extrapolation schemes of Eqs. (8)-( 10). 

bility with a previously developed Green’s function method 
for calculating steady-state transmission coefficients.6 As 
will be shown later, inconsistent approximations of the 
continuum are a potential source of error in absorbing 
boundary conditions. 

It is known that a Crank-Nicholson approach should 
be used for stability and preservation of the wavefunction 
norm, when a first order forward difference is used for the 
time discretization of the Schrodinger’s equation.’ The 
Hamiltonian is approximated by the average between the 
current and the next time-step value, yielding the half- 
implicit discretized equation 

is I+k+At)) - I@(h)) =f$+%)) +HIq(t,+At)) 
At 2 

(5) 

where At is the time step. For multidimensional calcula- 
tion, however, large matrices are generated. To avoid this 
complication, the space operator can be split into compo- 
nents and an alternating direction implicit. (ADI). ap- 
proach’,!: employed. Specifically, in two-dimensions (2-D)) 
two subiterations with time-step At/2 are used, 

-t~,I~(t,z+~t))l, (6) 
where H, and HY result from the decomposition of the 
tight-binding Hamiltonian of Eq. ( 1) into its orthogonal 
components. The structure of the scheme is given in (6) 

mension ( 1-D) 11~12 suggests that a curve-fitting approach 
for the wavefunction near the open boundaries may pro- 
vide a solution to this problem. They approximate the 
boundary wavefunctions as 

heft (x > = ffe ikx+- (bl+ cp)eBkx 

&ght(X) = (b, + C+x)ek’x (7) 

and then apply the continuum Hamiltonian to calculate 
the time evolution of the wavefunction at the boundary. 
Here, k is the wavevector of a left incoming monochro- 
matic wave, K is the corresponding wavevector at the 
right-hand side boundary with an allowance for the poten- 
tial energy difference between the boundaries, and the co- 
efficients b and c are obtained from a linear fit to the wave- 
function at the boundary and first internal points of the 
discrete simulation grid employed. This method was effec- 
tive for their 1-D simulations of resonant tunneling struc- 
tures. However, this boundary condition loses accuracy as 
the relative variation in the wavefunction momentum from 
the specified monochromatic limit increases.‘3 Fuither- 
more, the application of the continuum Hamiltonian to the 
boundary wavefunctions of Eq. (7) is inconsistent with the 
finite difference discretization of the Hamiltonian used 
within the domain. A discrepancy exists between the par- 
abolic band structure of the continuum Hamiltonian and 
the tight-binding band structure implicit to the finite dif- 
ference discretization. This discrepancy is particularly sig- 
nificant for large wavevectors. 

In this paper a more general and robust approach to 
fitting the boundary wavefunction and evaluating the 
boundary Hamiltonian is presented. The wavefunction is 
extrapolated on the tight-binding lattice sites immediately 
outside the open boundaries using 

(R=l~(t))--r[(RI1Cl(t,))ly (Rl1ClCt)) <Rl+ct >) 
I 
, (8) n 

or, similarly, 

(R,I~(C))crr[(R]~(t,))l +yE(RI$(t)> 
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- mIwnH1, (9) 

where R, is an external lattice site, and r and y are inde- 
pendent extrapolation functions. For the 2-D AD1 scheme 
(6), t = t, + &At or t = tn + At = t, + 1. The tight-binding 
Hamiltonian of Eqs. ( l)-(4) then is applied to the bound- 
ary sites, just as it is applied to the internal sites, to obtain 
the time evolution of the boundary wavefunction, as de- 
picted in Fig. 1. Inclusion of speciEed incoming wavefunc- 
tions (RI +,) in the boundary conditions is accomplished 
by replacing (R,,, 19) in Eqs. (8) and (9) with 
(Rc,, I$) - (Rc,) [4i>. Further, both of the extrapolation 
schemes I’ and y can be varied as a function of R, and t, if 
required. 

The separation of the extrapolation schemes of Eqs. 
(8) and (9) into the components r (explicit) and y (im- 
plicit) is intended to satisfy two conflicting requirements: 
Accuracy of the extrapolation and realizability of the im-- 
plicit scheme (6). Because the primary extrapolation l? is 
performed only explicitly, complicated extrapolation 
schemes can be used without reducing the efficiency of the 
ADI numerical approach described in Sec. II A above. 
This flexibility allows complicated admixtures of propagat- 
ing and evanescent states to be fit at the boundaries. 14*15 On 
the other hand, y is required to extrapolate only small 
changes in the boundary wavefunction over the time step 
and thus, extrapolation schemes that can be readily evalu- 
ated implicitly are sufficient. Also, here there is no inherent 
restriction on the nature of the incoming wavefunction; 
(R I&) can be monochromatic or otherwise, e.g., a prop- 
agating wavepacket. In contrast, in Refs. 11 and 12 the 
incoming wavefunction is necessarily monochromatic. Fi- 
nally, application of the tight-binding Hamiltonian of Eqs. 
(l)-(4) to the boundary lattice sites as to the internal sites 
allows no possibility of discrepancy in the resulting energy 
band structure between the two sets of lattice sites. 

For the example calculations presented in the next sec- 
tion, we chose the following simple scheme, in the form of 
Es. (8): 

O-h+ $AIW,>)- ii0 (Rh- ~~Al$(t,Wn [ 1 lb- fi++W)) Oh- h+,Wn)) 1 (10) 
where R, is the boundary site and fi is a unit vector normal 
to the boundary and directed outwards, as shown in Fig. 1. 
An appropriate choice of the coefficients a, provides any 
desired polynomial curve fit near the boundary. For exam- 
ple, for a linear curve fit, a0 = 2, al = - 1, ana = 0, and 
for a parabolic curve fit, a0 = 3, aI = - 3, a2 = 1, 
a n>3 = 0. In addition, to prevent the “absorbing” bound- 
aries from inadvertently becoming probability sources, 

probability flow from an external lattice site to a boundary 
site has been restricted. It can be shown readily that 

+ WW~--~~l~>I (11) 
for the tight-binding formalism .used here. Therefore, 
should the phase, of I’ ( (R I @( tn) ) - (R I $i( tn) ) ) ever lag 
that of (Rb I q(tn)) - (&I $i( tn)) for any boundary lattice 
site, we project the former complex quantity onto the latter 
to obtain a new prediction r of equal phase, with the min- 
imum change to the initial prediction possible. 

ill. NUMERICAL EXAMPLES 

A. Diffusion through absorbing boundaries 

The quantum mechanical diffusion of localized wave- 
packets out of open regions has been simulated to demon- 
strate the effectiveness of the absorbing boundary scheme 
presented here. Because of the wide spectral spread in en- 
ergies, small mean momentums, and open boundaries on 
all sides, these diffusion examples pose in many respects a 
difficult numerical challenge. For the first such example, 
the diffusions of two identical stationary Gaussian wave- 
packets out of concentric square domains were simulated 
and the results compared, as shown in Figs. 2(a) and 2(b). 
Here, the probability distribution 1 (RI $) 1’ obtained for 
the smaller domain is overlaid on that obtained for the 
larger to facilitate comparison. The difference between the 
two results at the boundary of the inner region is a measure 
of the error induced by the application of absorbing bound- 
ary conditions of Eq. ( 10) with, in this case, a cubic curve 
fit. After 200 fs of simulation such error remained negligi- 
ble, as to be expected; for the primary extrapolation l?, a 
parabolic or higher order curve fit is exact for a Gaussian 
wavepacket. In this and all following examples the effective 
mass m* of GaAs (O.O67m,), a tight-binding grid spacing 
A of 10 A and a time-step At of 1.0 fs were used. For 
comparison, for the wavefunction of this example, which 
has zero mean momentum (and no reference incoming 
wavefunction), the absorbing boundary condition in Refs. 
11 and 12 becomes, in effect, a reflecting condition as the 
continuum Hamiltonian vanishes at the boundary, allow- 
ing no time evolution of the wavefunction there. 

For the second .example, the diffusions of identical 
wavefunctions, each this time initially a sum of two Gauss- 
ian wavepackets with a relative phase difference of 7r/2 
radians, out of two concentric rectangular domains were 
simulated and compared, as shown in Figs. 2 (c) and 2 (d). 
In these simulations, the curve fit of Eq. (10) was no 
longer exact, and one can notice small discrepancies be- 
tween the two solutions at the inner boundary after 200 fs 
of simulation. The error exhibited in Fig. 2 (d), however, is 
emphasized by the choice of scale which is 50 times smaller 
than in Fig. 2(c). 
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FIG. 2. Simulation results for the diffusions of Gaussian wavepackets out 
of concentric open regions: (a) initial probability distribution and (b) 
probability distribution after 200 fs, for a single stationary Gaussian 
wavepacket; and (c) initial probability distribution, and (d) probability 
distribution after 200 fs, for a wavefunction obtained from the sum of two 
Gaussian wavepackets with a relative phase difference of ?r/2 radians. 
The boundaries of the inner regions are outlined when not otherwise 
apparent. 
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B. Switching of a quantum interference structure 

As a final example, the 2-D numerical scheme pre- 
sented here was used to simulate the switching transient in 
a T-structure quantum modulated transistor.3 An idealized 
2-D structure delimited by hard walls was assumed to al- 
low comparison of the results obtained here with steady- 
state transmission coefficients obtained using the steady- 
state Greens function method of Ref. 6. However, this 
assumption does not reflect a limitation of the method; 
finite~ potential walls could have been modeled via the spa- 
tially varying site potentials of Eq. (3). The input and 
output leads of the structure were modeled as quantum 
wires with a width W of 100 A. The side arm had the same 
width and an initial length L of 70 A. Again, the boundary 
conditions of Eq. ( 10) were used, though this time a sim- 
ple linear curve fit proved sufficient. However, an incoming 
wavefunction (RI r+$li> a,y( Y)exp(ikX) was included in the 
left boundary condition. Here, x(Y) is the ground state 
transverse wavefunction of the lead and k is the incident 
momentum wavevector taken to be &r/200 k - ‘. The ini- 
tial steady-state probability distribution I (R I+) 1 2 is 
shown in Fig. 3 (a). Due to quantum interference effects in 
the stub region, the transmission probability through the 
structure was nearly zero. One can see a pronounced peak 
of probability inside the stub region, and a standing wave 
pattern in the input lead indicating nearly total reflection. 
The time evolution of the probability distribution after 
switching the stub length from 70 to 100 A is shown in 
Figs. 3 (b)-3 (i) . Here, a uniform probability scale is main- 
tained throughout. The transient exhibits a quick collapse 
of the probability peak in the stub and a corresponding 
wavefront in the output lead. The decrease of the reflected 
wave in the input lead is evident from the progressive re- 
duction of the standing wave pattern. By 500 fs the struc- 
ture was clearly 011 with a transmission probability near 
unity, with only a hint of reflection at the input noticeable 
from the weak standing wave pattern. Only a small frac- 
tion of the original probability peak inside the stub re- 
mained. Beyond this time, although switching was com- 
plete, the time evolution still exhibited small persistent 
oscillations. The abrupt initial switching excited localized 
eigenstates of the stub at various energies. These eigen- 
states, which are evanescent in the leads, did not decay in 
time since dissipation is not included in the model, and 
thus continued to beat against the propagating state. If 
desired, such localized states can be filtered out by Fourier 
transforming from time to energy at the energy of the in- 
cident wave. Indeed, this approach was used to obtain the 
initials conditions for this simulation, Fig. 3 (a), after 
switching from a simple quantum wire with no stub. On 
the other hand, localized states can be isolated by Fourier 
transforming at their energies. The simulation results were 
not appreciably affected by changing the lengths of the 
leads to check the absorbing boundary conditions. A sim- 
ilar simulation of switch-off exhibited a somewhat quicker 
and less oscillatory switching characteristic. In both cases, 
the steady-state transmission probabilities obtained, here 
are identical to those obtained using the steady-state 
Green’s function method of Ref. 6. 
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FIG. 3. Simulation results for the time evolution of the probability dis- 
tribution in a T-structure quantum modulated transistor after switching 
the stub length from 70 to 110 A% 

IV. CONCLUSIONS absorbing boundary conditions, suitable for the simulation 
We have presented a numerical method based on the of transient response in multidimensional mesoscopic de- 

time-dependent Schrijdinger equation 2nd incorporating vices. We have shown results for the diffusion of localized 
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wavepackets out of open systems and for the switching of 
a T-structure quantum modulated transistor. Statistical 
distributions in the state occupancy in the contact reser- 
voirs can be included by a weighted sum of results for 
monochromatic incident states over the appropriate energy 
range. Future work includes the introduction of potential 
energy self-consistency, via the solution of Poisson’s equa- 
tion, and of a spatially varying effective mass. 
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