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Abstract

As semiconductor devices are scaled down to nanometer scale dimensions, quantum mechanical effects can
become important. For many device simulations at normal temperatures, an efficient quantum correction
approach within a semi-classical framework is expected to be a practical way applicable to multi-dimensional
simulation of ultrasmall integrated devices. In this paper, we present a comparative study on the three
quantum correction methods proposed to operate within the Monte Carlo framework, which are based
on Wigner transport equation, path integrals, and Schrodinger equation. Quantitative comparisons for the
strengths and weaknesses of these methods are discussed by applying them to size quantization and tunneling
effects.
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1 Introduction

As semiconductor devices are scaled down to nanometer scale dimensions, quantum mechanical effects can
become significant, and a full quantum transport model is necessary if coherent effects dominate device
behavior. However, for many practical devices, an efficient alternative is to include quantum corrections
within a semi-classical framework. If a physically-based model such as Monte Carlo is used, it is easier to
include important transport physics than in most available quantum transport approaches. For example, in
MOSFETs scaled below 100 nm, bandstructure and scattering mechanisms must still be modeled to a cer-
tain degree of sophistication, while coherence effects should only play a secondary role because the potential
profiles along the transport path are typically smooth, minimizing quantum mechanical reflections. Instead
of coherent transport, the major quantum effects to be concerned about in this case are size quantization
and tunneling. Size quantization can be captured with quantum corrections because in the direction per-
pendicular to the transport, the device is essentially in quasi-equilibrium conditions, and the major issue
is to adjust the statistical occupation probabilities. Tunneling occurs in the direction of transport, but for
sufficiently wide or high single barriers, the quantum region of action can be assumed to be strongly localized
in the neighborhood of the barrier itself.

Quantum corrections can be incorporated into a semi-classical Monte Carlo simulator by introducing a
quantum potential term which is superimposed onto the classical electrostatic potential seen by the simulated
particles. The essence of the technique is illustrated pictorially for a single tunneling barrier in Fig. 1. Raising
a particle’s potential energy in a quantum well, or lowering it at the top of a barrier can modify the semi-
classical transport, thus reproducing to first-order the average effects of quantization and tunneling on the
carrier distribution.

Several quantum correction approaches are possible. These procedures in general entail the self-consistent
calculation of a correction potential which is added to the semi-classical solution. Approximate quantum
models are used to obtain the corrected potential from the semi-classical potential itself, to steer the transport
toward a situation that mimics as much as possible the quantum behavior. The methods proposed to operate
within the Monte Carlo framework include methods based on Wigner equation [1], path integrals [2], and

Schrodinger equation [3]. The goal of this paper is to review comparatively these three main approaches,



underscoring the strengths and weaknesses of each of them. Quantitative comparisons are presented to help

in understanding for which applications one method might be more efficient or appropriate over the others.

2 Description of Quantum Corrections

2.1 Wigner-based Correction

The Wigner-based quantum correction can be derived starting from a suitable form of the Wigner transport

equation [4]
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Here, k is the crystal momentum, V' is the classical potential and the term on the right-hand side represents
the effects of collisions. The non-local quantum mechanical effects are represented in the fourth term on the
left-hand side of (1). In the limit of slow spatial variations, the non-local terms disappear and we recover the
standard Boltzmann Transport equation (BTE). The simplest approach to quantum correction is to start by
using only the lowest order term with a = 1 in the summation. Following this approximation, one obtains
an equation that closely resembles the structure of the BTE, with one additional term providing a quantum

correction. This quantum corrected BTE takes the form
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where the term V,, contains the quantum potential. V,, depends on the distribution function, which in turn
can be resolved numerically by Monte Carlo simulation, for equilibrium or non-equilibrium cases. We take
here a simpler approach, which assumes a drifted maxwellian distribution function with parabolic dispersion
relation. It allows us to represent V,, with an analytical form. Limiting the derivation to one dimension for
clarity, Vi, becomes [5]
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where n is the carrier concentration. In (3), the corrected potential, V,,, depends on both the location and

the momentum of the individual particles. A simplified version of V,, can also be derived by assuming in (3)



a thermal equilibrium average energy as [1][5]
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This simplified, momentum-independent formulation has some advantage over the more complex momentum-
dependent version (3) because in addition to use in Monte Carlo, it can be applied for quantum corrections
in lower levels of the transport simulation hierarchy such as hydrodynamic [6] or drift-diffusion [7]. We have
to add that for a multi-dimensional problem the Wigner-based correction should be represented in terms of

a quantun force correction, not a quantum potential correction [5].

2.2 Effective Potential Correction

The effective potential approach to quantum correction was developed by Feynman [8]. To derive the effective
potential, a variational method can be used to calculate to contribution to the path integral of a particle’s
quantum fluctuations around its classical path. Using a trial potential to first order in the average point on

each path, the effective classical potential becomes
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Equation (5) represents a smearing of the electrostatic potential on a length scale of the parameter, a, which
can also be interpreted as the effective quantum mechanical “size” of the particle [2].

Feynman later improved this simple correction using a second-order trial potential [9] which yields the

following effective potential, Wy
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Vers in (5) corresponds to Wi in (6) with the special non-optimal choice of 2 = 0. A typical solution of

W1 for MOS quantization effects is indicated in Figure 2. For this application, the benefits of using the



W, effective potential relative to the simpler V.¢; with a allowed to vary as a tuning parameter appear to
be marginal. For practical application, the primary focus in this work will be on the V¢ version of the

correction.

2.3 Schrodinger-based Correction

In the Schrédinger-based approach for quantum correction, the Schrédinger equation is solved periodically
in a simulation using the self-consistent electrostatic potential as input. In contrast to the Wigner-based
and effective potential corrections, the quantum potential in this method is calculated from the exact energy
levels and wavefunctions corresponding to the electrostatic potential solution. The first step in the procedure
is to calculate the overall shape of the quantum density by filling the energy levels according to an equilibrium

Maxwell-Boltzmann distribution. This quantum density shape is mapped to a quantum potential through

Vienr(2) = —kT'log(ny(2)) = Vp(2) + Vo (7)

Here, Vicp, is the quantum correction, z is the direction normal to the interface, n, is quantum density
from the Schrédinger equation or equivalently the converged Monte Carlo concentration, V,, is the potential
from the Poisson solution, and Vj is an arbitrary reference potential determined by the knowledge that the
correction should go to zero away from the quantum region, where the behavior is semi-classical. Only the
shape of the quantum density is used, therefore, one does not need to invoke the exact Fermi level in the
calculation. In this way the correction can be adapted to treat nonequilibrium device simulation [3].

The quantum-corrected potentials, Vi, Vegs, or Vicnp, differ in their method of calculation and their
underlying assumptions. However, they are all incorporated into a Monte Carlo simulation in a similar way.
As a Monte Carlo simulation evolves in time, the corrections are recalculated along with the Poisson equation
to maintain self-consistency. The quantum-corrected potential is then used instead of the electrostatic
potential to calculate the forces on the Monte Carlo particles. Other than this modification of the classical
forces applied to the particles, the quantum-corrected Monte Carlo simulation can be carried out in the same

manner as the uncorrected case.



3 Quantization effects

To study quantization effects, the models described in the preceding section were implemented in the 2-
D full-band Monte Carlo simulator, MOCA [10]. Because of its technological importance as a building
block for devices, the MOS capacitor was used as a prototype structure for this comparative study. For
verification, the quantum mechanical charge density and potential were also calculated using self-consistent
Schrédinger /Poisson simulation.

Figure 2 illustrates the typical behavior of the quantum potential for the different methods. Here, the
“ideal” quantum potential is the correction which would exactly reproduce the quantum density from the
Schrédinger-Poisson solution. The results indicate that the Schréodinger-based correction provides the most
accurate model, which closely matches the ideal value with no fitting parameters. This is expected because
the approaches makes use of a complete solution of the Schrdodinger equation instead of an approximate
quantum solution. In addition, since there are no fitting parameters, the accuracy of the method is not
sensitive to variations in the physical parameters of the MOS capacitor. Figures 3 and 4 compare the detailed
solutions for concentration obtained from a full quantum calculation and from a Schrédinger-corrected Monte
Carlo simulation, over a wide range of gate biases and for substrate dopings of No = 2 x 107cm ™ and
Np =2 x 10'7cm 3.

The Wigner-based quantum potential is also found to be accurate for quantization effects in the MOS
capacitor, if a fitting parameter is used for the density at the interface. Results obtained using the Wigner
correction method are also shown in Figs. 3 and 4. The fitting parameter used here is an empirical charge
layer of 1 x 10*® ¢cm ™3 which is included in the oxide region for the calculation of the correction at the
interface point. Beside this necessary adjustment at the interface, the quantum correction (4) is applied
with no additional fitting parameters. This scheme allows for the proper adjustment of the interface density
for a wide range of biases and doping while giving a reasonably accurate quantum density elsewhere.

For the Feynman effective potential given by (5), the “size” parameter, a was treated as an empirical
fitting parameter, as suggested by Ref. [2]. The best fit value for the size parameter in the MOS structures
studied here was found to be a = 4.5 A. The effective potential method is accurate in reproducing integrated

quantities. Figure 5 shows the total sheet charge for a Monte Carlo simulation of the MOS capacitor with



the effective potential correction, and Fig. 6 shows, for the same simulation, the average displacement of the
carriers from the Si/SiO, interface, which is indicative of the quantum repulsion. However, if the detailed
spatial behavior of the effective potential correction is analyzed, one can see significant deviations from the
quantum solution. Figure 7 shows the detailed concentration under the gate of the MOS capacitor. Typically,
the correction is very large at the interface, leading to a layer of width ~ a next to the oxide interface, where
the concentration is significantly lower than that is expected by the quantum solution. Compensating for
that, the correction becomes smaller than the expected one at the deeper location inside the substrate,
leading to typically a larger peak concentration than the quantum solution.

It can be shown theoretically that the momentum-independent Wigner-based method (4) is an approx-
imation to the effective potential [2]. However, the simulation results presented here indicate that the
momentum-independent Wigner-based correction gives a solution which is substantially closer to the de-
tailed quantum behavior. This is due to the fact that the Wigner correction is local, while the effective
potential correction is non-local. Neither correction is strictly valid at a heterojunction. However, a single
parameter can be used to fit the singularity at the interface for the Wigner correction, since it is local. The
silicon region in which the transport actually occurs has a more slowly-varying potential than in the neigh-
borhood of the interface, and thus no fitting is necessary. The application of a non-local effective potential
act differently in the overall correction schemes. The adjustment of a fitting parameter to accommodate the
strong influence of the interface on the overall solution requires a compensation in the silicon region where
the solution has to deviate to maintain the averages.

In addition to accuracy, another important consideration in practical Monte Carlo device simulation is
the execution time. For all three methods, the CPU time required to calculate the corrections is negligible
relative to the overall Monte Carlo simulation time. However, there is an important difference, in the fact that
the Schrodinger-based correction and the effective potential correction are calculated using the electrostatic
potential as input, while the Wigner-based correction is calculated from concentration. The noise in the
Monte Carlo concentration estimator is always higher than for the potential, and a Wigner-corrected Monte
Carlo simulation can take significantly longer time to converge than an uncorrected semi-classical Monte

Carlo simulation. In contrast, adding the Schrédinger-based or the effective potential correction to the Monte



Carlo procedure does not increase total cpu time in a very significant way. A self-consistent simulation with
the full-band MOCA code using 30000 particles and a non-uniform grid of 300 x 200 nodes for the Poisson
equation requires approximately 80 MB of RAM. On a standard 800 Mhz Intel processor, approximately
1000 iterations per hour are executed, where one iteration normally corresponds to a time step of 1 fs or

less.
4 Tunneling effects

For the purpose of studying quantum corrections in the context of tunneling, the Wigner-based correction
and the effective potential were implemented into a 1D GaAs/AlGaAs Monte Carlo simulator. For this case,
the Schriodinger correction was not applied, since it is best suited for capturing quantum confinement effects.
The tunneling test structure consists of a 4-nm wide GaAs/AlGaAs single barrier with a conduction band
discontinuity of 0.22 eV and a temperature of 300 K.

As shown previously, the effective potential correction encounters difficulties in the neighborhood of the
abrupt transition between oxide and silicon in the MOS system, since there is very large energy jump of
about 3.1 eV and the underlying assumptions behind the theory tend to break down. The problem should
not be as severe in the presence of smaller barriers, as is the case for the GaAs/AlGaAs system and the
effective potential should be a very good candidate for practical inclusion of tunneling effects.

In applying the Wigner-based correction to MOS quantization, the difficulties near the large barrier were
overcome by tuning the correction at the interface point. However, for tunneling it is necessary to model
transport on both sides of the interface, and this scheme, that is based on assuming a concentration layer,
cannot be used. Instead, for tunneling simulations we apply the theoretical value of the Wigner correction.
In order to increase the accuracy, here we implement the momentum-dependent method (3) in addition to
the momentum-independent method (4) used in the quantization simulations.

For the tunneling simulation the bias was varied from 0 to 0.3 V, and the GaAs effective mass of m* =
0.067mg was used in all three corrections. From (5), this corresponds to a value of 1.9 nm for a in the effective
potential. To benchmark the results, the quantum tunneling current was also calculated using a transfer

matrix method [11]. Figure 8 plots the resulting current from the transfer matrix and Monte Carlo methods.



All of the quantum corrected results improve significantly upon the classical simulation. The momentum-
dependent Wigner correction and the effective potential are the more accurate methods. However the details
of their results differ, which is expected because each method stems from a different set of assumptions.
The momentum-independent Wigner method is less accurate, which is consistent with the fact that it can
be considered an approximation to either the momentum-dependent method or to the effective potential.
These same trends also hold for other small tunneling barriers, such as possible source-drain tunneling in
highly scaled MOSFETSs. If an improved accuracy is desired, the a parameter in the effective potential, or
equivalently, the m* parameter in the Wigner-based corrections can be adjusted for a best fit. However, in

such a case, recalibration of the fitting parameters may be required when different barriers are considered.

5 Conclusions

Three methods for introducing quantum corrections in semi-classical Monte Carlo simulation have been
studied and compared. For the size-quantization case in the MOS system, the Schrodinger-based correction
has some intrinsic advantage, since this method does not require fitting parameters, it is accurate, and it
adds only negligible CPU time to a Monte Carlo simulation. In contrast, while the Wigner-based method can
be tuned to be as accurate, it is in general slower and it requires a fitting parameter. The effective potential
method reproduces reasonably well integrated quantities related to size quantization, but it is spatially
inaccurate even if the fitting parameter is optimized. For the tunneling case, the Schrédinger-based correction
is not appropriate. Instead, the momentum-dependent Wigner correction or effective potential methods can
be used with similar accuracy. In this case, the effective potential should have a computational advantage,
since the Wigner correction is more affected by noise. On the other hand, the Wigner formulation can
still be useful for detailed physical investigations, since it can be extended to include momentum-dependent
distributions. One could introduce an analytical distribution function or even a numerical one evaluated

directly with the semi-classical Monte Carlo procedure.
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Figure Captions

Fig. 1 - Illustration of how quantum effects are treated by adding a “quantum potential” to the electro-
static potential.

Fig. 2 - Typical behavior of the quantum potential for an MOS capacitor using several different quantum
correction approaches.

Fig. 3 - Electron concentration distributions in an inverted MOS capacitor from two different quantum-
corrected Monte Carlo and self-consistent Schrédinger-Poisson methods over a range of gate bias.

Fig. 4 - Electron concentration distributions in an accumulated MOS capacitor from two different
quantum-corrected Monte Carlo and self-consistent Schrédinger-Poisson methods over a range of gate bias.

Fig. 5 - Sheet charge density in a MOS capacitor as a function of gate bias calculated with effective
potential corrected Monte Carlo and self-consistent Schrodinger-Poisson methods.

Fig. 6 - Location of charge centroid in a MOS capacitor as a function of gate bias calculated with effective
potential corrected Monte Carlo and self-consistent Schrodinger-Poisson methods.

Fig. 7 - Electron concentration distributions in an inverted MOS capacitor calculated with effective
potential Monte Carlo and self-consistent Schrédinger-Poisson methods.

Fig. 8 - Tunneling current in a 4-nm GaAs-AlGaAs tunneling barrier over a range of bias calculated with

three quantum-corrected Monte Carlo and transfer matrix methods.
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