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Outline

• Quantum corrections for quantization effects
– Effective potential
– Wigner-based
– Schrödinger-based

• Quantum corrections for tunneling
• Extending Schrödinger-based correction to device

simulation
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Motivation for Quantum Corrections

• Full-quantum transport is often impractical
• Goal is to extend the validity of semi-classical

Monte Carlo to the 10-nm regime
• Quantum corrections can extend the validity of

Monte Carlo in a practical way
– Mixed quantum/classical effects are treated in a

unified fashion
– Little extra computational overhead is added in

both 2D and 3D
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Role of Quantum Corrections

• Monte Carlo particles correctly represent the
motion of wave packets centroids in the crystal

• Monte Carlo does not account for interference
effects due to rapidly varying applied fields or
heterojunctions

• Quantum corrections can capture non-coherent
interference effects

• Coherent transport effects are small for pure
silicon devices above 10-nm regime
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Corrections in Monte Carlo

 Quantum effects can be approximated in Monte
Carlo by correcting the classical potential

Tunneling 

      Size
Quantization

U
U + Uc
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Snapshot from MOS Capacitor
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Effective Potential

• Feynman developed the effective potential in the
1960s and applied it to quantum corrections in
statistical mechanics

• Particles feel nearby potential due to quantum
fluctuations around classical path of least action

• Veff is a non-local function of the nearby potential
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Properties of Effective Potential

• Simple to implement and to calculate
• Not sensitive to noise from Monte Carlo
• Works best for smooth, symmetric potentials
• a can be treated as a fitting parameter describing

the “size” of the particle
• Detailed solution near large heterojunctions is

typically incorrect and cannot be fit
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• Effective size a can be tuned to match sheet
charge density
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Wigner Formulation

• The Wigner method was developed in the 1930s
for quantum correction to statistical mechanics

• Wigner formulation of quantum mechanics
formally separates the quantum and classical
contributions to the equation of motion

Quantum
Contribution

Classical
Boltzmann equation



 2002 School on Computational Material Science                         May 21-31, 2002

• We start from the general Wigner function representation of
quantum transport

where

is the density matrix.

• The Wigner function is the quantum equivalent of the
distribution function in the semi-classical Boltzmann
equation.

Quantum corrections for Monte Carlo simulation

( ) ( )3
1, 2, 2j p y

wf r p dy e x y x yr◊= + -Ú

( ), 'x xr



 2002 School on Computational Material Science                         May 21-31, 2002

• The quantum transport equation of the Wigner function has
the form (parabolic bands, ballistic)

• Direct solution of the Wigner transport equation is still a
considerable numerical challenge.

• We are interested in determining a truncated expansion of
the quantum equation, that resembles the standard
Boltzmann equation, so that the standard Monte Carlo
technique can be applied with minor modifications.

Quantum corrections for Monte Carlo simulation
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• The complete Wigner transport equation, inclusive of collision
terms, can be reformulated to resemble Boltzmann equation

• At first order, we truncate considering only α = 1.

Quantum corrections for Monte Carlo simulation
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• The truncated equation has a form resembling Boltzmann
equation

where Fqc contains the quantum correction to the forces.

• With the modified forces, the particles move as if under the
influence of a classical potential, but following equivalent
quantum trajectories.

• The quantum correction essentially modifies the potential energy
felt by the particles.

Quantum corrections for Monte Carlo simulation
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• The corrected forces can be evaluated by making assumptions on
distribution function and bandstructure.  For

Quantum corrections for Monte Carlo simulation
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• The forces obtained have still some practical problems in regions
like sharp interfaces, where quantum effects are prominent.

• To obtain a smooth potential, we can use approximate relations
obtained by integrating the displaced Maxwellian distribution with
the momentum.

• We obtain these alternative expressions for the second order
derivatives of the potential

Quantum corrections for Monte Carlo simulation
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• The “smooth” version of the quantum corrected forces is

• This formulation has explicit momentum dependence and
improves upon previous results in the literature where the
momentum terms were evaluated with the thermal energy

Quantum corrections for Monte Carlo simulation
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• Test of the quantum corrections in Monte Carlo:
Single GaAs/AlGaAs/GaAs barrier with a fixed potential (1)

Quantum corrections for Monte Carlo simulation
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• Single GaAs/AlGaAs/GaAs barrier with a fixed potential (2)

Quantum corrections for Monte Carlo simulation
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• Single GaAs/AlGaAs/GaAs barrier with a fixed potential (3)

Quantum corrections for Monte Carlo simulation
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• Single GaAs/AlGaAs/GaAs barrier with a fixed potential (4)

Quantum corrections for Monte Carlo simulation
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Wigner Correction

• Approximate quantum series
– Truncate to the first non-classical term
– Assume displaced maxwellian
– Parabolic bands

• Leads to a momentum-dependent correction

• Possible to avoid last two approximations by
making use of Monte Carlo full band
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• Averaging out the momentum-dependence

• Feynman showed this can also be derived as an
approximation to the effective potential

• Further approximation leads to the density
gradient method in drift-diffusion

Simplified Wigner Correction
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Properties of Wigner Correction

• Requires long run times due to Monte Carlo
noise in ∇2ln(n) and restricts grid spacing

• Works well in drift-diffusion where noise is
not an issue

• Unlike effective potential, ∇2ln(n) is local

• For MOS, a single fitting parameter was found
to adjust the correction at the oxide interface

• Requires no fitting in the silicon region
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Wigner-corrected MOS Accumulation

nox = 1e15 cm-3
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Schrödinger-Based Correction

• Treats quantum effects in the direction
perpendicular to transport

• Accurate
• No fitting parameters
• Not sensitive to noise in the Monte Carlo

concentration estimator
• Efficient, additional computation time is small
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Applying Schrödinger Correction

• Schrödinger equation is solved along 1D slices of
the 2-D domain

• Self-consistent Monte Carlo potential is the input
to Schrödinger and quantum density, nq, is output

• Concentration is linked to the correction with a
Boltzmann dependence

{ } tqcp kTzVzV
q ezn /)()()( +−∝
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Consistent with Non-equilibrium Transport

• Schrödinger energy levels/wavefunctions are filled
on a Boltzmann distribution

• Within each slice, the correction forces the shape
of the quantum density onto Monte Carlo

• No Fermi level is required
• Relative concentration between the slices is

determined naturally by Monte Carlo transport
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Degenerate Statistics in MOS
Degeneracy can be important in highly inverted
MOS structures
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Quantum-corrected Simulation Flow

Potential
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Quantum density
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Schrödinger-corrected MOS Inversion
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Schrödinger-corrected MOS Accumulation
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Schrödinger-corrected Double-gate
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Schrödinger vs Other Corrections for MOS

• Typical behavior of different corrections for MOS
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Schrödinger vs Other Corrections for MOS
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Adding Tunneling to Monte Carlo

• Calculation of transfer matrix tunneling probability
for each Monte Carlo particle is accurate

• Implementation of transfer matrix is cumbersome
and can be inefficient

• Effective potential is simple and gives reasonable
results for current through a small barrier

• Useful in current project to extend MOCA to SiGe
or could be applied to source/channel tunneling
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Effective Potential for Tunneling
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Extending Schrödinger Correction to Devices

• Heating occurs in the direction ⊥ to transport
• Cannot make use of an electron “temperature”

because it is not well-defined for non-equilibrium
• Define a “transverse” temperature Tt to describe

the variation of the concentration with potential in
the ⊥ direction

• Tt is validated if a single temperature at each point
along the transport path accurately describes the
variation
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Validating Transverse Temperature

Tt(z) accurately describes potential→concentration
for highly non-equilibrium transport in 25nm FET
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Typical Transverse Temperature

• Transverse temperature for a 25-nm MOSFET in
saturation bias
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Effect of Heating in the ⊥ Direction
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25 nm MOSFET – concentration
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25 nm MOSFET – corrected potential
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Properties along transport path
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Conclusions
• Quantum corrections can be used to extend the validity of

Monte Carlo device simulation to the 10-nm regime
• Wigner-based corrections

– accurate, and momentum-dependent is interesting
– somewhat impractical due to noise in Monte Carlo

• Effective potential
– simple and fast
– accurate for small heterojunctions

• Schrödinger-based correction
– accurate and efficient with no fitting parameters
– best choice for size quantization effects


