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Outline

* Quantum corrections for quantization effects
— Effective potential
— Wigner-based
— Schrodinger-based

* Quantum corrections for tunneling

* Extending Schrodinger-based correction to device
simulation
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Monte Carlo Snapshot of a MOSFET
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Motivation for Quantum Corrections

* Full-quantum transport 1s often impractical

* (Goal 1s to extend the validity of semi-classical
Monte Carlo to the 10-nm regime

* Quantum corrections can extend the validity of
Monte Carlo 1n a practical way

— Mixed quantum/classical effects are treated in a
unified fashion

— Little extra computational overhead 1s added 1n
both 2D and 3D
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Role of Quantum Corrections

* Monte Carlo particles correctly represent the
motion of wave packets centroids in the crystal

* Monte Carlo does not account for interference
effects due to rapidly varying applied fields or
heterojunctions

* Quantum corrections can capture non-coherent
interference effects

* (Coherent transport effects are small for pure
silicon devices above 10-nm regime
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Corrections 1n Monte Carlo

Quantum effects can be approximated in Monte
Carlo by correcting the classical potential
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Snapshot from MOS Capacitor

0.35 . T

0.3

0.25

0.2F ..

< 0.15 T — potential

5>_)/ . particles

> ; i
5 01 2 T =3nm

[¢6] ()4

5 V =10V

0.05 g _
- NA:2x1017cm3

-0.05

-0.1

-0.15 : :
0
Depth (nm)

2002 School on Computational Material Science May 21-31, 2002



Efftective Potential

* Feynman developed the effective potential in the
1960s and applied 1t to quantum corrections 1n

statistical mechanics

* Particles feel nearby potential due to quantum
fluctuations around classical path of least action

* Jeri1s a non-local function of the nearby potential
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Properties of Effective Potential

e Simple to implement and to calculate
* Not sensitive to noise from Monte Carlo

* Works best for smooth, symmetric potentials

* g can be treated as a fitting parameter describing

the “size” of the particle

* Detailed solution near large heterojunctions is

typically incorrect and cannot be fit
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Effective potential for MOS

Effective size a can be tuned to match sheet
charge density
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Effective potential for MOS
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Wigner Formulation

* The Wigner method was developed in the 1930s
for quantum correction to statistical mechanics

* Wigner formulation of quantum mechanics
formally separates the quantum and classical
contributions to the equation of motion
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Quantum corrections for Monte Carlo simulation

* We start from the general Wigner function representation of
quantum transport

— ~ h
fu(7B)= 5 1 [dy /PP p(x+ p/2,x- y)2)
where
p(x,x')
is the density matrix.
* The Wigner function is the quantum equivalent of the

distribution function in the semi-classical Boltzmann
equation.
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Quantum corrections for Monte Carlo simulation

The quantum transport equation of the Wigner function has
the form (parabolic bands, ballistic)

Oy,
ot

I . Sh . sh\| . _ =
K(S,P)=|:U(r+2)—U(r—2):|s1n(s-P)

Direct solution of the Wigner transport equation is still a
considerable numerical challenge.

We are interested in determining a truncated expansion of
the quantum equation, that resembles the standard
Boltzmann equation, so that the standard Monte Carlo
technique can be applied with minor modifications.
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Quantum corrections for Monte Carlo simulation

* The complete Wigner transport equation, inclusive of collision
terms, can be reformulated to resemble Boltzmann equation

%,
f+V V. f V—'U ka
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a=1 4% 2a +1)! at .

* At first order, we truncate considering only o = 1.
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Quantum corrections for Monte Carlo simulation

* The truncated equation has a form resembling Boltzmann
equation

of .
at

d f

_ _Fqc
Vi f Vi f= ot ),

where F%¢ contains the quantum correction to the forces.

* With the modified forces, the particles move as if under the
influence of a classical potential, but following equivalent
quantum trajectories.

* The quantum correction essentially modifies the potential energy
felt by the particles.
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Quantum corrections for Monte Carlo simulation

The corrected forces can be evaluated by making assumptions on
distribution function and bandstructure. For
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Quantum corrections for Monte Carlo simulation

* The forces obtained have still some practical problems in regions
like sharp interfaces, where quantum effects are prominent.

* To obtain a smooth potential, we can use approximate relations
obtained by integrating the displaced Maxwellian distribution with
the momentum.

* We obtain these alternative expressions for the second order
derivatives of the potential

2 2 2 2
a—(; ~ —kBTa (h;n) ’ 8—12]: —kBTa (h;n)
0Xx 0x oy oy
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Quantum corrections for Monte Carlo simulation

* The “smooth” version of the quantum corrected forces is

o karr 5 3 nn v 10 mn)
FI¢=_ 2 U280 2 (k. — k. ) =3 } +3[ ke —%,) - }
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y o 4 k_7’§( v y) Vy 3,7 7 (ke =) =72 5.2

* This formulation has explicit momentum dependence and
improves upon previous results in the literature where the
momentum terms were evaluated with the thermal energy
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Quantum corrections for Monte Carlo simulation

* Test of the quantum corrections in Monte Carlo:
Single GaAs/AlGaAs/GaAs barrier with a fixed potential (1)
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Quantum corrections for Monte Carlo simulation

Single GaAs/AlGaAs/GaAs barrier with a fixed potential (2)
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Quantum corrections for Monte Carlo simulation

* Single GaAs/AlGaAs/GaAs barrier with a fixed potential (3)
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Quantum corrections for Monte Carlo simulation

Single GaAs/AlGaAs/GaAs barrier with a fixed potential (4)
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Wigner Correction

* Approximate quantum series

— Truncate to the first non-classical term
— Assume displaced maxwellian

— Parabolic bands

* Leads to a momentum-dependent correction

* Possible to avoid last two approximations by
making use of Monte Carlo full band
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Simplified Wigner Correction

* Averaging out the momentum-dependence

2
V >V f _V?In(n)
12m

* Feynman showed this can also be derived as an
approximation to the effective potential

* Further approximation leads to the density
gradient method 1n drift-diffusion
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Properties of Wigner Correction
* Requires long run times due to Monte Carlo
noise in V'In(n) and restricts grid spacing

* Works well 1in drift-diffusion where noise 1s
not an 1ssue

* Unlike effective potential, V'In(n) is local

* For MOS, a single fitting parameter was found
to adjust the correction at the oxide interface

* Requires no fitting 1n the silicon region
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Wigner-corrected MOS Inversion

Wigner correction 1s accurate across range of
biases—empirical nox = 1e15 cm™ to fit interface
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Wigner-corrected MOS Accumulation
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Schrodinger-Based Correction

* Treats quantum effects in the direction
perpendicular to transport

* Accurate
* No fitting parameters

e Not sensitive to noise 1n the Monte Carlo
concentration estimator

e Efficient, additional computation time 1s small
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Applying Schrodinger Correction

e Schrodinger equation 1s solved along 1D slices of
the 2-D domain

* Self-consistent Monte Carlo potential 1s the input
to Schrodinger and quantum density, ng, 1s output

* (Concentration is linked to the correction with a
Boltzmann dependence

” (Z) o e—{Vp(z) + Vae(2) Y KTy
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Consistent with Non-equilibrium Transport

e Schrodinger energy levels/wavefunctions are filled
on a Boltzmann distribution

* Within each slice, the correction forces the shape
of the quantum density onto Monte Carlo

* No Fermi level 1s required

* Relative concentration between the slices is
determined naturally by Monte Carlo transport
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Degenerate Statistics in MOS

Degeneracy can be important in highly inverted
MOS structures
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Correction Satisfies Degeneracy

V4e(z) 1s only a function of the relative n¢(z) and
the first three subbands have a similar shape

—— Quantum-corrected MC
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Quantum-corrected Simulation Flow
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Schrodinger-corrected MOS Inversion
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Schrodinger-corrected MOS Accumulation
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Schrodinger-corrected Double-gate
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Schrodinger vs Other Corrections for MOS

e Typical behavior of different corrections for MOS
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Schrodinger vs Other Corrections for MOS
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Adding Tunneling to Monte Carlo

* (alculation of transfer matrix tunneling probability
for each Monte Carlo particle 1s accurate

* Implementation of transfer matrix 1s cumbersome
and can be 1nefficient

e Effective potential 1s stmple and gives reasonable
results for current through a small barrier

e Useful in current project to extend MOCA to S1Ge
or could be applied to source/channel tunneling
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Effective Potential for Tunneling
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Extending Schrodinger Correction to Devices

* Heating occurs in the direction L to transport

* Cannot make use of an electron “temperature”
because 1t 1s not well-defined for non-equilibrium

* Define a “transverse” temperature Tt to describe
the variation of the concentration with potential 1n
the L direction

r

I't 1s validated 1f a single temperature at each point
along the transport path accurately describes the
variation
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Validating Transverse Temperature

T1(z) accurately describes potential—>concentration
for highly non-equilibrium transport in 25nm FET
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Typical Transverse Temperature

* Transverse temperature for a 25-nm MOSFET 1n
saturation bias
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Effect of Heating in the L Direction
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Surface Scattering

Surface scattering model of Yamakawa, using
roughness parameters obtained from experiment
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25 nm MOSFET — concentration
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25 nm MOSFET - corrected potential
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Properties along transport path
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Conclusions

Quantum corrections can be used to extend the validity of
Monte Carlo device simulation to the 10-nm regime

Wigner-based corrections
— accurate, and momentum-dependent 1s interesting
— somewhat impractical due to noise in Monte Carlo

e Effective potential

— simple and fast

— accurate for small heterojunctions

e Schrodinger-based correction

— accurate and efficient with no fitting parameters

— best choice for size quantization effects
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