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Time-dependent Schrödinger Equation
• Goal of quantum mechanics is to give a quantitative

description on a microscopic scale of individual elementary
objects (electrons, photons, atoms,…) which behave both like
particles and waves, exhibiting diffraction and interference
phenomena.

• Propagation cannot be described by a trajectory  r ( t ) as for a
classical particle, but by a field-like quantity ψ (r,t ) called
wave function.  The simplest wave function is a plane wave

with mechanical and wave parameters related as

( ) ( )0 ˆ, exp  = ⋅ − r t j k r tψ Ψ ω

( ) ( ); ; ;= = = =
dispersion relations

p k E k E E pω ω ω
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• For an electron in vacuum, the energy dispersion relation
assumes the parabolic form which gives the kinetic energy

A plane wave represents a mathematical limit, since it extends
infinitely in space and time.  A realistic particle could be
constructed as a superposition of plane waves

The wave function plays the role of a probability amplitude,
from which we assume the normalization for the probability
density
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• The evolution of the wave function is described by the
Schrödinger equation

which is actually a system of two equations for the real and
imaginary part of the wave function
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• In operator notation the solution to Schrödinger equation is

with the system Hamiltonian

This represents a formal solution of the Schrödinger equation
as a first order differential equation in time.  Except for trivial
cases, we cannot find an analytical form for the exponential
term containing the Hamiltonian.

All numerical solutions must find a suitable approximation of
the exponential on a set of discrete points.
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• Consider a discretization of the domain involving N mesh
points

The discretized form of the solution is

. . . . . . . .

 1     2     3                                               N-1   N
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( )
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• We need to find a numerical approximation for the
exponential of the discretized operator

satisfying:

a) stability of the iteration

b) conservation of the wave function probability

c) consistency ( we really solve the intended equation )

ˆ
exp
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1-D time-dependent Schrödinger equation

Let’s illustrate the properties of numerical solutions by
using finite-differences on a uniform mesh.

A discretization may require

Explicit numerical methods – if it only requires a direct
substitution of values in the formulation

Implicit methods – if it involves solution of a linear system
of equations
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A. Simple (naïve) explicit method

A simple direct finite difference discretization gives

In operator notation

UNSTABLE and NON-CONSERVING
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B. Three-time-levels explicit method

A centered time difference is applied

To obtain the operator algorithm, we need to eliminate the
intermediate solution at iteration n

STABLE and UNITARY (CONSERVING)
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C. Fully implicit method

Discretize space operator at timestep ( j+1) leading to a system that
requires a matrix inversion

In operator notation

STABLE but NON-UNITARY (NON-CONSERVING)

 2002 School on Computational Material Science                         May 21-31, 2002

( ) ( ) ( ) ( ) ( )

( )
20

1; 1 2 ; 1 1; 1 ( )ˆ; 1 ; 1
2

; 1

i n i n i n V ii n j t i n
m x

i n

y y yy D y
D

y

Ê ˆ- + - + + + +
+ + + +Á ˜

Ë ¯

= -

( ) ( )
1ˆ

1
− 

+ = + 
 

jn I H t nψ ∆ ψ



12

D. Semi-implicit method (Crank-Nicholson, also Cayley)

The right hand side is discretized as an average of operators at the
two timesteps

In operator notation

STABLE and UNITARY (CONSERVING)

 2002 School on Computational Material Science                         May 21-31, 2002

( ) ( ) [ ]

( ) ( ) ( )

( ) ( ) ( )

2 2
0 0

2

2 2
0 0

2

; 1 ; 1ˆ ( 1) ( )
2

4 2ˆ1; 1 ( ) 2 ; 1 1; 1

4 2ˆ1; ( ) 2 ; 1;

i n i n
j RHS n RHS n

t

m x m xi n j V i i n i n
t

m x m xi n j V i i n i n
t

y y
D

D Dy y y
D

D Dy y y
D

+ -
= + +

Ê ˆ
fi - + + - - + + + +Á ˜

Ë ¯

Ê ˆ
= - + + + + +Á ˜

Ë ¯

( ) ( )
ˆ /(2 )1 ˆ /(2 )

−
+ =

+
I jH tn n
I jH t

∆ψ ψ
∆



13

Of the schemes analyzed, only the three time steps explicit

and the Crank Nicholson semi-implicit method

are suitable.

One can see that the numerical operators are essentially
equivalent.
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The unitary finite difference schemes can be readily extended to
2D.  Let’s assume for simplicity a uniform mesh

The three times level scheme becomes

The numerical solution is still obtained by a simple recursion,
without having to solve a matrix problem.

 2002 School on Computational Material Science                         May 21-31, 2002

= =x y∆ ∆ ∆

( ) ( ) ( )

( ) ( ) ( ) ( )

2 0
ˆ, ; 1 , ; 1 ( 1, ; ( , 1; )

2ˆ4 , ; 1, ; , 1; ) ( ) , ;

ti j n i j n j i j n i j n
m

ti j n i j n i j n j V i i j n

Dy y y y
D

Dy y y y

+ = - + - + -

- + + + + -



15

The Crank-Nicholson algorithm is

The algorithm can be rewritten for matrix implementation, by
moving all terms at timestep (n+1) to the left and all terms at
timestep n to the right.  Numerical solution of a 5-diagonal matrix
problem is required at each iteration.
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To alleviate the requirements of the matrix solution, it is possible
to use an Alternate Direction Implicit (ADI) scheme.  The time
step is split into two sub-steps of half duration, and two
consecutive sets of solutions are performed:

Horizontal sweep
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Vertical sweep
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The ADI procedure decouples adjacent rows and columns of
mesh points.  For every sweep, a set of tridiagonal systems is
solved.

Because of the decoupling, the tridiagonal solutions in each
sweep can be carried out independently, therefore the approach
is suitable for supercomputing applications (vectorization,
parallelization).

In the numerical scheme shown here, the contribution by the
potential is equally divided between the implicit part (left hand
side) and the explicit part (right hand side) of the algorithm.

Note: the intermediate solution after a horizontal sweep is still
very biased.  Only solutions obtained after two consecutive
sweeps should be considered.
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Possible discussion items:

How can one implement a self-consistent solution (Poisson
equation solved at each iteration to update the potential) in a
three-time-step explicit method or in a semi-implicit method,
where the potential should be known for the “next” timestep
already?

What trade-offs and approximations are possible/reasonable?

 2002 School on Computational Material Science                         May 21-31, 2002
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Systems with variable effective mass

In the effective mass approximation, the potential V in the
Schrödinger equation is assumed to be only the electrostatic
potential, since the effect of the periodic crystal is accounted for
by the effective mass itself.

However, some of the most interesting applications of quantum
systems involve spatially varying materials and heterojunctions.
The effective mass approximation can still be used with some
caution.

When the effective mass is space-dependent, the major issue is
to find the Hamiltonian operator, so that it remains Hermitian.
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If we just insert a space dependent mass in the Schrödinger as is
we know that the Hamiltonian is not Hermitian.  Also, this method
would be mathematically applicable only to slowly varying mass.
A widely used Hermitian form brings the effective inside the
Laplacian differential operator

This operator can be used also for transport across abrupt
heterojunctions, as long as the materials on the two sides have
similar properties and band structure (e.g. AlGaAs/GaAs).

But one has to keep in mind that very close to the heterojunction
the physical properties, described by the effective mass
Schrödinger equation, are not necessarily well defined.
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Let’s consider a 1-D situation with uniform mesh.  We can
discretize first the outer differential operator considering the
mid-points of the intervals around the mesh point  i, using center
differences

Then the derivatives on the mid-points are also evaluated with
center differences
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The effective mass only needs to be known at the mid-points.  If
an abrupt heterojunction is located at point I, the abrupt change
of effective mass is treated correctly in mathematical terms and
without ambiguity.  We avoid having to assume an effective mass
value exactly at the heterojunction.

There are other possible Hamiltonians for the space-dependent
mass case, which are  Hermitian.  The following operator is
Hermitian, and is obtained as linear combination of two non-
Hermitian operators
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Let’s compare the two Hamiltonians, in a 1-D formulation
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For smoothly varying mass, the two approaches are
approximately equivalent.  One can see that it is awkward to
directly discretize with finite differences the numerical operators
on the right hand side.  The proper procedure is to use box
integration, over the interval [ i-1/2; i+1/2 ].  Integration by parts
can be applied
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Absorbing boundary conditions
Numerical solution of the time-dependent Schrödinger equation
is often accomplished by assuming a gaussian wave packet
distribution describing the particle.  The boundaries of the
systems are taken to be far away from the simulated region, and
the wave function there is fixed to zero.

As the simulation progresses, the wave packet spreads and
intercats with potential variations, originating reflected
wavepackets.  Over a sufficient number of simulation steps, the
wave may reach the boundaries, where the condition of zero
wave function corresponds to perfect reflection!
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In order to let the wave function exist the domain, we need to
implement absorbing boundary conditions.
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Assume B(x) approximately linear near the boundary BC1
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The formal solution of the differential equation in time gives

At BC2 similar treatment with
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Create a new discretized equation near the boundaries

In a Crank-Nicholson scheme
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In general

The numerical value of the reflected momentum may differ
slightly from the incident momentum, during a transient,
particularly in 2D and 3D situations.
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Issue: discretization changes the relationship between
(simulated) energy and momentum! Discetization creates a
virtual lattice where transport is described by the Tight-Binding
Hamiltonian
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Potential for transferring an electron from one site to a neighbor

Energy of an electron located at a lattice site

Atomic-like orbital centers at the sites         (forming a regular lattice)
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In the continuum limit

For a periodic lattice
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Consider a periodic chain with constant energy parameters and mass,
and uniform potential energy distribution.  The discretized Hamiltonian
is described by a tridiagonal matrix

Eigenvalues of the tridiagonal matrix
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Dispersion relationship for the discretized Hamiltonian is not parabolic!
Absorbing boundary conditions for a discretized Hamiltonian should be
derived in the tight-binding formalism.
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Final results for absorbing boundary conditions at input

has been eliminated

An even more refined methodology for absorbing boundary conditions can be found at:
      L.F. Register, U. Ravaioli and K. Hess, J. Applied Physics, vol. 69, pp. 7153-7158, 1991
      (+ small corrections at the Erratum section of: J. Applied Physics, vol 71, p. 1555, 1992),
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Time-independent transport with Schrödinger equation
We consider her an open system in steady-state conditions.  The
open system consists of a finite region connected to reservoirs
of particles (contacts).
Waves (particles) flow between the system and the reservoirs,
with reflection and transmission properties depending on the
potential profile.  Waves entering from any separate reservoir
contact are studied with an independent solution.
Assuming stationary states

the steady-state Schrödinger equation has the form
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Let’s consider a 1-D domain with uniform grid and mesh size ∆ x.
The time independent Schrödinger equation is discretized with
finite differences

E represents the total energy, so that V(i) - E is the kinetic
energy.  It is often convenient to set the reference zero of the
potential V(x) at the inflow boundary, so that E corresponds to
the incident kinetic energy.

The kinetic energy varies spatially according to the potential
changes, and the wavenumber kx(x) varies accordingly.  The
knowledge of kx at the reservoir ends, allows the specification of
boundary conditions.
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The travelling wave at the specified energy can be assumed to be
a plane wave of the form

where the sign indicates the direction of propagation.  Boundary
conditions are derived from this expression for both forward and
backward wave.

The exponentials are completely specified in the boundary
conditions by the knowledge of E and V(x).  The prefactor A is set
to a conventional reference (e.g., A=1) at the one boundary, and
the value at the other end is the outcome of the solution. The
solution for the pre-factor A may be complex, and it contains the
information on reflection and transmission coefficients.
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In 1-D, all is needed for the solution is a recursion algorithm.  For
a forward travelling wave which enters the open system at x = 0,
we can set A( L ) = 1 ( L is the length of the domain) and obtain
the boundary condition

N is the index corresponding to the output boundary.  Assuming
that the domain is subdivided into N mesh intervals, the index for
the left boundary is i = 0.  To solve the open system problem, we
need to assume a perfect reservoir with a constant potential
(ohmic contact) and no change in the wavevector kx

The knowledge of the wave function N and N+1 is sufficient to
calculate the value of ψ (N-1) using the discretized Schrödinger
equation.
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The general recursion algorithm can be easily obtained by
rewriting the discretized Schrödinger equation

The potential reference is V(0) = 0, so that E represents the
kinetic energy

as well as the total energy at the inflow point  i = 0.
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Because of reflection due to the potential variations, throughout
the device one can express the wave function as the
superposition of an incident and a reflected wave

At the output, because of the constant potential in the reservoir,
we assume that there is no reflection

At the input we can express the total wave function as
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To find the amplitude of incident and reflected waves, we need
an additional solution at a mesh point inside the input reservoir.
With the same assumptions as for the output reservoir

By combining the above with

we obtain

Once I(0) is determined, the wave function throughout the device
can be re-normalized to make the total probability unitary.
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The procedure for inflow from the right boundary is essentially
the same, with appropriate sign changes for the waves.  The
recursion relation becomes

with the starting point

The recursions are solved for a set of energies and for inflow
from both boundaries.  In order to find the total result, one still
needs to specify injection condition, that provide the weights for
adding all the separate recursion results.
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We consider now a simple case for an n-type semiconductor,
where the two reservoirs are assumed in quasi-equilibrium, with
a specific Fermi level EF.

The equilibrium particle density, including the effect of spin, is

Assuming for simplicity an isotropic mass, the particle energy is

To determine the density for the injection direction, we need to
integrate over the transverse direction
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The integration is performed over the transverse momentum
components, in polar coordinates

The integration over the angle provides simply a factor 2π and a
change of variable is performed
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We obtain

The integration can be carried out exactly according to

 from which
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From this result, deduce that the electron density corresponding
to an incident momentum kx  is

The expression above can be used as a weight to combine the
incident waves which are injected from the reservoir momentum
distribution.

The Fermi-Dirac distribution in the contacts is valid close to
equilibrium.  Far from equilibrium, one can still use the approach
to get a qualitative solution.  However, in a general situation, the
boundary conditions for the injection distribution should be
adapted self-consistently to the bias.
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Let’s trace the same steps for a classical distribution of particles
from a Maxwellian distribution
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After changing variables
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Finally
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Here are the injecting distributions for the two cases
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Once the wave function is determined, it is possible to evaluate
the current flowing in the structure.  Again using a parabolic
dispersion relation, the electron current associated with a
specific momentum component is defined as

For a plane wave

from which we obtain the alternative expression
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The continuity equation for electrons has the form

where

From Schrödinger equation
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Then, since

we have

and from the continuity equation itself

we get yet another expression for the current density
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Here are together all the expressions for current that we found
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In practice, one cannot select all possible values of the incident
momentum and the momentum axis is discretized.  Assuming a
uniform discretization step ∆kx we can take the mid-value of the
interval as the average momentum for that mesh.  We can
expressed the following quantities for a 1-D system

Note that these formulas are general and can be applied to both
time-independent and time-dependent formulations
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Possible discussion items:

What can we do to formulate boundary conditions when quasi-
equilibrium is not a good assumption?

How can we formulate a self-consistent simulation?

Video animation: Switching in a quantum nanostructure
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1D quantum simulation using transmission line theory

Consider a single barrier system

The wave function can be written as

 2002 School on Computational Material Science                         May 21-31, 2002

( ) ( ) ( )[ ]

( )( )2ˆ ˆ 2

amplitude reflecti

exp ex

on coeff

p

icient

j j m E V

x A x x

γ

ψ γ Γ γ

α β

Γ

∗= +

− −

= −

=

=

x

V2

V1



63

The system behaves like a standard transmission line
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By applying continuity conditions, we obtain Γ

Then, we define the following auxiliary function
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This function is anologous to electric voltage in a transmission
line

The wave function is analogous to electric current in a
transmission line

and the scaling factor behaves like characteristic impedance
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The probability current flow density is analogous to time average
power in a transmission line

At any location one can define the line impedance as

Indicate the load impedance as ZL = Z2 the input impedance of the
system is
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If a system consists of a sequence of different material layers,
each layer can be treated as a transmission line with different
characteristic impedance, which depends on the effective mass.
The reflection coefficient of the structure can be obtained with
the same algebra of transmission lines.

Possible discussion items:

What are the limitations of this approach?
How can we include bias and self-consistency?
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2D Solution with iterative tight-binding Green’s functions.
Let’s assume a 2-D electron gas system define by a wave guide
like pattern, and perform a uniform discretization (tight-binding
lattice).   Assume a flat potential floor for simplicity.  We are
looking for the structure’s reflection and transmission
coefficients.
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Scattering eigenstate in the input lead

Scattering eigenstate in the output lead

 2002 School on Computational Material Science                         May 21-31, 2002

incid

reflected

ent wave

w

,

av

ˆ

s

ˆ

e

1( , ) ( )

1 ( )

m

n

j k x
E m m

m

j k x
nm n

nn

x y e y
k

e y x
k

Ψ ψ

Γ ψ

=

+ → −∞∑

tra

ˆ
,

nsmitted waves

1( , ) ( )nj k x
E m nm n

nn
x y e y x

k
Ψ τ ψ= → ∞∑



70

Start with output lead as an isolated section
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The Green’s function is a matrix [ n × n ] where “n” is the number
of modes in the trasverse chain (same as the number of
discretization nodes, 3 in the example)

 2002 School on Computational Material Science                         May 21-31, 2002

1 Energy above cut-off

1 Energy below cut-off

cos     ˆ2

cosh  ˆ2

E
V

E
V

θ

α

−

−

 =  
 

 =  
 

E1

E2

E3 1

2
q+1, q+13

j, q+1

0 0
0 0
0 0

G
G

G

 
 
 
  E



72

Green’s functions for the semi-infinite chain
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Then, treat the next section as an isolated finite chain
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Green’s function for the finite chain
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GA is a matrix [ m × m ] where m is the number of transverse
modes (number of transverse discretization nodes)
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Now, add sections A and B - Application of Dyson’s equation
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Add sections A and B
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Get the first Green’s function for the coupled system
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Get the second Green’s function for the coupled system
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Here are the Green’s function results we were looking for
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jp j,q+1 q+1,

.. ..

pp q

q qq qp

+1,p

1

 and  are diagonal matrices

 and  are non-diagonal matr

ˆ 1

ices

A B A A B A B A
q q

A

A B B A B

B

A A

q

B

A

B

G G G

G

S

G

G S G

NOTE

G G V G S G

G G

−+

+ +

−+

+ −

= −

=
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Example of coupling matrices

1, 3      3 modes on section q+1

1, 7     7 modes on section q

n

m

= Æ

= Æ

q+1q

Here  
is [ 3 3 ]

BG
¥

Here  
is [ 7 7 ]

AG
¥

q,q+1

q+1,q

q,q+1 q+1,q

is [ 7 3 ]

is [ 3 7 ]

T

V

V

V V

¥

¥

= È ˘Î ˚

( ) ( ) ( )q,q+1

Overlap integral

ˆ n mnm
l

V V l ly y*= Â Â
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Transverse Eigenvalues and Eigenfunctions

The simplest approach is to use an infinite square well model for the
transverse direction.  But one could also solve a 2-D self-consistent
Schrödinger/Poisson solution on the cross section and feed the
eigenenergies and eigenfunctions (wave functions) to the Green’s
function code. The tight-binding model gives as many eigevalues as
nodes.  Typically, 20 nodes are sufficient to resolve realistic structures.

E
2

2

2 1 0 0 0 0

1 2 1 0 0 0

0 1 0 01
2 0 0 1 0( )

0 0 0 1 2 1

0 0 0 0 1 2

m x∆

−

− −

−

−

− −

−

 
 
 
 
 
 
 
  

i i

i i

Discretized Hamiltonian with V(x) = 0
(flat potential)

L
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Transverse Eigenvalues

[ ]
2

2

2

2

2 2 2

2 2

1

2 ( )

1

2 ( )

2 2 2 2 21 1
2 2 2 2 22 2 2( ) ( )

0 0 2 cos
1

0
1,

0

0 0 2; 1;

2 2cos
1

Continuum model

( )

( 1)

n

m x

n
m x

n
m m mx x

na b E a bc
N

c a b
n N

c a b

c a a b c

n
E

N

n x
E

L L n N n

∆

∆

∆ ∆

π
γ

γ

γ

π

π π ∆ π

= +
+

⇒ ∈

= = = − =

= −
+

= = =
+
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Transverse Eigenfunctions

Hard walls, zero wave function at the wall.

( )( )
( )( )

( ) sin
1

1
ˆ1 exp 2 11
ˆ2 2 1 exp 2 1

n n

n

n m nm

n ll A
N

A
j n N NN
j n N

πψ

π

π

ψ ψ δ

 =  + 

=
  − +

+ ℜ   − +   

=
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Last iteration - Add input lead (semi-infinite)

Gj,i
A+B

ji

Gii
A+B

A+B

ki

Gk,i
A

Gi,i
A

A jk+1

Gj,k+1
B

Gk+1,k+1
B

B
+
V̂
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Last iteration - Add input lead (semi-infinite)

( )
( ) ( )[ ]

( )
( ) ( )[ ]

( )
( )

( )
( )

ˆ i-k-1
A above cut-offi,i

i-k-1
A below cut-offi,i

ˆ i-k-1
A above cut-offk,i

i-k-1
B below cut-offk,i

sin i-k-1
=    ˆ sin

sinh i-k-1
=    ˆ sinh

=    ˆ

=    ˆ

j

i

i

j

i

i

eG
V

eG
V

eG
V

eG
V

θ

α

θ

α

θ
θ

α
α

−

−
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With the application of the same algorithm obtain

Gj,i
A+B

ji

Gii
A+B

A+B

AB
i,i

AB
j,i

= [ m  m ] matrix   (m = nodes in input lead)

           gives the reflection coefficients

= [ n  n ] matrix     (n = nodes in output lead)

           gives the transmission coefficients

G

G

×

×
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Reflection and transmission coefficients are evaluated for all
modes in the input and output leads

( )

( )

( )

ji

ii

ˆ i j
, ji

element
of  

ˆ 2 i
,

ii
element
of  

refle

transmission coeffic

ˆ ˆ2 sin sin

sin si

ction coeffic

n

ˆ ˆ2 sin

ie

ie ts

n s

n

t

m n

m n

j
m n n m

G

j
m n n m

m nm

G

j V e n G m

e

j V n G m

θ θ

θ θ

τ θ θ

Γ θ θ

θ δ

−

+

= −

= −

× +

1  for 

0  for nm
m n

m n
δ

=
=

≠
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Possible discussion items:

How to include realistic structures?

Quasi-3D simulation

Full self-consistent 3-D simulation

Available Software: TBGreen code
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Mode-matching method

The structure is partitioned into slices in which the potential
profile is constant along the longitudinal direction.

A 1-D Schrödinger equation is solved in each section to
obtain transverse eigenmodes and eigenvalues.

The continuity of the wavefunction and of its normal
derivative is enforced at each interface between different
sections.

The equations are then projected onto appropriate sets of
transverse modes and solved using numerical procedures.
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Mode-matching method  (2-D electron gas)

x
y

( ) ( ) ( )

( )

( )

( )

ˆ

2 2
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∗ ∗
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Mode-matching method  (2-D electron gas)

Current normalization

( )

( )
( )

ˆ ˆ ˆ ˆ

2 2

ˆ2

ˆ ˆ
ˆ2

ˆ2
ˆ2

1

x x x xj k x j k x j k x j k x
x x

x x

x

J
j m

C e j k C e C e j k C e
j m

C j k C k
j m m

m

C
k

ψ ψ ψ ψ∗ ∗
∗

− −∗ ∗
∗

∗ ∗

∗

= ∇ − ∇

= +

=

= to have unitary flux for each impinging mode

In units of 
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Mode-matching method  (2-D electron gas)

N
M

N Reflection coefficients

M Transmission coefficients

N+M unknowns

M equations from the continuity of wave functions

N equations from the continuity of the normal derivative

M+N equations
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Mode-matching method  (2-D electron gas)

Leftmost interface ( x = xA )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

1 1
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c e y d e y

k e y j R k e y
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ν ν

ν ν
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ν χ ν χ
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∑ ∑
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Mode-matching method  (2-D electron gas)

Leftmost interface (assume  x = xA = 0 )
wave function continuity condition

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0 0

0

,
0

1 1

1

1 1 1

L L

p i n p n
i nn

L

m p m
mm

L

p i p m p m
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y y dy R y y dy
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T y y dy

R T y y dy
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ψ ψ ψ ψ

ψ χ
ν

δ ψ χ
ν

= −

+

⇒ = − +

∑∫ ∫

∑ ∫

∑ ∫
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Mode-matching method  (2-D electron gas)

Leftmost interface (assume  x = xA = 0 )
derivative continuity condition

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

' '

0 0
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0
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0
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0

ˆ ˆ

ˆ                                       

ˆ

ˆ ˆ

L L

i p n n n p n
n

L

m m p m
m

L

i p n

L

n n p n p p
n

j k y y dy j R k y y dy

j T y y dy
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