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• but to obtain true time-dependent results, the transients need
to be resolved self-consistently.

• Noise is a difficult issue.  Often, techniques to reduce noise
apply averaging in a way that assumes steady-state, making
the transient not physical.

• In steady-state simulation, we usually apply bias assuming
ideal voltage sources.  This eliminates the displacement
current.  In a transient simulation where the external circuit is
present, displacement current must also be included.

• Is the electrostatic Poisson equation sufficient to describe a
transient situation?

Monte Carlo simulation is time-dependent
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• Consider a 1-D structure of length L, cross-sectional area Ao

and applied bias VD .  The displacement current may be
averaged and lumped in a single circuit parameter (we
consider only electron current for simplicity)

1-D simulation
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• The term

contains all the information about the displacement current.  It
can be represented by an external capacitance, included in
the circuit connected to the device.

Cold Capacitance
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• The non-linear part of the diode is simulated by using Monte
Carlo (3-valleys non-parabolic model).  Displacement current
is accounted for by a time-dependent voltage boundary
condition at the terminals of the cold capacitance.

Example: Gunn diode circuit
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• Kirchhoff’s equations

• Finite difference discretization in time

External circuit equations
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Gunn diode test structures

 2002 School on Computational Material Science                         May 21-31, 2002

Homojunction

“Notch” oscillator

Heterojunction

Heterojunction

+ doping spike



Band structure valleys in GaAs and AlGaAs
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Structure 1: accumulation domain cycle
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Structure 2: well-formed domain cycle
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Electric potential evolution - comparison
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Structure 3: accumulation domain cycle, again
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Comparative Results
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• Current through a contact over a time-step ∆ t

(Hockney and Eastwood, 1981)

Multi-dimensional device
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• Example: GaAs MESFET       (Patil and Ravaioli, Solid-State Electronics,1991)

• The cumulative charge contains a steady-state contribution that can be
extrapolated and subtracted, to obtain a transient contribution.  
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Multi-dimensional device
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• The fitting coefficients are found from

imposing

(Patil and Ravaioli, Solid-State Electronics,1991)

Cumulative charge decomposition
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• Prerequisite of noise analysis is to obtain accurate values of
the instantaneous currents at the terminals, including the
displacement contributions.

• For a simple quasi-2-D MESFET contact configuration (side
contacts), it is possible to formulate an accurate current
evaluation (Gruzinskis, Kersulis, Reklaitis, 1991).

Time dependent noise analysis
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Terminal Currents – Source
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Q represents the linear charge density associated to a
simulated particle (a rod of charge in the direction
perpendicular to the simulation domain).



Terminal Currents – Drain
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• The gate and drain voltages remain constant in time, and the
fluctuations of the short-circuit currents and their correlations
are investigated.  The current-noise sources are represented
as two correlated current generators at input and output of
the device.  Since the drain voltage is constant, the last two
terms in the drain current equation, cancel each other.

Current-Noise operation
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• The gate voltage and the drain current remain constant in time
and the fluctuations of the short-circuit gate current and open
circuit drain voltage and their correlation are investigated. The
noise sources are represented as correlated current generator
in parallel at input and voltage generator in series at the
output.

Voltage-Noise operation
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• If we consider a constant drain current Ido the instantaneous
drain voltage is

• This voltage is evaluated by applying an iterative technique.
Poisson equation is repeated at the end of each step: first
with the old value of Vd and the new carrier space-
distribution, and then with the value of Vd update as above by
using the values of ϕ  from the preceding solution.

Voltage-Noise operation
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Transient electromagnetic effects - Maxwell’s equations
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• Instead of Poisson equation, one should solve the retarded
potential wave equation, with time-dependent voltage
boundary conditions.

Wave equations
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• Example: GaAs
When is full wave analysis necessary?
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• n-type GaAs

• Worst case analysis: assume in all cases the mobility for undoped
material.  Actual wavelength will be somewhat longer than below.

When is full wave analysis necessary?
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• Conclusions:  In the active regions of microwave and high-
speeddevices with moderate dopings, the wavelength is
expected to be much larger than the space scale and the
electrostatic Poisson equation is adequate.

• Modern MESFET structures may have channel concentrations
of up to 5×1018 cm -3. Devices with conduction channels at
heterointerfaces may exhibit high concentrations and very
high mobilities.  Because of the large conductivity, the
wavelength may be comparable with the space scale of active
regions in certain regimes.

• For reference, the walength in copper

When is full wave analysis necessary?
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• The real space transfer effect applies to carriers crossing a
heterojunction, after gaining sufficient energy from the field
along the interface.

Real Space Transfer Devices
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• This is similar to a standard MODFET device, with gate biased
to attract electrons.

Collector Up Real Space Transfer Transistor (RSTT)
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• For scaling studies, the length of the gate L is kept equal to its
distance from source and heater.

Simulated RSTT Structure
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Details of the Hetero-interface
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• Source current saturates; heater current has slight Negative
Differential Resistance (NDR) region; collector current shows
large leakage at VH = 0.

Experimental curves for a sample RSTT
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Monte Carlo simulation results for RSTT
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Monte Carlo simulation results for RSTT



Monte Carlo simulation results for RSTT
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Channel behavior with varying heater voltage
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( 1.0 µm, 0.21 µm, 1.8 )CL W V V= = =



Net Real Space Transfer rate
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( 1.0 µm, 0.21 µm, 1.8 )CL W V V= = =



Actual Real Space Transfer from and into channel
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( 1.0 µm, 0.21 µm, 1.05 , 1.8 )H CL W V V V V= = = =



Total RST scross heterojunction
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( 1.0 µm, 0.21 µm, 1.8 )CL W V V= = =



Scaling with L
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( 0.21 µm, 1.8 )CW V V= =



Scaling with W
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( 0.4 µm, 1.8 )CL V V= =



Collector current transient
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Video animation: switching of RSTT simulated with Monte Carlo


