Time-dependent Monte Carlo Simulation

Umberto Ravaioli

Beckman Institute and Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
Monte Carlo simulation is time-dependent

- but to obtain true time-dependent results, the transients need to be resolved self-consistently.

- Noise is a difficult issue. Often, techniques to reduce noise apply averaging in a way that assumes steady-state, making the transient not physical.

- In steady-state simulation, we usually apply bias assuming ideal voltage sources. This eliminates the displacement current. In a transient simulation where the external circuit is present, displacement current must also be included.

- Is the electrostatic Poisson equation sufficient to describe a transient situation?
1-D simulation

- Consider a 1-D structure of length L, cross-sectional area A_o and applied bias V_D. The displacement current may be averaged and lumped in a single circuit parameter (we consider only electron current for simplicity)

\[
I(t) = I_e(x,t) + \varepsilon A_o \frac{\partial E(x,t)}{\partial t}
\]

\[
I(t) = \frac{1}{L} \int_0^L \left(I_e(x,t) + \varepsilon A_o \frac{\partial E(x,t)}{\partial t} \right) dx =
\]

\[
= \frac{1}{L} \int_0^L I_e(x,t) dx + \frac{\varepsilon A_o}{L} \frac{\partial V_D}{\partial t}
\]
Cold Capacitance

- The term
 \[\frac{\varepsilon A_o}{L} \frac{\partial V_D}{\partial t} \]

contains all the information about the displacement current. It can be represented by an external capacitance, included in the circuit connected to the device.

\[\frac{\varepsilon A_o}{L} = C_c = \text{cold capacitance} \]
Example: Gunn diode circuit

- The non-linear part of the diode is simulated by using Monte Carlo (3-valleys non-parabolic model). Displacement current is accounted for by a time-dependent voltage boundary condition at the terminals of the cold capacitance.
External circuit equations

- Kirchhoff’s equations

\[
V_D(t) = V_B - L \frac{d I(t)}{d t}
\]

\[
I(t) = I_d(t) + C_{tot} \frac{dV_D(t)}{d t} + \frac{V_D}{R}
\]

\[
C_{tot} = C + C_{cold}
\]

- Finite difference discretization in time

\[
I(t + \Delta t) = \left[V_B - V_D(t) \right] \frac{\Delta t}{L} + I(t)
\]

\[
V_D(t + \Delta t) = \left[I(t) - I_d(t) \right] \frac{\Delta t}{C_{tot}} + V_D(t) \left[1 - \frac{\Delta t}{RC} \right]
\]
Gunn diode test structures

Homojunction
“Notch” oscillator

Heterojunction

Heterojunction + doping spike
Band structure valleys in GaAs and AlGaAs

\[T = 300 \text{ K} \]

All values in eV

\[\Delta E_c : \Delta E_v = 60 : 40 \]

GaAs

\[\text{Al}_x \text{Ga}_{1-x} \text{As} \]

\[x = 0.3 \]
Structure 1: accumulation domain cycle

Dead zone

no leading depletion, dipole not formed

Γ valley

L valley

X valley
Structure 2: well-formed domain cycle

Domain forming, no dead zone

Leading depletion (dipole)

Γ valley
L valley
X valley
Electric potential evolution - comparison

- Notch oscillator - accumulation domain
- Hetrojunction cathode oscillator - well-formed domain

2002 School on Computational Material Science
May 21-31, 2002
Structure 3: accumulation domain cycle, again
Comparative Results

Table I
RF performance of the Gunn oscillators

<table>
<thead>
<tr>
<th>Type</th>
<th>V_B (V)</th>
<th>f (GHz)</th>
<th>P_s (mW)</th>
<th>P_d (mW)</th>
<th>P_{ac} (mW)</th>
<th>η (%)</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notch</td>
<td>1.5</td>
<td>92.06</td>
<td>511.09</td>
<td>412.09</td>
<td>9.00</td>
<td>1.76</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>94.69</td>
<td>716.28</td>
<td>538.60</td>
<td>17.67</td>
<td>2.47</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>95.43</td>
<td>938.40</td>
<td>664.41</td>
<td>23.99</td>
<td>2.56</td>
<td>0.00</td>
</tr>
<tr>
<td>HC1</td>
<td>1.5</td>
<td>80.98</td>
<td>416.26</td>
<td>324.72</td>
<td>1.54</td>
<td>0.37</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>85.67</td>
<td>597.42</td>
<td>434.34</td>
<td>3.09</td>
<td>0.52</td>
<td>0.33</td>
</tr>
<tr>
<td>HC2</td>
<td>1.5</td>
<td>92.40</td>
<td>506.26</td>
<td>408.28</td>
<td>7.98</td>
<td>1.58</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>94.27</td>
<td>700.32</td>
<td>523.12</td>
<td>17.20</td>
<td>2.46</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>95.08</td>
<td>924.70</td>
<td>651.25</td>
<td>23.45</td>
<td>2.54</td>
<td>0.23</td>
</tr>
<tr>
<td>HCS</td>
<td>1.5</td>
<td>92.85</td>
<td>509.21</td>
<td>410.01</td>
<td>9.20</td>
<td>1.81</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>95.36</td>
<td>715.36</td>
<td>537.53</td>
<td>17.83</td>
<td>2.49</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>95.58</td>
<td>932.02</td>
<td>659.15</td>
<td>22.88</td>
<td>2.46</td>
<td>0.23</td>
</tr>
</tbody>
</table>

V_B is the dc bias voltage, f is the frequency of the signal current obtained from the simulations, P_s is the time-averaged power supplied by the battery to the circuit, P_d is the total power dissipated in the device (ac and dc), P_{ac} is the ac power delivered to the load resistor, η is the efficiency, defined as the ratio between the ac power delivered to the load and the time-averaged power supplied by the battery, and x is the Al mole fraction. The natural frequency of the RLC network (including the cold capacitance) is 104.95 GHz.
Multi-dimensional device

- Current through a contact over a time-step Δt

$$I(t) = \frac{qZ}{z \Delta t} (\frac{\Delta N_a}{\text{particles absorbed in } \Delta t} - \frac{\Delta N_i}{\text{particles injected in } \Delta t}) + \varepsilon_s \varepsilon_0 Z \int \frac{dE \perp}{dt} dx$$

$Z = \text{actual lateral width of device}$

$z = \text{simulated lateral width}$

$$Q(t) = \frac{qZ}{z} (N_a - N_i) + \varepsilon_s \varepsilon_0 Z \int E \perp (x, t) dx$$

$(N_a, N_i \text{ integrated up to time } t)$

(Hockney and Eastwood, 1981)
• Example: GaAs MESFET

Fig. 1. MESFET structure used in this simulation. All dimensions are in micron. The doping density in the source/drain region is 3×10^{17} cm$^{-3}$. The gate length L_g is 0.3 or 0.5 μm.

Fig. 2. Cumulative terminal charge vs time for the source, drain and gate terminals for a step change $\Delta V_G = 0.3$ V from $V_G = 0.2$ V. Drain voltage is kept constant at $V_D = 2$ V. Gate length for this device is 0.3 μm.

• The cumulative charge contains a steady-state contribution that can be extrapolated and subtracted, to obtain a transient contribution.
Fig. 3. Cumulative drain charge Q_D vs time after subtracting the steady state contribution. The Q-axis has been shifted to make the steady state charge equal to zero. The polynomial approximation is depicted by the smooth curve. The original Q_D vs t curve is shown in the inset. Also shown in the inset is the straight line corresponding to the steady state current.
The fitting coefficients are found from imposing (Patil and Ravaioli, Solid-State Electronics, 1991)

Cumulative charge decomposition

\[Q_{ss}(t) = a_{1,ss} t + a_{0,ss} \quad t_{ss} < t < t_{total} \]

\[Q_{tr}(t) = \sum_{n=0}^{N} a_{n, tr} t^n \]

- The fitting coefficients are found from

\[
I(t) = \frac{dQ}{dt} \quad \text{and} \quad \frac{dI(t)}{dt} = \frac{d^2Q}{dt^2}
\]

imposing

\[
\frac{dQ_{tr}}{dt} = \frac{dQ_{ss}}{dt} ; \quad \frac{d^2Q_{tr}}{dt^2} = \frac{d^2Q_{ss}}{dt^2} \quad t = t_{ss}
\]

(Patil and Ravaioli, Solid-State Electronics, 1991)
Fig. 4. Terminal currents as a function of time computed from the \(Q \) vs \(t \) curves of Fig. 2. Currents are defined to be positive if entering a terminal. Also shown is the total current which is close to zero. Dashed lines indicate the steady-state currents. Note that \(I_G \) attains its steady-state value about 1 ps before \(I_S \) and \(I_D \).
Fig. 5. Raw data for drain current obtained from MC simulation, after averaging for 200 iterations. Each iteration corresponds to 2 fs. The data are for the conditions of Fig. 2. Transient current plotted in Fig. 4 is also reproduced for comparison (smooth curve).
Fig. 6. Drain current transients for two different gate lengths, all other device parameters being the same. $\Delta V_G = 0.3$ V in both cases. The drain voltage is fixed at $V_D = 2$ V. The steady state current is taken as reference.

Fig. 7. Current gain h_{21} as a function of frequency for two different gate lengths. The bias conditions are $V_D = 2$ V and $V_G = 0.2$ V.
Time dependent noise analysis

- Prerequisite of noise analysis is to obtain accurate values of the instantaneous currents at the terminals, including the displacement contributions.

- For a simple quasi-2-D MESFET contact configuration (side contacts), it is possible to formulate an accurate current evaluation (Gruzinskis, Kersulis, Reklaitis, 1991).
Terminal Currents – Source

\[I_s(t) = \frac{1}{x_{g1}} \left[Q \sum_{i}^{\{0 \rightarrow x_{g1}\}} v_{xi}(t) - \frac{\varepsilon}{\Delta t} \sum_{j=1}^{M_y} \Delta y_j \left(\varphi(x_{g1}, y_j, t) - \varphi(x_{g1}, y_j, t - \Delta t) \right) \right] \]

\[V_s = 0 \quad \text{(ground)} \]

\(Q \) represents the linear charge density associated to a simulated particle (a rod of charge in the direction perpendicular to the simulation domain).
Terminal Currents – Drain

\[
I_d(t) = \frac{1}{(x_d - x_{g2})} \left[Q \sum_i v_{xi}(t) \right] \\
- \frac{\varepsilon}{\Delta t} \sum_{j=1}^{M_y} \Delta y_j \left(\varphi(x_{g2}, y_j, t) - \varphi(x_{g2}, y_j, t - \Delta t) \right) \\
- \frac{\varepsilon h}{\Delta t} \left(V_d(t) - V_d(t - \Delta t) \right)
\]

Terminal Currents – Gate

\[
I_g(t) = I_s(t) - I_d(t)
\]
Current-Noise operation

- The gate and drain voltages remain constant in time, and the fluctuations of the short-circuit currents and their correlations are investigated. The current-noise sources are represented as two correlated current generators at input and output of the device. Since the drain voltage is constant, the last two terms in the drain current equation, cancel each other.
The gate voltage and the drain current remain constant in time and the fluctuations of the short-circuit gate current and open circuit drain voltage and their correlation are investigated. The noise sources are represented as correlated current generator in parallel at input and voltage generator in series at the output.
Voltage-Noise operation

- If we consider a constant drain current I_{do} the instantaneous drain voltage is

$$V_d(t) = V_d(t - \Delta t) - \frac{\Delta t}{\varepsilon h} \left[I_{d0}(x_d - x_{g2}) - Q \sum_i \{x_{g2} \rightarrow x_d\} v_{xi}(t) \right]$$

$$+ \frac{1}{h} \sum_{j=1}^{M_y} \Delta y_j \left(\varphi(x_{g2}, y_j, t) - \varphi(x_{g2}, y_j, t - \Delta t) \right)$$

- This voltage is evaluated by applying an iterative technique. Poisson equation is repeated at the end of each step: first with the old value of V_d and the new carrier space-distribution, and then with the value of V_d update as above by using the values of φ from the preceding solution.
Transient electromagnetic effects - Maxwell’s equations

\[\nabla \times \mathbf{E}(t) = -\frac{\partial \mathbf{B}(t)}{\partial t} \]
\[\nabla \times \mathbf{H}(t) = \frac{\partial \mathbf{D}(t)}{\partial t} + \mathbf{J} \]
\[\nabla \cdot \mathbf{D}(t) = \rho \]
\[\nabla \cdot \mathbf{B}(t) = 0 \]
\[\mathbf{D}(t) = \varepsilon \mathbf{E}(t) \]
\[\mathbf{B}(t) = \mu \mathbf{H}(t) \]
\[\mathbf{B} = \nabla \times \mathbf{A} \]
\[\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla \times \phi \]
\[\nabla \cdot \mathbf{A} = -\mu \varepsilon \frac{\partial \phi}{\partial t} \]
\[\nabla \times \nabla \times \mathbf{A} = \nabla \nabla \cdot \mathbf{A} - \nabla^2 \mathbf{A} = \mu \mathbf{J} = \varepsilon \mu \frac{\partial^2 \mathbf{A}}{\partial t^2} - \varepsilon \nabla \frac{\partial \mathbf{A}}{\partial t} \]
Wave equations

\[\nabla^2 \vec{A} - \varepsilon \mu \frac{\partial^2 \vec{A}}{\partial t^2} = -\mu \vec{J} \]

\[-\nabla^2 \phi - \frac{\partial}{\partial t} \nabla \cdot \vec{A} = -\frac{\rho}{\varepsilon} \]

\[\nabla^2 \phi = -\varepsilon \mu \frac{\partial^2 \phi}{\partial t^2} = -\frac{\rho}{\varepsilon} \]

- Instead of Poisson equation, one should solve the retarded potential wave equation, with time-dependent voltage boundary conditions.
When is full wave analysis necessary?

- Example: GaAs

\[
\begin{align*}
\varepsilon &= 12.9 \varepsilon_0 \quad \mu = \mu_0 \\
\mu_n &= 8500 \text{ cm}^2 / V - s \\
\mu_p &= 400 \text{ cm}^2 / V - s \\
f &= 1.0 \text{ THz} \quad \Rightarrow \quad \omega \varepsilon &= 717.31 \text{ S/m} \\
\text{Perfect dielectric} \quad \sigma &= 0
\end{align*}
\]

\[
\lambda = \frac{c}{\sqrt{\varepsilon_r f}} \approx 83.5 \mu m
\]

Intrinsic GaAs \quad \sigma = qn_i \left(\mu_n + \mu_p \right) \approx 2.55 \times 10^{-7} \text{ S/m}

\[
\sigma \ll \omega \varepsilon \quad \Rightarrow \quad \lambda \approx 83.5 \mu m \quad \text{imperfect dielectric}
\]
When is full wave analysis necessary?

- **n-type GaAs** \(\sigma \approx q \mu_n n \)

\[
\lambda = \frac{\sqrt{2}}{f \sqrt{\mu_0 \varepsilon}} \left(\sqrt{1 + \left(\frac{\sigma}{\omega \varepsilon} \right)^2} + 1 \right)^{-1/1}
\]

- **Worst case analysis:** assume in all cases the mobility for undoped material. Actual wavelength will be somewhat longer than below.

<table>
<thead>
<tr>
<th>(n) (10^{15} \text{ cm}^{-3})</th>
<th>(\sigma) (1.36 \times 10^2 \text{ S/m})</th>
<th>(\lambda) (83.1 \mu\text{m})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{16} \text{ cm}^{-3})</td>
<td>(1.36 \times 10^3 \text{ S/m})</td>
<td>(66.62 \mu\text{m})</td>
</tr>
<tr>
<td>(10^{17} \text{ cm}^{-3})</td>
<td>(1.36 \times 10^4 \text{ S/m})</td>
<td>(26.42 \mu\text{m})</td>
</tr>
<tr>
<td>(10^{18} \text{ cm}^{-3})</td>
<td>(1.36 \times 10^5 \text{ S/m})</td>
<td>(8.55 \mu\text{m})</td>
</tr>
<tr>
<td>(10^{19} \text{ cm}^{-3})</td>
<td>(1.36 \times 10^6 \text{ S/m})</td>
<td>(2.7 \mu\text{m})</td>
</tr>
</tbody>
</table>
Conclusions: In the active regions of microwave and high-speed devices with moderate dopings, the wavelength is expected to be much larger than the space scale and the electrostatic Poisson equation is adequate.

Modern MESFET structures may have channel concentrations of up to $5 \times 10^{18} \text{ cm}^{-3}$. Devices with conduction channels at heterointerfaces may exhibit high concentrations and very high mobilities. Because of the large conductivity, the wavelength may be comparable with the space scale of active regions in certain regimes.

For reference, the wavelength in copper

$$\sigma = 5.8 \times 10^7 \text{ S/m} \quad \varepsilon = \varepsilon_0 \quad \mu = \mu_0$$

$$f = 1.0 \text{ THz} \quad \Rightarrow \quad \lambda \approx 0.5 \mu\text{m}$$
The real space transfer effect applies to carriers crossing a heterojunction, after gaining sufficient energy from the field along the interface.
Collector Up Real Space Transfer Transistor (RSTT)

- This is similar to a standard MODFET device, with gate biased to attract electrons.
Simulated RSTT Structure

- For scaling studies, the length of the gate L is kept equal to its distance from source and heater.
Details of the Hetero-interface

\[\text{Al}_{0.1}\text{Ga}_{0.9}\text{As} \]

\[\text{In}_{0.25}\text{Ga}_{0.75}\text{As} \]

\[\text{Al}_{0.3}\text{Ga}_{0.7}\text{As} \]

\[E_F - E_C \]

\[\Delta E_C \]

\[V_1 \]

\[V_0 \]

\[E_F \]

\[Z \]

\[d \]

\[0 \]
Experimental curves for a sample RSTT

- Source current saturates; heater current has slight Negative Differential Resistance (NDR) region; collector current shows large leakage at $V_H = 0$.

![Graph showing current vs. V_H]
Monte Carlo simulation results for RSTT

Fig. 3. Calculated terminal currents versus heater voltage for various values of collector voltage. (a) Heater current. (b) Collector current. (c) Source current. ($L = 1.0 \mu m$, $W = 0.21 \mu m$.)
Monte Carlo simulation results for RSTT

\[V_C = \]
- 1.5 V
- 1.8 V
- 2.3 V

\[I_C \text{ (mA/mm)} \]
\[V_H \text{ (V)} \]

(b) Fig. 3. Calculated terminal currents versus heater voltage for various values of collector voltage. (a) Heater current. (b) Collector current. (c) Source current. \((L = 1.0 \mu m, W = 0.21 \mu m)\).
Monte Carlo simulation results for RSTT

Fig. 3. Calculated terminal currents versus heater voltage for various values of collector voltage. (a) Heater current. (b) Collector current. (c) Source current. \((L = 1.0 \mu m, W = 0.21 \mu m)\)
Channel behavior with varying heater voltage

\((L = 1.0 \, \mu m, \ W = 0.21 \, \mu m, \ V_C = 1.8V)\)
Net Real Space Transfer rate

\((L = 1.0 \, \mu m, \ W = 0.21 \, \mu m, \ V_C = 1.8V) \)

![Graph showing net real-space transfer rate](image)

Fig. 6. Rate of net real-space transfer from source to heater. \(x \) is the distance from the source. \((L = 1.0 \, \mu m, \ W = 0.21 \, \mu m, \ V_C = 1.8 \, V) \)
Actual Real Space Transfer from and into channel

\((L = 1.0 \, \mu m, \ W = 0.21 \, \mu m, \ V_H = 1.05V, \ V_C = 1.8V)\)

Fig. 7. Rate of real-space transfer from the InGaAs channel to Al\(_{0.1}\)Ga\(_{0.9}\)As (solid line) and from Al\(_{0.1}\)Ga\(_{0.9}\)As to the InGaAs channel (dashed line). \(x\) is the distance from the source. \((V_H = 1.05 \, V, \ V_C = 1.8 \, V, \ L = 1.0 \, \mu m, \ W = 0.21 \, \mu m)\).
Total RST across heterojunction

\((L = 1.0 \, \mu m, \quad W = 0.21 \, \mu m, \quad V_C = 1.8V) \)

Fig. 8. Total rate of net real-space transfer across the top heterointerface as a function of \(V_H \). \((L = 1.0 \, \mu m, \quad W = 0.21 \, \mu m, \quad V_C = 1.8 \, V) \).
Scaling with L

$(W = 0.21 \mu m, \ V_C = 1.8V)$

Fig. 9. Calculated terminal currents versus heater voltage for various values of L. (a) Heater current. (b) Collector current. ($V_C = 1.8 \ V, W = 0.21 \mu m.$)
Scaling with W

$L = 0.4 \, \mu m, \quad V_C = 1.8V$

Fig. 10. Calculated terminal currents versus heater voltage for two values of W. (a) Heater current. (b) Collector current. ($V_C = 1.8 \, V, L = 0.4 \, \mu m.$)
Collector current transient

Fig. 11. Collector current versus time due to a step change $\Delta V_H = 50$ mV for two different values of L. The steady-state current is taken as a reference. ($V_C = 1.8$ V, $W = 0.21$ μm.)

Video animation: switching of RSTT simulated with Monte Carlo