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Abstract—A particle-particle-particle-mesh (P3M) algorithm
is integrated with the ensemble Monte Carlo (EMC) method for
the treatment of carrier-impurity (c-i) and carrier-carrier (c-c)
effects in semiconductor device simulation. Ionized impurities and
charge carriers are treated granularly as opposed to the normal
continuum methods and c-i and c-c interactions are calculated in
three dimensions. The combined P3M-EMC method follows the
approach of Hockney, but is modified to treat nonuniform recti-
linear meshes with arbitrary boundary conditions. Bulk mobility
results are obtained for a three-dimensional (3-D) resistor and are
compared with previously reported experimental and numerical
results.

Index Terms—Charge carrier processes, molecular dynamics,
Monte Carlo methods, particle collisions, particle scattering.

I. INTRODUCTION

T HE CONTINUED scaling of CMOS integrated circuits is
expected to lead to nano-scale devices. For instance, the

SIA road map calls for CMOS transistors with channel lengths
of 50 nm by the year 2012 [1]. For traditional device designs and
scaling techniques, this will result in transistors having on the
order of a hundred impurities in the channel [2]. Impurities at
such low numbers would not be well treated in semiconductor
device simulation using today’s approaches based on smooth
impurity profiles. Instead, impurity atoms, and charge carriers
will need to be integrated into device simulation individually
and methods will need to accurately account for their interac-
tion on an individual basis. In today’s devices, high doping con-
centrations in the contact regions already call for careful treat-
ment of carrier-impurity (c-i) and carrier-carrier (c-c) interac-
tions [3]. For example, granular impurity effects result in low-
ering n-MOSFET threshold voltages [2], and Monte Carlo sim-
ulations including c-c scattering rates predict an increase in the
number of hot carriers near MOSFET drains at low temperature
[4]. For all of these reasons, improved methods to treat granular
effects including the location of impurities and the nature of c-i
and c-c interactions have become important.
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In the traditional ensemble Monte Carlo (EMC) method, both
impurities and carriers are treated as a continuum. The locations
of impurities are represented in terms of smooth impurity pro-
files on a mesh, while the location of carriers are treated pre-
cisely, but are smoothly assigned to the mesh using a charge
association technique. Coulomb interactions are separated into
two types: long-range “mesh” interactions included by solving
the Poisson equation and short-range “scattering” interactions
included with a screening model and scattering rates.

Scattering rates allow for approximate treatment of c-i and
c-c interactions within two-dimensional (2-D) Monte Carlo
simulations, but have several disadvantages when used in
this context. First, c-i scattering rates are normally based on
a two-body model which ignores multi-ion contributions to
the scattering potential [5]. Second, c-c scattering rates must
be updated during the simulation to account for the local
dependence of the distribution function and screening length
[6]. Finally, both c-i and c-c scattering rates treat interactions as
localized instantaneous events rather than interactions extended
in space and time [7].

An alternative to using scattering rates for c-i and c-c
interactions is to calculate the short-range forces directly and
combine them with the long-range forces found with the mesh.
The general combination of direct forces and mesh forces has
been studied for ionic and cosmological systems and a number
of techniques have been developed. One set of early approaches
called particle-particle-particle-mesh (P3M) algorithms were
developed by Hockney [8].

In this paper, we treat granular effects in semiconductor de-
vices by integrating a P3M algorithm with the EMC method. The
combined P3M-EMC method treats impurities discretely and lo-
cates them precisely in the simulation domain. In place of c-i and
c-c scattering rates, the actual interparticle forces are calculated
and approximate screening behavior of the interacting particles
is implicitly accounted for by the net force evaluation. For the
case of c-c interactions, the method requires a realistic carrier
ensemble size within its domain of use, but can address the true
three dimensional (3-D) and granular nature of ultra-small de-
vices with moderate variation to the standard EMC method. The
possibility of this approach was suggested by Pacelli [9], and an
alternative approach using a short-range correction of the mesh
forces has been implemented by Grosset al. [3].
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This paper is organized as follows. P3M algorithms are de-
scribed in Section II including a detailed description of the com-
ponents of the Coulomb force, a discussion of the so-called ref-
erence force which is responsible for smoothing between the
short- and long-range domains, and details concerning how the
P3M algorithms may be modified to treat nonuniform recti-
linear meshes with arbitrary boundary conditions. The modified
P3M scheme is verified with Coulomb’s law using uniform and
nonuniform meshes in Section III. In Section IV, the combined
P3M-EMC method and details concerning its implementation
are presented. Also in this section, spatial and temporal limita-
tions are evaluated for the accurate simulation of plasma oscil-
lations and simulation results for bulk mobility are obtained for
comparison with previously reported experimental and numer-
ical results.

II. P3M ALGORITHMS

Particle–particle-particle-mesh (P3M) algorithms [8] are a
class of hybrid algorithms designed to treat correlated systems
with long-range forces and allow for a large ensemble size.
The essence of P3M algorithms is to express the interparticle
force as the sum of a short-range part calculated by a direct
particle-particle force summation and a long-range part ap-
proximated by the particle-mesh force calculation.

A. P3M Force Components

Using the notation of Hockney [8], the total force on a particle
may be written as

(1)

represents the external field or boundary effects of the
global Poisson solution. is the force of particle on par-
ticle given by Coulomb’s law as

(2)

where and are particle charges and and are particle
positions.

In a P3M algorithm, the total force on particleis split into
two sums

(3)

The first sum represents the direct forces of particleson par-
ticle within the short-range domain , while the second
sum represents the mesh forces of particleson particle over
the global problem domain as well as the effect of mate-
rial boundaries and boundary conditions on particle. is
the short-range particle force of particleon particle , and

is the long-range mesh force of particleon particle . The
short-range Coulomb force can be further defined as

(4)

Fig. 1. Diagram of the component forces in the P3M algorithm of particlej
on particlei for j inside and outside the short-range domain whereF is the
total force,F is the short-range force,F is the mesh force, andR is the
reference force.
 is the short-range domain of radiusr and
 is the global
problem domain which includes
 .

where is given by (2) and is called the reference force
[8].

B. Reference Force

The reference force, in (4), is needed to avoid double
counting of the short-range force due to the overlapping do-
mains in (3). In Fig. 1, the reference force can be seen to be
equal to the mesh force inside the short-range domain and equal
to the Coulomb force outside the short-range domain.

In order to incorporate the effects of material boundaries and
boundary conditions, the reference force would be found most
precisely in the short-range domain by associating particle
with the particle-mesh and calculating the resulting force on
particle with . Since such a procedure would be re-
quired for each particle, it is obviously too costly for reason-
able ensemble sizes and defeats the purpose of the P3M algo-
rithm. Instead, it is desirable to use an approximation for this
force which minimizes the effects of the transition error in going
from the long-range domain to the short-range domain. One ap-
proach developed in [3] is to choose a particular orientation of
approaching particles relative to the mesh and find a radial ap-
proximation to the reference force. This method is straightfor-
ward and computationally efficient per particle for a fixed uni-
form mesh, but it is not easily adaptable to nonuniform meshes
where the mesh force is not isotropic (see force diagram results
in Section III).

For the case of nonuniform rectilinear meshes which are often
employed in EMC device simulation, we introduce a modifica-
tion of the original approach to the transition error posed in [8].
In this approach, smoothing of the total interparticle force be-
tween the long- and short-range domains can be thought of as
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ascribing a finite size to particle. In particular, Hockney in-
dicates that a sphere with uniformly decreasing density profile,

, is a good choice for smoothing in three dimensions.

.
(5)

A comparison of the density profile above to that of a uniformily
charged sphere and that of a sphere with a Gaussian distribution
shows that the expression in (5) produces marginally better ac-
curacy in 3-D schemes for a given cutoff radius. The refer-
ence force can be obtained using the definition

(6)

When applied to the density profile in (5), one gets (7), shown
at the bottom of the page, where

(8)

Hockney advocates precalculating the short-range force,
, in (4) including the reference force above for a fixed

uniform mesh and interpolating it at the interaction radius,.

C. Extension of P3M Algorithms to Nonuniform Meshes

It is important to extend the P3M algorithm to nonuniform
meshes for the purpose of semiconductor device simulation
since practical device applications involve rapidly varying
doping profiles and narrow conducting channels which need to
be adequately resolved. Since the mesh force from the solution
to the Poisson equation is a good approximation within about
two mesh spaces, we modify the P3M algorithm by locally
choosing as the shortest distance which spans two mesh
cells in each direction of every dimension of the mesh at
charge (see Fig. 2). Using (7), the-dependent portion of the
reference force in (6) can be interpolated as a function ofin
the range and used with to find the reference
force.

This modification avoids unnecessary particle-particle force
calculations where the particle-mesh (PM) force estimates are
adequate for nonuniform rectilinear meshes and would work

Fig. 2. Diagram of the choice forr as the minimum distance which spans a
fixed number of mesh cells (we choose 2) in each direction of every dimension
of the mesh.

seamlessly if adaptive meshes were used for the global PM cal-
culation. It should be noted that uncontrolled cost of the par-
ticle-particle calculation in the P3M algorithm is a problem in
general and this issue may warrant investigation using alternate
methods such as the nested-grid particle mesh (NGPM) method
[10], the “mesh-refined” P3M algorithm [11] and other -body
methods such as tree codes which can better treat high carrier
or impurity densities and low mesh resolution.

III. V ERIFYING THE P3M IMPLEMENTATION

WITH COULOMB’S LAW

The modification of the P3M algorithm introduced in Sec-
tion III may be verified and the smoothing of the total inter-
particle force may be investigated by calculating the force for
interacting charges and comparing with Coulomb’s law [8]. A
pair of charges, , are placed in a uniform cube of
silicon ( ) with side length 1000 nm. The position of
charge is fixed near the center of the cube, while chargeis
moved from 0 to 100 nm from charge. Note that the separa-
tion of the charges is modest with respect to the extent of the
mesh and that charge-neutral boundary conditions are used at
all edge planes. The magnitude of the mesh force, , is

(7)
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Fig. 3. Force diagram for Si using a uniform mesh is shown for three
orientations of separated charges relative to the mesh (o, +, and × as shown
above) and with the results of Coulomb’s law (�). The lower lines denote the
mesh forces, while the upper lines denote the corrected total forces.

found using a uniform rectilinear mesh and the
results are compared with the magnitude of the Coulomb force
in Fig. 2.

To emphasize the dependence of the mesh force on the loca-
tion of the charges, three orientations of the charges with respect
to the mesh are considered and the interparticle force is calcu-
lated for each (see Fig. 3). In case 1, the fixed charge,, is placed
at the center of a mesh cell and the moved charge,, is placed
along a line through the center of the cell. In case 2, the fixed
charge is placed at a mesh point and the moved charge is placed
along the diagonal through mesh points to a corner of the mesh.
In case 3, the fixed charge is again placed at a mesh point and
the moved charge is placed along a mesh line. The point of this
comparison is to note the difference in the mesh forces for each
case. In particular, the third case results in a greater difference
in the mesh force with that produced by the Coulomb force law
than in the first two cases due to the reduced spreading of the
charge in charge association and the sharply peaked potential
which occurs at the location of the charges.

In addition to the issue of double counting the short-range
force, there is clearly an issue of the orientation of the charge
to the mesh and the effects of charge association and differ-
encing to find the field. We must, therefore, consider a gen-
eral transition error between long- and short-range domains and
attempt to minimize it. The mesh force is determined in this
work by a second-order cloud-in-cell (CIC) charge association
and a second-order centered finite difference approximation for
the potential derivative. The mesh-orientation component of the
transition error may be reduced by adopting the third-order tri-
angularly shaped cloud (TSC) charge association scheme over
the CIC scheme [8] and higher order forms for the potential
derivative, but short of solving the Poisson subproblem for each
particular charge orientation, the transition error is impossible to
eliminate fully. The result for the force law in Fig. 3 shows that
the shape density approach effectively smoothes the force mag-

Fig. 4. Force diagram for Si using a nonuniform mesh is shown for the moved
charge,j, placed along each axis (o, +, and × as shown above) and compared
with the results of Coulomb’s law (�). The lower lines denote the mesh forces
while the upper lines denote the corrected total forces.

nitude in the transition region and at least the double-counting
component of the transition error is much reduced.

In Fig. 4, the force diagram is recalculated for a nonuniform
rectilinear mesh where the mesh spacing is re-
duced in the center of the mesh to a 5 nm (along), 10 nm
(along ) and 20 nm (along ). In this case, the radius of the
short-range domain in the mesh center is found using the pro-
cedure in Section IV as nm nm. A charge,,
is fixed in the center of a mesh cell, while the moved charge,,
is placed along the lines down the center of the cells in each co-
ordinate direction (as in case 1 for the uniform mesh). In Fig. 4,
the mesh forces can be seen to peak at increasing radii for, ,
and , where the peaks occur roughly at the mesh spacing. De-
spite the variation in the mesh forces, the modified shape density
short-range correction produces a reasonably accurate estimate
for the Coulomb force in all orientations as expected. An advan-
tage of using a modified cutoff radius as done in this approach
is that the extent of the short-range domain automatically adapts
to variations in the mesh size. Such variations are common for
rectilinear meshes employed in device simulation. It should also
be noted that the improved accuracy in the corrected total forces
in Fig. 4 as compared to those in Fig. 3 results, in part, from the
consideration of only the lower-error centered orientation (case
1 in Fig. 3) and, in part, from the fact that the mesh is nonuni-
form and of higher resolution in the region tested compared to
the uniform case.

IV. P3M-EMC METHOD

Considering now the more general problem of semiconductor
transport simulation, we combine the extended P3M algorithm
given above with the standard ensemble Monte Carlo (EMC)
method. The combined P3M-EMC method (see Fig. 5) is a vari-
ation of the standard EMC method using a P3M to evaluate
the c-i and c-c forces. Along with the particle-mesh solution
for the electrostatic potential, the force sum is found for each
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Fig. 5. Flowchart of the P3M-EMC method where bounding box denotes the P3M force evaluation and dashed lines revert to the standard EMC method.

particle within the cutoff radius and is added to the particle-mesh
force while the c-i and c-c scattering rates used in continuum
methods are omitted. Scattering by phonons, impact ionization,
and blocking materials as well as device contacts and carrier dy-
namics are treated in the standard way by the EMC method.

A. Implementation Details

The P3M-EMC method was implemented in this work
by solving the 3-D Poisson equation using the conjugate
gradient method for nonuniform rectilinear meshes with
arbitrary boundary conditions [12]. In all Monte Carlo sim-
ulations where the bias fields are low, accurate modeling
of the low-energy band structure is important. In this work
for Si, high accuracy of the band structure is achieved by
using nonparabolic analytic band structure below 0.1 eV and
empirical pseudopotential full band structure above it [13],
[14]. In regions where the bias fields are low and the doping
levels are low , electron-phonon scattering
effects are important. The electron-phonon scattering models
used in this work are analytic rates based on nonparabolic
analytic band structure for intervalley acoustic,- and -type
X-X intervalley and X-L intervalley mechanisms with energies
and deformation potentials as given by [15]. Also included is
Cartier’s model for impact ionization [16]. Above 1.0 eV, the
rates are scaled by the density of states [17].

B. Considerations for Plasma Oscillations

Within the realm of classical physics, plasma oscillations are
potential or particle density fluctuations which result from the
correlated movement of charged particles with respect to a self-
consistent field. As particles move and create voids, the self-

consistent field forces particles into the voids [18]. As particles
react to the field and approach points where the net force is zero,
they may continue their motion if their kinetic energy is nonzero
and proceed to oscillate.

Using the P3M algorithm for the treatment of short-range
c-i and c-c interactions is economically advantageous to, but in
principle equivalent to, using a fine Poisson mesh. In regard to
2-D EMC simulations using c-i and c-c scattering rates, it has
been suggested [18], [19] that the resolution of Poisson meshes
should be limited to the extrinsic Debye length. While this re-
striction is necessary in such a scheme to avoid double counting
of the short-range forces with the c-i and c-c scattering rates,
it introduces a significant limitation on the flexibility of mesh
design [9] and is not an issue in the P3M-EMC method since
Coulombic scattering rates are not used in this method.

A further limitation on the resolution of Poisson meshes used
in 2-D EMC simulations has been explained [18], [19] as that
required to enforce Landau damping, where Landau damping is
the process which transfers the energy contained in a plasma os-
cillation to single particle(s). The references above explain that
limiting mesh resolution to the critical damping wavelength in-
sures that oscillations with wavelengths shorter than the critical
wavelength are attenuated. We support the contention made in
[20] and [21], that Landau damping is automatically accounted
for in self-consistent particle-Poisson simulations. In this re-
gard, we believe that no limitation on the mesh density or appli-
cation of short-range methods is required when using a realistic
carrier distribution as employed in the P3M-EMC method.

The remaining requirement to accurate modeling of plasma
oscillations is on the time step of the synchronous ensemble. The
Nyquist theorem calls for updating the field at a time interval
of no more than to avoid undersampling the plasma
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Fig. 6. Electron mobility versus donor doping where the dashed line and
dot-dashed lines are best fits of experimental data from Baccarani and Ostoia
[23] and Sharfetter and Gummel [23], the triangles are calculations by Grosset
al. [3], and squares with solid line are done using the P3M-EMC method.

modes [15]. For the n-type resistors considered below, where
, the inverse plasma frequency may be ap-

proximated as [18]

(9)

Here, is the conductivity mass and for (100) silicon is given
by with and

[22]. For as considered below, the
time interval called for by the Nyquist theorem is

fs. In order to satisfy this limit, a time step of 1 fs is used
in our simulations.

C. Simulation Results for Bulk Mobility

An essential validation test for short-range Coulomb models
in semiconductors is the simulation of low-field mobilities [5].
In order to make a direct comparison with existing results, we
adopt a test case similar to that found in [3]. The test device is
n-type bulk resistor with size chosen to maintain roughly 34 000
donors. The resistor is treated with a uniform
mesh and results were obtained at 300K.

A uniform external field of kV/cm was used in the
direction with continuous particle boundary conditions

and charge-neutral mesh boundary conditions. Since the field is
within the linear region of the velocity-field characteristic [24],
the electron mobility was approximated as ,
where is the ensemble average drift velocity. The drift ve-
locity was averaged over 10 000 fs at an interval length of 100
fs and discarding a 2500 fs initial transient. The results in Fig. 6
indicate that the P3M-EMC method with a modified shape den-
sity correction compares well with the best-fit experimental re-
sults [23] and the related numerical approach in [3]. It should be
noted that the approximations employed in c-i and c-c scattering
rates have also been compared with experimental data in [25].
We feel, however, that the 3-D granular approaches exemplified

by the P3M-EMC method have an advantage over short-range
scattering rate approaches in that short- and long-range interac-
tions can be treated in a unified way and that such methods are
consistent in both bulk and granular conditions.

V. CONCLUSION

The P3M algorithm has been modified for application of
nonuniform rectilinear meshes and arbitrary boundary condi-
tions and combined with the EMC method as the P3M-EMC
method. The P3M-EMC method replaces the standard treat-
ment of c-i and c-c interactions with scattering rates, as used
in two dimensions, with an explicit calculation of interparticle
forces and scattering effects in three dimensions. Results
indicate that the method can accurately reproduce Coulomb’s
law and mobility-doping characteristic in silicon while main-
taining an approach that is capable of simulating nonuniform
and boundary-affected devices such as a MOSFET. Work
probing granular effects in an ultra-small MOSFET’s using the
P3M-EMC method is in progress.

The high degree of accuracy of the P3M-EMC method in re-
producing experimental mobility data for silicon at room tem-
perature indicates that c-i and c-c interactions in silicon can be
adequately modeled by the semiclassical approach presented
here. The use of a semiclassical approach may be question-
able at much lower lattice temperatures because of the effects of
quantum coherence on the transport, but we feel that the semi-
classical approach should be applicable to deep-submicron Si
devices at room temperature. Most important, the P3M-EMC
method integrates 3-D granular treatment into the Monte Carlo
method and continues the strongest merit of the method: the ca-
pability to model semiconductor devices with a high degree of
physical accuracy and with a direct and verifiable approach.
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