ATAT - A software toolkit for modeling coupled configurational and vibrational disorder in alloy systems

Axel van de Walle

Materials Science and Engineering Department

This work was supported by:

NSF under program DMR-0080766 and DMR-0076097. DOE under contract no. DE-F502-96ER 45571. AFOSR-MEANS under grant no. F49620-01-1-0529

A matter of time...

Time needed to complete a given first-principles calculation

First-principles Thermodynamic Calculations

Coupled Sublattices Multicomponent Cluster Expansion Same basic form: $E(\sigma_1, \ldots, \sigma_n) = \sum_{\alpha} J_{\alpha} \overline{\sigma_{\alpha}}$ # components $\sigma_{\alpha} = \prod_{i} \Gamma(n_{i}, \alpha_{i}, \sigma_{i})$ Occupation variables: $\sigma_i = 0, ..., n_i - 1$ "Decorated" clusters: $\alpha = (\alpha_1, \ldots, \alpha_n)$ $\alpha_i = 0, \ldots, n_i - 1$ - "Not in cluster" 1 1 ↓ $\Gamma(2, \cdot, \cdot) =$ $\Gamma(3, \cdot, \cdot) =$

Example: binary fcc sublattice with ternary octahedral sites sublattice

Sanchez, Ducastelle and Gratias (1984) Tepesch, Garbulski and Ceder (1995)

Automated Cluster Expansion Construction

Temperature scale problem

Van de Walle, Asta and Ceder (2002), Murray (1987) (exp.) Likely source of the discrepancy: Vibrational entropy.

Fultz, Nagel, Antony, *et al.* (1993-1999)Ceder, Garbulsky, van de Walle (1994-2002)de Fontaine, Althoff, Morgan (1997-2000)Zunger, Ozolins, Wolverton (1998-2001)

Many other examples...

 $F(\sigma_1,\ldots,\sigma_n) = \sum_{\alpha} J_{\alpha}(T) \sigma_{\alpha}$

Formally: (Ceder (1993), Garbulski and Ceder (1994-1996))

$$F = -\beta^{-1} \ln\left(\sum_{i} e^{-\beta E_{i}}\right) = -\beta^{-1} \ln\left(\sum_{\sigma} \sum_{i \in \sigma} e^{-\beta E_{i}}\right)$$
$$= -\beta^{-1} \ln\left(\sum_{\sigma} e^{-\beta F(\sigma)}\right)$$

where

$$egin{aligned} F(\sigma) &= -eta^{-1} \ln \Bigl(\sum_{i \in \sigma} e^{-eta E_i} \Bigr) \ η &= (k_B T)^{-1} \end{aligned}$$

Transferable Force Constants

Chemical bond type and bond length: Good predictor of nearest-neighbor force constants (stretching and bending terms)

Relationship holds across different structures on the same lattice (here fcc is shown). van de Walle and Ceder (2000,2002)

Further tests...

Length-Dependent Transferable Force Constants (LDTFC)

van de Walle and Ceder (2000,2002)

Quasi-harmonic model

 $F(T,V) = E(V) + F_H(T,V)$

Energy of a relaxed motionless lattice with externally imposed volume V

Vibrational free energy of a harmonic solid at temp. *T* with externally imposed volume *V*

Thermal expansion:

 $V^*(T) = \arg\min_V F(T, V)$

"True" free energy:

 $F(T) = F(T, V^*(T))$

Ideal for use with length-dependent transferable force constants

Calculated Ti-Al Phase Diagram

Ti-Al Thermodynamic Properties 1st-Principles Calculations vs. Measurements

Ordering in the Cu-Li system?

Widely used assessments do not include ordered phases (Pelton (1986), Saunders (1998)).

Calculated Thermodynamic data for Cu-Li system

Electronic Excitations

$$F_{\text{elec}}(T) = E_{\text{elec}}(T) - E_{\text{elec}}(0) - TS_{\text{elec}}(T)$$

 $E_{\text{elec}}(T) = \int f_{\mu,T}(\varepsilon)\varepsilon g(\varepsilon)d\varepsilon$ $S_{\text{elec}}(T) = -k_B \int (f_{\mu,T}(\varepsilon) \ln f_{\mu,T}(\varepsilon) + (1 - f_{\mu,T}(\varepsilon)) \ln(1 - f_{\mu,T}(\varepsilon)))g(\varepsilon)d\varepsilon$

Cluster expansion:

$$F(\sigma_1,\ldots,\sigma_n) = \sum_{\alpha} J_{\alpha}(T)\sigma_{\alpha}$$

Using ATAT

- Overview of the input/output files
- Syntax of the files
- Sample output

File structure

Example of input files

Simple lattice input file

Simple ab initio code input file

[INCAR] PREC = high ISMEAR = -1 SIGMA = 0.1 NSW=41 IBRION = 2 ISIF = 3	Standard VASP tokens
KPPRA = 1000 DOSTATIC	$\begin{cases} k-\text{point density} \\ (\mathbf{k} \ \mathbf{p}\text{oint } \mathbf{p}\text{er reciprocal atom}) \end{cases}$

etc.

maps graphical output

plotted with MEDIT, INRIA-Rocquencourt.

Predicted Compound

plotted with MEDIT, INRIA-Rocquencourt.

fitsvsl graphical output

emc2 graphical output

ATAT Utilites

Miscellanea (I)

maps : Cluster expansion builder mmaps : Multicomponent version of maps emc2 : General purpose Monte Carlo code phb : Phase-transition-tracing Monte Carlo code checkrelax : Excessive relaxation detector corrdump : Cluster generator/correlation calculator clusterexpand : Manual cluster expansion generator genstr : Super structure generator gensqs : Special Quasirandom Structure generator pdef : Point defect supercells generator csfit : Constituent strain calculator cellcvrt : General crystal structure file format conversion utility lsfit : Least-squares fitting code fitfe : Phonon calculation with direct force method fitsvsl : Length-Dependent Transferable Force Constants generator svsl : Phonon calculations using LDTFC felec : Electronic free energy calculator

Miscellanea (II)

runstruct vasp : Interface with vasp runstruct abinit : Interface with abinit ab initio runstruct pwscf : Interface with pwscf runstruct gulp : Interface with gulp - empirical potential

ATAT Utilites pollmach : A job dispatcher for computer clusters foreachfile : A "loop over directories" utility str2xyz : File conversion utility for viewing with rasmol

makelat : Database of crystal structures

getvalue, (just)after, (just)before, (just)between sspp : Text extractors

memc2 : Multicomponent version of emc2 (in development)

References

- A. van de Walle and G. Ceder. The effect of lattice vibrations on substitutional alloy thermodynamics. *Rev. Mod. Phys.*, 74:11, 2002.
- A. van de Walle, M. Asta, and G. Ceder. The alloy theoretic automated toolkit: A user guide. *CALPHAD Journal*, 26:539, 2002.
- A. van de Walle and G. Ceder. Automating first-principles phase diagram calculations. *Journal of Phase Equilibria*, 23:348, 2002.
- A. van de Walle and M. Asta. Self-driven lattice-model monte carlo simulations of alloy thermodynamic properties and phase diagrams. *Modelling Simul. Mater. Sci. Eng.*, 10:521, 2002.
- Web site: http://cms.northwestern.edu/atat
- This afternoon's tutorial: http://cms.northwestern.edu/atat/tutorial