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Bosonic and Fermionic Density Matrices

€ 

ρB (R, ′ R ,β) = e−β Ei

i
∑ ΨS

[ i]*(R) ΨS
[ i](R')
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ρF (R, ′ R ,β) = e−β Ei

i
∑ ΨAS

[ i]*(R) ΨAS
[ i](R')

Bosonic density matrix:
Sum over all symmetric eigenstates.

Fermionic density matrix:
Sum over all antisymmetric eigenstates.
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Bosonic and Fermionic Density Matrices
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ρF (R, ′ R ,β) = e−β Ei

i
∑ ΨAS

[ i]*(R) ΨAS
[ i](R')

Bosonic density matrix:
Sum over all symmetric eigenstates.

Fermionic density matrix:
Sum over all antisymmetric eigenstates.

Project out symmetric and antisymmetric states:
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Bosonic and Fermionic Path Integrals
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〈R | ˆ ρ F / B | ′ R 〉 = (±1)P

P
∑ dR1∫ ... dRM −1∫ 〈R | e−τ ˆ H | R1〉...〈RM −1 | e−τ ˆ H | P ′ R 〉
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ρF (R, ′ R ,β) = e−β Ei
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∑ ΨAS

[ i]*(R) ΨAS
[ i](R')

Bosonic density matrix:
Sum over all symmetric eigenstates.

Fermionic density matrix:
Sum over all antisymmetric eigenstates.

Project out symmetric and antisymmetric states:

Apply projection to the density matrix:
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Bosonic and Fermionic Path Integrals
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[ i]*(R) ΨS
[ i](R')
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ρF (R, ′ R ,β) = e−β Ei

i
∑ ΨAS

[ i]*(R) ΨAS
[ i](R')

Bosonic density matrix:
Sum over all symmetric eigenstates.

Fermionic density matrix:
Sum over all antisymmetric eigenstates.

Project out the symmetric states: Project out the antisymmetric states:
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ρB (R, ′ R ,β) = (+1)P ρD (R,P ′ R ,β)
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R={r1,r2}

R’=PR={r2,r1}
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B: (+1)P

F: (-1)P
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How do we sample the permutation
space?
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How do we sample the permutation
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How do we sample the permutation
space?
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Step 0: Pick an imaginary time window
Step 1: Study all possible permutations
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How do we sample the permutation
space?

x

Step 0: Pick an imaginary time window
Step 1: Study all possible permutations
         and determine their sign.

(1 2 3)
   

(1 2 3)
P=+1

Identity permutation (1)
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How do we sample the permutation
space?

x

Step 0: Pick an imaginary time window
Step 1: Study all possible permutations
         and determine their sign.

(1 2 3)
   

(1 2 3)
P=+1

(1 2 3)
   

(1 3 2)
P=-1

Identity permutation (1)

2-particle permutation (3)
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How do we sample the permutation
space?

x

Step 0: Pick an imaginary time window
Step 1: Study all possible permutations
         and determine their sign.

(1 2 3)
   

(1 2 3)
P=+1

(1 2 3)
   

(1 3 2)
P=-1

(1 2 3)
   

(1 3 2)
P=-1

Identity permutation (1)

2-particle permutation (3)

3-particle cyclic permutation (2)
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How do we sample the permutation
space?

x

Step 0: Pick an imaginary time window
Step 1: Study all possible permutations
         and determine their sign.
Step 2: Build a table containing all possible
          permutations based on the free
          particle density matrix:

€ 

π (P) =
ρ(R0,PR8,8τ )
ρ(R0, ′ P R8,8τ )
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How do we sample the permutation
space?

x

Step 0: Pick an imaginary time window
Step 1: Study all possible permutations
         and determine their sign.
Step 2: Build a table containing all possible
          permutations based on the free
          particle density matrix:

Step 3: Pick from permutation table
Step 4: Regrow the permuted path using
          the bisection or Levy flight method.
Step 5: Accept or Reject based on action.
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π (P) =
ρ(R0,PR8,8τ )
ρ(R0, ′ P R8,8τ )
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How to construct a table containing
all likely permutations?

Step 0: Pick an imaginary time window
Step 1: Include all two-particle
permutations that have a good chance
of acceptance. Discriminate against
distance pairs.

Step 3: Pick from permutation table
Step 4: Regrow the permuted path
using
          the bisection or Levy method.
Step 5: Accept or Reject based on
action.
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How to construct a table containing
all likely permutations?

Step 0: Pick an imaginary time window
Step 1: Include all two-particle
permutations that have a good chance
of acceptance. Discriminate against
distance pairs.
Step 2: Include all likely three-
particle permutations. Enter them with
any increased probability to try to
such move more often. (to smaple the
superfluid state better). Detailed
balanced remains satisfied.

x

Im
ag

in
ar

y 
tim

e

€ 

π (P) =
ρ(R0,PR8,8τ )
ρ(R0, ′ P R8,8τ )

P '
∑



Burkhard Militzer, Carnegie Institution of Washington: “Path Integral Monte Carlo”, 2007

How to construct a table containing
all likely permutations?

Step 0: Pick an imaginary time window
Step 1: Include all two-particle
permutations that have a good chance
of acceptance. Discriminate against
distance pairs.
Step 2: Include all likely three-
particle permutations. Enter them with
any increased probability to try to
such move more often. (to smaple the
superfluid state better). Detailed
balanced remains satisfied.
Step 3: 4 body-permutations
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How to construct a table containing
all likely permutations?

Step 0: Pick an imaginary time window
Step 1: Include all two-particle
permutations that have a good chance
of acceptance. Discriminate against
distance pairs.
Step 2: Include all likely three-
particle permutations. Enter them with
any increased probability to try to
such move more often. (to smaple the
superfluid state better). Detailed
balanced remains satisfied.
Step 3: 4 body-permutations

Step 4: Regrow the permuted path
using the bisection or Levy method.

Step 5: Accept or Reject based on
action.
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Permutations in bosonic path integrals
can explain superfluidity in 4He

Symmetry leads to bosonic and fermionic path integrals

Bosons: Long permutation cycles,
 only positive contributions

            → superfluidity in 4He€ 

〈R | ˆ ρ F / B | ′ R 〉 = (±1)P

P
∑ dR1∫ ... dRM −1∫ 〈R | e−τ ˆ H | R1〉...〈RM −1 | e−τ ˆ H | P ′ R 〉
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Permutations in bosonic path integrals
can explain superfluidity in 4He

Symmetry leads to bosonic and fermionic path integrals

Bosons: Long permutation cycles,
 only positive contributions

            → superfluidity in 4He€ 

〈R | ˆ ρ F / B | ′ R 〉 = (±1)P

P
∑ dR1∫ ... dRM −1∫ 〈R | e−τ ˆ H | R1〉...〈RM −1 | e−τ ˆ H | P ′ R 〉
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PIMC reproduces λ-transition in 4He
[Ceperley, Pollock (1986)]
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What is superfluidity?

A superfluid has no surface tension.
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What materials exhibit superfluidity?
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What materials exhibit superfluidity?

1. Fluid 4He (boson)
2.  
3.  
4.  
5.  

Not superfluid!
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What materials exhibit superfluidity?

1. Fluid 4He (boson)
2. Fluid 3He (pairing)
3. Lasercooled atoms magnet traps 
4. Molecules in magnetic traps (discovered only recently). 
5.  
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What materials exhibit superfluidity?

1. Fluid 4He (boson)
2. Fluid 3He (pairing)
3. Lasercooled atoms magnet traps 
4. Molecules in magnetic traps (discovered only recently). 
5. Supersolid 4He ?
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Definition of the superfluid fraction
Nonclassical rotational inertia (NCRI)

€ 

I =
dF
dω 2

ω→0

=
d ˆ L Z

dω ω→0

Experiment: spinning a bucket of fluid 4He: 
Below TC, 4He exhibits a lowered moment of inertia:

  

€ 

2π n = d
r 
l o

r 
v (

r 
l )∫

Quantized circulations define v0
€ 

mN =
d ˆ p 
dv v→0

In the experiment, the slope (moment
of inertia) deviates from classical
value Icl, called nonclassical
rotational of inertia (NCRI). This is
the definition of a superfluid.
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Definition of the superfluid fraction
Nonclassical rotational inertia (NCRI)

€ 

I =
dF
dω 2

ω→0

=
d ˆ L Z

dω ω→0

Experiment: spinning a bucket of fluid 4He: 
Below TC, 4He exhibits a lowered moment of inertia:

€ 

mN =
d ˆ p 
dv v→0

This is “interpreted” as a fraction of the particle 
became superfluid and stopped spinning. 

→ Two fluid model (Landau)
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L (T) = I(T) r 
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ρN
ρ

=
I(T)
Icl

Normal fluid:
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ρ = ρS + ρN
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m = mS + mN
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Definition of the superfluid fraction
Nonclassical rotational inertia (NCRI)

€ 

I =
dF
dω 2

ω→0

=
d ˆ L Z

dω ω→0

Experiment: spinning a bucket of fluid 4He: 
Below TC, 4He exhibits a lowered moment of inertia:

€ 

mN =
d ˆ p 
dv v→0

This is “interpreted” as a fraction of the particle 
became superfluid and stopped spinning. 

→ Two fluid model (Landau)

  

€ 

r 
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Normal fluid:
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Superfluid moves frictionless, which
leads to persistent currents

€ 

I =
dF
dω 2

ω→0

=
d ˆ L Z

dω ω→0

Experiment: spinning a bucket of fluid 4He: 
Below TC, 4He exhibits a lowered moment of inertia:

€ 

mN =
d ˆ p 
dv v→0

Different experiment: Spin the bucket and
cool the system below transition
temperature. Then stop the bucket.

  

€ 

r 
L (T) =

ρS

ρ
IC

r 
ω 

→ Persistent currents.

The superfluid keeps spinning.
Normal component is at rest.

They disappear above the transition temp.
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PIMC computation of the superfluid
fraction [Pollock, Ceperley, Phys. Rev. B 36 (1987) 8343]

Hamiltonian in a system with moving walls:
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Hv =
( r p j −m

r 
v )2

2mi
∑ + V

ρV statisfies periodic boundary conditions.

€ 

ρV (r1,...,rN ; ′ r 1 , ... , ′ r j + L , ... , ′ r N )

= ρV (r1 , ... , rN ; ′ r 1 , ... , ′ r j , ... , ′ r N )
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PIMC computation of the superfluid
fraction [Pollock, Ceperley, Phys. Rev. B 36 (1987) 8343]

Hamiltonian in a system with moving walls:
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ρ
Nm
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v =
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P 

V
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Tr[
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P ̂  ρ V ]

Tr[ ˆ ρ V ]
= −

∂FV

∂
r 
v 

+ Nm
r 
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Hv =
( r p j −m

r 
v )2

2mi
∑ + V

Derive the expectation value of momentum
operator using the density matrix for a system
with moving walls

ρV statisfies periodic boundary conditions.

€ 

ρV (r1,...,rN ; ′ r 1 , ... , ′ r j + L , ... , ′ r N )

= ρV (r1 , ... , rN ; ′ r 1 , ... , ′ r j , ... , ′ r N )

The s.f. fraction is related to the free
energy change when the system is
subject to rotation
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PIMC computation of the superfluid
fraction [Pollock, Ceperley, Phys. Rev. B 36 (1987) 8343]

Hamiltonian in a system with moving walls:
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Derive the expectation value of momentum
operator using the density matrix for a system
with moving walls

ρV statisfies periodic boundary conditions.
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ρV (r1,...,rN ; ′ r 1 , ... , ′ r j + L , ... , ′ r N )

= ρV (r1 , ... , rN ; ′ r 1 , ... , ′ r j , ... , ′ r N )

with modified boundary conditions
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ρ(r1,...,rN ; ′ r 1 , ... , ′ r j + L , ... , ′ r N ) =

exp i m
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v o
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L /h[ ]*

ρ(r1 , ... , rN ; ′ r 1 , ... , ′ r j , ... , ′ r N )
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H =
( r p j )

2

2mi
∑ + V

Equivalent to system with stationary walls:

The s.f. fraction is related to the free
energy change when the system is
subject to rotation
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PIMC computation of the superfluid
fraction [Pollock, Ceperley, Phys. Rev. B 36 (1987) 8343]
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Equivalent to system with stationary walls:

The s.f. fraction is related to the free
energy change when the system is
subject to rotation
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e−β (FV −FV =0 ) =
dR ρV (R,R;β)∫

dR ρV = 0(R,R;β)∫
= ei
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W o
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Free energy change a result of
modified boundary conditions

Only the winding path are affected:
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Computation of the Superfluid
Fraction with PIMC

Challenge: Compute winding number for large
system, especially in 4He at higher pressures.

Definition of winding number:

  

€ 

(r r Pi
i
∑ −

r 
r i) =

r 
W L

  

€ 

ρS

ρ
=

m
h2

L2

3βN
r 

W 2

PIMC estimator for the superfluid fraction:

The superfluid fraction approaches 1 
for low T, even for strongly interacting systems.
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Definition of the condensation fraction

€ 

n0 = δ( ˆ p − 0)

Penrose and Onsager define Bose
condensation as macroscopic
occupation of a single-particle state.

For interacting systems, the T=0 limit of the  
condensate fraction less than 1 (10% for 4He).

as the number of particles with
zero-momentum, which can measured
and computed.

London (1938) suggested that superfluidity is Bose condensation.
The quation is whether this is the zero-momentum state as in the free
particle system. One defines the condensate fraction
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How to compute the momentum
distribution in PIMC?

  

€ 

n(k) = δ( ˆ p − hk)

n(k) ~ dR∫ d ′ r 1 ei(r1− ′ r i )ok ρ(r1...rN , ′ r 1...rN )

The momentum distribution can also be expressed in terms of the thermal
density matrix. However, this requires off-diagonal density matrix elements

which can only be computed with simulations
with one open paths.

• n(k=0)>0 implies long tails in the single
   particle density matrix.
• It decays algebraically instead of
  exponentially.
•This is called off-diagonal long-range
  order, one signature of superfluidity.
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Kim & Chan [Nature 427 (2004) 225] demonstrate that
solid 4He at pressures of 62 bar exhibits superfluidity.

Below TC, a fraction becomes superfluid. 
This lowers the moment of inertia Ι. 
This lowers the oscillation period P.
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Possible interpretations of the
experiment:

Below TC, a fraction becomes superfluid. 
This lowers the moment of inertia Ι. 
This lowers the oscillation period P.

Superfluidity ok, but do we have a solid?
• At 62 bar is pure 4He clearly is solid but
  if confined in Vycor?

Could Vycor be coated with a s.f. film?
• Results are not consistent of picture of a
  film:

How can we explain the experiment:
• e.g. superfluid defects
• disorder could also introduce s.f.



Burkhard Militzer, Carnegie Institution of Washington: “Path Integral Monte Carlo”, 2007

Ceperley-Bernu approach: Exchange
frequency calculation in perfect crystal

€ 

ZP

Z0

=
dR∫ 〈R | (e−τ ˆ H )M |PR〉

dR∫ 〈R | (e−τ ˆ H )M |R〉
≡ JPβ

•For a fixed permutation, the free energy cost, J, is calculated using a switching
method (Bennett).
•Kikuchi model: The slope of J(L) must be less then 2.3 to support superfluidity.
•Ceperley & Bernu (PRL 2004) showed that a perfect crystal cannot become
superfluid.


