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• What are electronic properties?

• Band structure of perfect crystals

• Dopants and defects in semiconductors

• What can we calculate in Quantum Monte Carlo?
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Electronic Properties of Materials

All materials:
• Electronic density of states and bandgaps

• Electronic and thermal conductivity

Minerals under pressure
• Metal/insulator transitions affects Earth’s magnetic field

Semiconductors
• Electron and hole mobility

• Effective masses

• Electronic transition levels of dopants

• Dopant diffusion

• Optical properties, excitons

• Band offsets for heterostructures
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Band structure of crystals (1)

• Crystal structures defined by Bravais lattice {ai} and basis
• Periodic density ⇒ Bloch theorem

• Fourier transformation

• Reciprocal lattice

• Brillouin zone is the Wigner-Seitz cell of the reciprocal lattice

Bloch states and Brilloin zones

n(r) =
∑

G

nG · exp (iG · r)

bk = 2π · al × bm

bk · (bl × bm)

ψ(r + R) = ψ(r) · exp (ik · r)



Band structure of crystals (2)

• Start with a 1D crystal and consider diffraction of electron wave

Diffraction picture for origin of the energy gap

a

!~a

nλ = 2d · sin θ with d = a and sin θ = 1
nλ = 2a

k =
2π

λ

k =
nπ

a

• Take lowest order (n = 1) and consider incident and reflected electron wave

ψi = eikx = ei π
a ·x and ψr = e−i π

a ·x

• Total wave function for electrons with diffracted wave length

ψ = ψi ± ψr ⇒ ψ+ = ψi + ψr = 2 cos
πx

a
and ψ− = ψi − ψr = 2 sin

πx

a

• Only two solutions for k = π/a:  Electron density on atoms or between
• No traveling wave solution



Band structure of crystals (3)

• If ion potential is a weak perturbation U, the electrons near diffraction condition 
have two possible solutions
‣ Electron density between ions:  E = Efree – U
‣ Electron density on ions:  E = Efree + U

‣ Near diffraction condition
energy is parabolic in k,
E ∝ k2

‣ Electron near diffraction
conditions are not free

‣ Their properties can still
be described as “free”
with an effective mass m*

Diffraction picture for origin of the energy gap

E
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!k = 2!/a  reciprocal lattice vector

E
gap

 = 2U

Away from k = n!/a

free electron like

Diffraction

at k = n!/a

Bandgap forms

from interaction

of electrons with

U of ions



• Copper: Band structure calculated with Wien2k

• Nearly free electron s-band dominates at low and high energies 
• Electron near diffraction conditions have different effective mass
• Hybridization between nearly-free s and atomic-like d orbitals at intermediate 

energies
• Necking of Fermi surface in [111] directions ⇒ Hume-Rothery stabilization

Copper atom  0    size 0.20
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Example of metallic band structure: Cu

s-d hybridization
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Example: Bandstructure of InAs

• Experimental bandgap: 0.41 eV

• Practical solution: Hybrid functionals B3LYP & HSE (0.39 eV)
• Better solution: GW approximation or QMC methods

The bandgap problem of DFT

Band gap problem: LDA and GGA yield a metallic ground state!



• Density functional methods provide a fast way of getting band structures
• However many functionals suffer from the band gap problem
• More accurate method: GW approximation
‣ Based on electronic

Green’s function

‣ Many-body correction of
DFT quasiparticle energies

‣ Accurate band structures
‣ Computationally more

demanding than DFT,
implemented in abinit

GWA calculation of band structures

Aulbur et al.
Solid State Phys. 54, 1 (2000) 



• Quantum Monte Carlo
‣ Variational for ground state of respective symmetry
‣ Combined optimization of ground and excited

states to keep wave functions orthogonal
(Schautz et al., J. Chem. Phys. 121, 5836)

‣ Silicon band structure shown

• Comparison QMC vs. GWA
‣ Similar accuracy

‣ Both computationally expensive
‣ QMC much less tested than GWA

• For molecular systems, quantum chemistry
methods such as MCSCF are very powerful

accurate representation of the experimental results. The
DMC energy of the state at the top of the valence band
is set equal to zero by definition, but the rest of the
results are meaningful. The low-lying quasiparticle ener-
gies are accurate, but the energies of holes lying deeper
in the valence bands are significantly overestimated due
to deficiencies of the trial wave functions. A new feature
of this work was the successful calculation of several
different excited states at the same k point. Moreover, it
was found that the DMC method produced equally good
results whether or not the electron and hole had the
same crystal momentum.

C. Other QMC methods for excited states

There are a number of alternative methods for calcu-
lating excitation energies within QMC. Ceperley and
Bernu (1988) combined the idea of the generalized
variational principle (i.e., the variational principle for
the energies of a set of orthogonal trial functions) with
the DMC algorithm to derive a method for calculating
the eigenvalues of several different excited states simul-
taneously. The first application of the Ceperley-Bernu
method was to vibrational excited states (Bernu, Ceper-
ley, and Lester, 1990), but it has also been used to inves-
tigate electronic excitations of the two-dimensional uni-
form electron gas (Kwon, Ceperley, and Martin, 1996)
and of He atoms in strong magnetic fields (Jones, Ortiz,
and Ceperley, 1997). Correlated sampling techniques
(Kwon, Ceperley, and Martin, 1996; Jones, Ortiz, and
Ceperley, 1997) can be used to reduce the variance, but
the Ceperley-Bernu method has stability problems in
large systems and has not been applied to a real solid.

Another method that uses the generalized variational
principle is based on the extended Koopmans’ theorem
derived independently by Day, Smith, and Garrod
(1974) and Morrell, Parr, and Levy (1975). The ex-
tended Koopmans’ theorem leads to an approximate ex-
pression for the ground- and excited-state energies of
the N!1 and N"1 electron systems relative to the
ground-state energy of the N electron system. Recently,
Kent et al. (1998) used this expression in conjunction

with the VMC algorithm to calculate the band structure
of Si and obtained results not much worse than those
found using the direct DMC method. The main advan-
tage of the extended Koopmans’ theorem approach is
that it allows many quasiparticle energies to be calcu-
lated simultaneously. Within the so-called diagonal ap-
proximation, which is accurate in Si (Kent et al., 1998),
the extended Koopmans’ theorem reduces to the
scheme used previously by Fahy, Wang, and Louie
(1990b) to calculate hole energies in Si, and by Tanaka
(1995) to calculate hole energies in NiO.

VII. WAVE-FUNCTION OPTIMIZATION

A. Introduction

The quality of the trial wave function controls the sta-
tistical efficiency of the VMC and DMC algorithms and
determines the final accuracy obtained. Clearly one
would like to use a high-quality trial wave function, but
there is also an issue of computational efficiency. The
most costly part of VMC and DMC calculations is nor-

FIG. 17. The DMC band structure of Si (Williamson et al.,
1998). The solid lines show the empirical pseudopotential band
structure of Chelikowsky and Cohen (1976).

TABLE III. Excitation energies (eV) of diamond calculated using the HF, LDA, GW, and DMC
methods, and compared with experimental data.

Method
Band gap
!25!→X1c

Bandwidth
!1v→!25!

HF 13.2a 29.4a

LDA 4.6,a 4.63b 22.1,a 21.35b

GW 6.3c 22.88,c 23.0d

DMC 6.0(4),a 5.71(20)b 23.9(7),a 24.98(20)b

Expt. 6.1f 23.0(2),e

a Mitas (1996).
b Towler, Hood, and Needs (2000).
c Rohlfing et al. (1993).
d Hybertsen and Louie (1986).
e Jiménez et al. (1997).
f Estimated by correcting the measured minimum band gap of 5.48 eV.

65Foulkes et al.: Quantum Monte Carlo simulations of solids

Rev. Mod. Phys., Vol. 73, No. 1, January 2001

Williamson et al. PRB 57, 12140 (1998)

Calculation of band structures (QMC)



Electronic Properties of Semiconductors

• Density of states and bandgaps

• Intrinsic and extrinsic
semiconductors (p and n doping)

• Heterostructures
- Fabrication by MBE or MOCVD

- Electronic properties controlled
by band offsets

- Examples:
(1) Laser diodes from II-VI and III-V heterostructures
(2) Heterojunction bipolar and high electron mobility transistor

• Calculation of defect levels and band offsets
- Similar to calculation for crystal
- DFT bandgap problem  ⇒  Use GWA or QMC methods for improved accuracy
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Dopants and Defects in Semiconductors

• Where are they? 
‣ Small concentrations and small sizes of dopants and defects
⇒ Experimental observations difficult

• What are they doing?
‣ Dopants and defects can lead to electronic levels in the band gap
‣ n-type donor states (P, As, Sb in Si)
‣ p-type acceptor states (B in Si)

Computational methods can link experimental electronic 
properties to dopant and impurity structures

I OI I

face region after the diffusion anneal. Spreading resistance
measurements were used to verify the quoted B concentra-
tions and depth distributions. The sixth oxidized wafer re-
ceived no 10B implant and was used as a reference.

B. Implants, annealing, and diffusion

Low-energy implants !!70 keV" were performed by ex-
tracting negatively charged ions from a sputter source biased
at the desired voltage, without net acceleration inside the
tandem accelerator. The standard procedure to introduce
near-surface implantation damage in silicon samples con-
sisted of room-temperature implants of 40 keV Si" at dose
rates of !1.3#0.6"$1012 ions/cm2/s to total doses ranging
from 5$1012 to 5$1014 ions/cm2. A typical B doping im-
plant was done at room temperature using a 60 keV B2 beam
at a dose of 7.5$1013/cm2, which corresponds to implanting
30 keV B to a dose of 1.5$1014/cm2.

After implantation, samples were chemically cleaned by
successive rinsing with trichloroethylene, acetone, and
methanol, followed by a standard RCA cleaning step. Prior
to being annealed, samples received a 20 s dip in a 1:20
diluted solution of HF. Most anneals were carried out in a
conventional tube furnace with a base vacuum pressure well
below 10"7 mbar. Samples were carried by a support wafer
in a quartz boat and annealed in vacuum or under forming
gas !85% N2, 15% H2, flow rate 1.5 l /min". Varying be-
tween these two annealing ambients was found not to affect
the present nonequilibrium damage and diffusion experi-
ments to a measurable extent, provided that the furnace set-
tings were changed to compensate for temperature shifts.50

Other gas flow conditions have occasionally been used and
are specified in this article where necessary.

The furnace temperature settings were carefully cali-
brated in separate runs using a thermocouple mounted at the
exact location of the samples. Temperature differences be-
tween annealing in vacuum and under gas flow were mea-
sured to be as high as, for instance, #40 °C for a furnace
setting temperature of 700 °C. The temperatures quoted in
the remainder of this article are the calibrated values of the
actual sample temperature during annealing, which are be-
lieved to be accurate to within 10 °C. Some samples were
subjected to a rapid thermal annealing !RTA" step under
forming gas flow. In that case, the temperature was cali-
brated to within 25 °C by measuring the rates of SPE re-
growth of ion-beam-amorphized layers on Si!100"
substrates.51

In order to study interstitial-enhanced diffusion, ion-
damaged B superlattices were annealed under various ther-
mal conditions. Boron depth profiles before and after diffu-
sion were obtained by SIMS at a sputtering rate of 4 Å/s
using 2 keV O2

% . The time-averaged intrinsic B diffusivity
$DB

int% was derived from each diffused doping spike using the
optimization procedure described elsewhere.28,52 The B spike
confined to ion-damaged regions has been excluded in the
diffusion analysis, as it is unclear a priori to what extent
the diffusion of this spike is perturbed by the implantation
damage.

III. INTERSTITIAL INJECTION

A. Results

This section presents TEM studies of the annealing be-
havior of ion-implanted FZ samples. Identical implantation
and annealing conditions were used to study interstitial-
enhanced diffusion in B marker layer structures !Sec. IV",
which will enable a direct link between implantation damage
and TED.

Figure 2 shows a cross-section electron micrograph of a
FZ sample that was implanted with 40 keV Si, 5$1013/cm2

and annealed at 815 °C for 15 s using RTA. The high-
resolution image of Fig. 2 clearly demonstrates the presence
of a defect with a &311' habit plane. A series of cross-section
images demonstrates that these defects are confined to the
top 0.1 (m surface region of the sample. Plan-view analysis
shows a high concentration of elongated defects along $110%
directions, see Fig. 3, and this appearance is consistent with
the notorious ‘‘rodlike’’ or ‘‘&311' defects.’’ 53 These defects
consist of an agglomeration of excess Si self-interstitials and
are known to form in response to the nonequilibrium injec-
tion of interstitials resulting from oxidation,54 electron
bombardment,55 or ion implantation.54,56 Although &311'
have recently been presented as a band of interstitials on a
compact disk,56,57 it is generally recognized that &311' inter-
stitial clusters have an anisotropic, elongated shape. For a
detailed discussion on the structural properties of &311' de-
fects, the reader is referred to a recent review article by
Takeda and co-workers.53

Cross-section and plan-view microscopy were combined
to follow the evolution of &311' defects during annealing. As
is clear from Fig. 3, the areal density of &311' defects drops
by several orders of magnitude upon increasing the anneal-
ing time at 815 °C from 5 to 30 s. Simultaneously, the aver-
age length of the defects increases from roughly 5 to 20 nm.
No defects were detectable for annealing times in excess of 5
min, suggesting complete damage dissolution. The quantita-
tive measurements of defect density and average defect size,
as summarized in Fig. 4, were used to calculate the number
of interstitials contained in &311' defects.58 Figure 5 shows

FIG. 2. Cross-section high-resolution electron micrograph showing &311'
habit plane, and typical image contrast of &311' defects.

6034 J. Appl. Phys., Vol. 81, No. 9, 1 May 1997 Stolk et al.

Downloaded¬31¬Jul¬2002¬to¬128.8.92.125.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/japo/japcr.jsp

Theory

Kim et al.

{311} defect
in B doped Si



• Calculation of diffusion constant and reaction rates

• Jump length determined by geometry

• Availability factor determined by concentration of available sites

• Correlation factor requires at least forward and backward rate

• How to calculate phonon frequencies (see talk and lab by Dario Alfe)

• How to determine the saddle point structure?

Structure of Defects and Dopants

Harmonic transitions state theory

Di =
a2

i

6
· βi · fi · Γi

Γi = Γ0 · exp
(
−∆H

kT

)

Γ0 =
∏3N−3

i=1 νi∏3N−4
i=1 ν′i

ai    –  Jump length
βi    –  Availability factor (i.e. vacancy concentration)
fi     –  Correlation factor (due to back jumps)
Γi    –  Jump frequency
ΔH  –  Enthalpy barrier of saddle point
Γ0    –  Prefactor
νi     –  Phonon frequency at minimum
ν’i    –  Phonon frequency at saddle point



• Nudged elastic band method
(Jonsson et al. 1998)

‣ Chain of 3N-dim configurations
connected by ”springs”

‣ Relaxation ⇒ Minimum energy path

‣ Implemented in PWSCF

• Dimer method
(Henkelman and Jonsson, JCP (1999))

‣ Optimize rotation angle of the vector between
pair of configurations ⇒ lowest curvature mode

‣ Follow direction uphill minimizing
all other directions 

‣ Very efficient first-derivative-only saddle search method

Structure of Defects and Dopants

Determining saddle points

X

H



• Diffusion path only known for single but not larger interstitials
• Experiment: Diffusion activation 4.7–5.0 eV, barrier 0.3–1.8 eV
• Energy units: Room temperature = 0.024 eV

DFT-GGA I1 I2 I3 Inchain

Formation [eV/atom] 3.8 2.8 2.4 1.7

Barrier [eV] 0.3 0.3 0.5

Multiscale approach: DFT & TB

Results:
Fast diffusion of interstitials
Single interstitials dominate
Driving force to form defect precipitates
Defect charge states can lower diffusion barrier

Diffusion of silicon interstitials



Thermal Annealing

Di-interstitials

-2.0eV

Ion Implantation

Reservoir of mobile single interstitials

I OI I

Planar {311} defect

Chain growth

Rate limiting step

Four-interstitials

chain

compact

-0.7eV

-2.2eV

-0.3eV-2.4eV

Tri-interstitials

Phys. Rev. Lett.  92, 45501 (2004)
Phys. Rev. B 72, 421306 (R) (2005)

From compact to extended defect structures



Heaven of
chemical accuracy

LDA

GGA

meta-
GGA

HSE

?

local density

density gradient

laplacian of density

exact exchange

Experiment

Quantum
 Monte Carlo

Approximations for unknown density functional

• Climbing “Jacob’s ladder” to heaven
of chemical accuracy
(Perdew et al. PRL 2003)

• Comparison to experiment or
quantum chemistry

• Difficulties:
- Experimental energies of defects
- Quantum chemistry methods for solids

• Benchmark calculations by
quantum Monte Carlo

Jacobs ladder of density functionals



Climbing “Jacob’s ladder” of density functionals improves the accuracy 
for defect formation energies. The highest rung–hybrids–agree with QMC.

Exp.

Accuracy of defect energies
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GGA

QMC
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Lowest energy barrier from X to H defect is similar in QMC and DFT.
The T defect and its barrier are higher in QMC.

Accuracy of diffusion barriers



Electronic Transition Levels of Dopants

• Formation energy of defect X with charge q

Ef [Xq] = Etot[Xq]− Etot[bulk]−
∑

i

ni · µi + q[Ef + Ev + ∆V ]

Etot[Xq] Energy for charged defect (using uniform background charge)

Etot[bulk] Energy of ideal crystal

ni, μi Number of defect atoms and their chemical potential

Ef Fermi energy relative to reference (valence band maximum)

Ev Energy of reference

ΔV Alignment of electrostatic potentials of defect and crystal cell



Electronic Transition Levels of Dopants

• Charge of defects changes as a function of Fermi level
• Change of defect charge for increasing Fermi level ++/+  +/0  0/-  -/--
• Thermodynamic transition levels: Include relaxations of final state
• Optical transition levels: Final and initial charge state for same geometry
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Calculations of Electronic Properties

Property DFT GWA QMC

Band gap not always accurate1 very accurate accurate

Effective mass yes yes no

Transition levels yes very accurate not done

Band offsets not always accurate1 very accurate not done

Defect energies not always accurate1 no accurate

Barriers not always accurate1 no accurate

1 Improved accuracy for hybrid functionals

Summary: What can we calculate with which method?

Richard G. Hennig   rgh27@cornell.edu
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