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* What are electronic properties?
® Band structure of perfect crystals
* Dopants and defects in semiconductors

¢ What can we calculate in Quantum Monte Carlo?
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Electronic Properties of Materials

All materials:
e Electronic density of states and bandgaps

e Electronic and thermal conductivity

Minerals under pressure

e Metal/insulator transitions affects Earth’s magnetic field

Semiconductors

e Electron and hole mobility

e Effective masses

e Electronic transition levels of dopants
e Dopant diffusion

e (ptical properties, excitons

e Band offsets for heterostructures
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Band structure of crystals (1)

Bloch states and Brilloin zones

Crystal structures defined by Bravais lattice {a;} and basis
Periodic density = Bloch theorem Y(r+ R) =1(r) - exp (ik - r)

Fourier transformation n(r) = Z ng -exp (iG - r)
G

a X b
Reciprocal lattice by = 27 - L m

bk . (bl X bm)

Brillouin zone is the Wigner-Seitz cell of the reciprocal lattice




Band structure of crystals (2)

Diffraction picture for origin of the energy gap

Start with a 1D crystal and consider diffraction of electron wave

n\ = 2d-sinf with d=a and sinf =1
n\A = 2a
2n AVAVAVE S
k — 7
o— nm © 0?0 © © O
a

Take lowest order (n = 1) and consider incident and reflected electron wave
wi _ eika: _ ei%-x and wr _ e—i%-x

Total wave function for electrons with diffracted wave length
mr mwr

Y =1; £, = w+=wz-+¢r=2cos7 and Y_ =; — 1, = 2sin —

a
Only two solutions for k = st/a: Electron density on atoms or between

No traveling wave solution



Band structure of crystals (3)

Diffraction picture for origin of the energy gap

* If ion potential is a weak perturbation U, the electrons near diffraction condition

have two possible solutions

4
4

4

Electron density between ions: E = Efee— U

Electron density on ions: E = Efee + U

Near diffraction condition
energy 1is parabolic in k,
E o« k2

Electron near diffraction
conditions are not free

Their properties can still
be described as “free”

with an effective mass m"

E A

Away from k = nm/a

free electron like

U of 1ions

Bandgap forms
from interaction Diffraction
of electrons with at k = ni/a
| <
: = -
—J/a 0 Tla k

< >

Ak = 27/a reciprocal lattice vector



Example of metallic band structure: Cu

® Copper: Band structure calculated with Wien2k
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® Nearly free electron s-band dominates at low and high energies
e Electron near diffraction conditions have different effective mass

* Hybridization between nearly-free s and atomic-like d orbitals at intermediate
energies

* Necking of Fermi surface in [111] directions = Hume-Rothery stabilization



The bandgap problem of DFT

Example: Bandstructure of InAs
LDA, no gap: -0.42 eV PBE, no gap: -0.13 eV B3LYP 20%, gap: 0.54 eV
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* Experimental bandgap: 0.41 eV

Band gap problem: LDA and GGA yield a metallic ground state!

¢ Practical solution: Hybrid functionals B3LYP & HSE (0.39 eV)
e Better solution: GW approximation or QMC methods




G WA calculation of band structures

* Density functional methods provide a fast way of getting band structures

* However many functionals suffer from the band gap problem

®* More accurate method: GW approximation

4

Based on electronic
Green’s function

Many-body correction of
DFT quasiparticle energies

Accurate band structures

Computationally more

demanding than DFT,
implemented in abinit

Aulbur et al.
Solid State Phys. 54, 1 (2000)
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Calculation of band structures (QMC)

® Quantum Monte Carlo

» Variational for ground state of respective symmetry

» Combined optimization of ground and excited

states to keep wave functions orthogonal
(Schautz et al., J. Chem. Phys. 121, 5836)

» Silicon band structure shown

® Comparison QMC vs. GWA

» Similar accuracy

» Both computationally expensive
» QMC much less tested than GWA

Energy (eV)

® For molecular systems, quantum chemistry
methods such as MCSCEF are very powerful

Williamson et al. PRB 57, 12140 (1998)



Electronic Properties of Semiconductors

* Density of states and bandgaps

e [ntrinsic and extrinsic

semiconductors (p and n doping) conduction band
- Q Q offset
en

e Heterostructures o

5 o

- Fabrication by MBE or MOCVD —O— valence band

- Electronic properties controlled O 0 ? Q0O Ci i offset

by band offsets ] | Q000000
hole electron
- Examples:

(1) Laser diodes from II-VI and III-V heterostructures
(2) Heterojunction bipolar and high electron mobility transistor
e Calculation of defect levels and band offsets

- Similar to calculation for crystal

- DFT bandgap problem = Use GWA or QMC methods for improved accuracy




Dopants and Defects in Semiconductors

®* Where are they?

» Small concentrations and small sizes of dopants and defects
= Experimental observations difficult

* What are they doing?
» Dopants and defects can lead to electronic levels in the band gap
» n-type donor states (P, As, Sb in Si)
» p-type acceptor states (B in Si)

Computational methods can link experimental electronic
properties to dopant and impurity structures
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Structure of Defects and Dopants

Harmonic transitions state theory

e (Calculation of diffusion constant and reaction rates

2
D, = “L.B-f-T, %~ Jump length . |
0 Pi — Availability factor (i.e. vacancy concentration)
AH fi — Correlation factor (due to back jumps)
'y = 1Iy- exp (——) I — Jump frequency
kT AH — Enthalpy barrier of saddle point
3N—-3 » I'v - Prefactor
Iy = = “ZS?Vl—ZL L v — Phonon frequency at minimum
i A v’; — Phonon frequency at saddle point

® Jump length determined by geometry

e Availability factor determined by concentration of available sites

e Correlation factor requires at least forward and backward rate

* How to calculate phonon frequencies (see talk and lab by Dario Alfe)

* How to determine the saddle point structure?



Structure of Defects and Dopants

Determining saddle points A

¢ Nudged elastic band method
(Jonsson et al. 1998)

» Chain of 3N-dim configurations

connected by “’springs”
» Relaxation = Minimum energy path

» Implemented in PWSCF

¢ Dimer method
(Henkelman and Jonsson, JCP (1999))

» Optimize rotation angle of the vector between
pair of configurations = lowest curvature mode

» Follow direction uphill minimizing
all other directions
» Very efficient first-derivative-only saddle search method



Diffusion of silicon interstitials

* Diffusion path only known for single but not larger interstitials
* Experiment: Diffusion activation 4.7-5.0 eV, barrier 0.3-1.8 eV
* Energy units: Room temperature = 0.024 eV \m/w\v/ N

Multiscale approach: DFT & TB ‘
DF1-GGA 1§l I> I3 InChain . /VA\\VV,A\ \W /
Formation [eV/atom] | 3.8 28 24 17 N N |
Barrier [eV] 03 03 0.5

Results:
Fast diffusion of interstitials
Single interstitials dominate

Driving force to form defect precipitates

Defect charge states can lower diffusion barrier



From compact to extended defect structures

Ion Implantation

(" Reservoir of mobile single interstitials h

2.0eV Thermal Annealing
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Phys. Rev. Lett. 92, 45501 (2004) Rate limiting step
Phys. Rev. B 72, 421306 (R) (2005)




Jacobs ladder of density functionals

Approximations for unknown density functional

* Climbing “Jacob’s ladder” to heaven

: Heaven of Experiment
of chemical accuracy chemical accuracy P
(Perdew et al. PRL 2003) Z : / Monte Carlo
e Comparison to experiment or
quantum chemistry HSE / exact exchange
* Difficulties: Iélgi: / laplacian of density

- Experimental energies of defects

- Quantum chemistry methods for solids / GGA densny gpadkgnt

* Benchmark calculations by / LDA / local density
quantum Monte Carlo




Accuracy of defect energies
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Climbing “Jacob’s ladder” of density functionals improves the accuracy
for defect formation energies. The highest rung—hybrids—agree with QMC.




Accuracy of diffusion barriers
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Lowest energy barrier from X to H defect is similar in QMC and DFT.
The T defect and its barrier are higher in QMC.




Electronic Transition Levels of Dopants

* Formation energy of defect X with charge ¢

E¢[X,] = Biot[Xq] — Brot[bulk] — Y ;- p; + q[Ey + By + AV]

Eiot[ X4] Energy for charged defect (using uniform background charge)
Ewi[bulk] Energy of ideal crystal

ni, Wi Number of defect atoms and their chemical potential
Er Fermi energy relative to reference (valence band maximum)
E, Energy of reference

AV Alignment of electrostatic potentials of defect and crystal cell



Electronic Transition Levels of Dopants

Charge of defects changes as a function of Fermi level

Change of defect charge for increasing Fermi level ++/+ +/0 0/- -/--

Thermodynamic transition levels: Include relaxations of final state

Optical transition levels: Final and initial charge state for same geometry

Formation energy
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Calculations of Electronic Properties

Summary: What can we calculate with which method?

Property DFT GWA QMC

Band gap not always accurate very accurate accurate
Effective mass yes yes “

Transition levels yes very accurate not done

Band offsets [not always accurate very accurate not done

Defect energies |not always accurate no accurate

Barriers no! always accurate! no accurate

' Tmproved accuracy for hybrid functionals
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