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Periodic Boundary Conditions

• Suppose we are interested in the bulk properties of a material.

• Could in principle study a large finite system, but would have to simulate an infeasibly
large numbers of particles to make surface effects negligible.

• Eliminate surfaces by using periodic boundary conditions.



The Ewald Interaction (I): the Problem

• Näıve expression for the electrostatic energy of a neutral, periodic cell:

V (r1, . . . , rN) =
∑

R

∑

i>j

qiqj
|ri − rj −R|,

where qi is the charge of particle i and {R} are the lattice vectors.

• Unfortunately this sum is conditionally convergent.

• Riemann series theorem: can rearrange terms of a conditionally convergent sum to
get any answer you like. . .

• Physically, O(r2) distant, neutral cells at distance r make dipole contributions
[O(r−2)] to the electrostatic potential at any given point.

• Practical solution: use Ewald method to calculate interaction energy.1

1P. P. Ewald, Ann. Phys. 64, 253 (1921).



The Ewald Interaction (II): Fourier Series

• Add uniform, neutralising background if nec. and write the charge density as

ρ(r) =
∑

R

∑

i

qiδ(r− ri −R)− Q

Ω
,

where Q =
∑

i qi is the total charge of the cell and Ω is the cell volume.

• Fourier representation of charge density:

ρ(r) =
1
Ω

∑

G 6=0

ρG exp(−iG · r),

where G = 0 is excluded because the cell is electrically neutral.

• Assume the electrostatic potential is periodic. Choose it to be 0 on average. Then

Φ(r) =
1
Ω

∑

G 6=0

ΦG exp(−iG · r).



The Ewald Interaction (III): Poisson’s Equation

• Poisson’s equation for the electrostatic potential:

∇2Φ(r) = −4πρ(r).

• Hence the Fourier components are related by

ΦG =
4πρG

|G|2 .



The Ewald Interaction (IV): the Charge Density

The charge density due to a set of point charges can be written as

ρ(r) = ρa(r) + ρb(r) =

[∑

i

∑

R

qi

(γ
π

)3/2

exp
(−γ|r− ri −R|2)− Q

Ω

]

+

[∑

i

∑

R

qi

(
δ(r− ri −R)−

(γ
π

)3/2

exp
[−γ|r− ri −R|2]

)]
.

x

ρ

0



The Ewald Interaction (V): the Reciprocal-Space Sum

• The Fourier components of ρa are

ρaG =
∑

i

qi exp[−|G|2/(4γ)] exp(iG · ri).

• Hence the electrostatic potential due to ρa is

Φa(r) =
4π
Ω

∑

i

∑

G6=0

qi
exp[−|G|2/(4γ)]

|G|2 exp[iG · (r− ri)].



The Ewald Interaction (VI): the Real-Space Sum

• Consider a Gaussian charge distribution centred on the origin:

ρ0(r) =
(γ
π

)3/2

exp(−γ|r|2).

The electrostatic potential is

Φ0(r) =
(γ
π

)3/2
∫

All space

exp(−γ|r′|2)
|r′ − r| dr′ =

erf
(√
γ|r|)

|r|

• The potential due to ρb is therefore

Φb(r) =
∑

i

∑

R

qi
1− erf

(√
γ|r− ri −R|)

|r− ri −R| − πQ

Ωγ
,

where we have added the constant term −πQ/(Ωγ) to ensure that
∫
Ω

Φb(r) dr = 0.



The Ewald Interaction (VII): the Ewald Energy

• The electrostatic energy of a set of point charges is

V =
1
2

∑

j

qjΦj,

where Φj is the potential at rj due to the charges other than j.

• Noting that limx→0 erf(x)/x = 2/
√
π, we find that

Φj = lim
r→rj

Φ(r)− qj
|r− rj| =

4π
Ω

∑

i

∑

G6=0

qi
exp[−|G|2/(4γ)] exp[iG · (rj − ri)]

|G|2

+
∑

R

∑

i

′qi
erfc

(√
γ|rj − ri −R|)

|rj − ri −R| − 2
√
γ

π
qj − πQ

Ωγ
,

where
∑′

i means that i = j is excluded when R = 0.



The Ewald Interaction (VIII)

• Can write Ewald energy in the form

V =
1
2

∑

i 6=j

qiqjvE(ri − rj) +
1
2

∑

j

q2jvM

=
1
2

∑

i 6=j

qiqj [vE(ri − rj)− vM ] if Q = 0,

where

vE(r) =
4π
Ω

∑

G 6=0

exp[−|G|2/(4γ)] exp(iG · r)
|G|2 +

∑

R

erfc
(√
γ|r−R|)

|r−R| − π

Ωγ

vM =
4π
Ω

∑

G 6=0

exp[−|G|2/(4γ)]
|G|2 +

∑

R 6=0

erfc
(√
γ|R|)

|R| − 2
√
γ

π
− π

Ωγ
.

• Fourier transform of vE(r) is vE(G) = 4π/|G|2. Fourier series for vE is not
convergent; interpret vE(G) as a distribution.



The Ewald Interaction (IX): Comments

• Ewald energy V is independent of γ. Larger values of γ make real-space sum more
rapidly convergent; smaller values make reciprocal-space sum more rapidly convergent.

• Periodic solution to Poisson’s equation corresponds to adding a constant electric field
to cancel that due to the nonzero dipole moment of the simulation cell.

• Ewald interaction corresponds to embedding the material in a perfect metal so that
surface polarisation charges are screened. Tin foil boundary conditions.
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Simulation and Primitive Unit Cells

• In one-electron theories (e.g. density-functional or Hartree–Fock theory) we can reduce
the problem to the primitive unit cell and integrate over the first Brillouin zone.

• Reduction to the primitive unit cell is not possible in many-body calculations:
correlation effects may be long-ranged.

• Must build simulation cell from several primitive cells.



Minimum Images

• Minimum image distance between particles A and B: distance from A to closest
periodic image of B.

• Minimum image of r is r−RC, where RC is closest sim.-cell lattice point to r.



Translational Symmetry

• Translational symmetries of the Hamiltonian:

1. Ĥ(r1, . . . , ri + Rs, . . . , rN) = Ĥ(r1, . . . , ri, . . . , rN) ∀i ∈ {1, . . . , N},
2. Ĥ(r1 + Rp, . . . , ri + Rp, . . . , rN + Rp) = Ĥ(r1, . . . , ri, . . . , rN)

where Rs and Rp are the simulation-cell and primitive-cell lattice vectors.

• Lead to many-body Bloch conditions:

1. Ψks(r1, . . . , rN) = Uks(r1, . . . , rN) exp (iks ·
∑

i ri)
2. Ψkp(r1, . . . , rN) = Wkp(r1, . . . , rN) exp

(
ikp · 1

N

∑
i ri

)

where U has periodicity of the simulation cell for all coordinates and W is invariant
under simultaneous translation of all coordinates through Rp.

2

• Nonzero ks: twisted boundary conditions (see later).

• Use ideas from band structure; e.g., for insulators choose ks to be Baldereschi point.

2G. Rajagopal et al., Phys. Rev. Lett. 73, 1959 (1994); G. Rajagopal et al., Phys. Rev. B 51, 10591 (1995).



Single-Particle Finite-Size Errors

• Momentum quantisation: Bloch k vectors must be integer multiples of simulation-cell
reciprocal lattice vectors, so that orbitals are periodic.

• Instead of integrating over k inside the Fermi surface, one sums over the discrete set
of k vectors when a finite cell is used. (k-point sampling.)

• Usually find EQMC(n) − EQMC(∞) ∝ [EDFT(n)− EDFT(∞)] where E(n) is the
energy obtained using an n× n× n k-point mesh.

• Hence can use DFT (or HF) data to extrapolate to infinite system size.

• Large numbers of k points are prohibitively expensive in QMC because an n× n× n
k-point mesh must be unfolded into an n× n× n simulation cell.



Twist Averaging (I)

• Periodic boundary conditions: Ψ(ri +Rs) = Ψ(ri). Single-particle orbitals are of the
Bloch form ψk(r) = exp(ik · r)uk(r), where u has the periodicity of the primitive
cell and k is an integer multiple of the simulation-cell reciprocal lattice vectors in the
first Brillouin zone of the primitive cell.

• Twisted boundary conditions: Ψ(ri + Rs) = exp(iks ·Rs)Ψ(ri), where ks is in the
first Brillouin zone of the simulation cell. Single-particle orbitals are of the form
ψk(r) = exp[i(k + ks) · r]uk(r).

• Twist averaging3: average over all ks, i.e. average over all offsets to the grid of k
vectors. Greatly reduces single-particle finite-size errors.

3C. Lin et al., Phys. Rev. E 64, 016702 (2001).



Twist Averaging (II)

Effect of twist averaging on Hartree–Fock kinetic and exchange energies for a 3D
paramagnetic electron gas of density parameter rs = 1 a.u.:
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Twist averaging greatly dampens the energy fluctuations caused by shell filling.



Making Real Orbitals (I)

• QMC calculations run much faster if real arithmetic is used.

• Suppose Bloch orbitals at ±k are occupied. Then

ψ∗k(r) = exp(−ik · r)u∗k(r) = ψ−k(r).

• Nonsingular linear transformations of the columns of the Slater determinant leave the
wave function unchanged (up to normalisation).

• So can replace occupied orbitals ψk and ψ−k by

ψk+ =
1√
2

[ψk(r) + ψ−k(r)] =
√

2Re [ψk(r)]

ψk− =
1√
2i

[ψk(r)− ψ−k(r)] =
√

2Im [ψk(r)]

without changing the Slater wave function.



Making Real Orbitals (II)

The k points are in ±k pairs if the offset is ks = 0 or ks = Gs/2, where Gs and Gp

are simulation-cell and primitive-cell G vectors.

�
�
�
�

������������

0

G

GS

P

k



Finite-Size Extrapolation

• Fit QMC data {EN} to

EN = E∞ + a
(
THF

N − THF
∞

)− b

N
,

where a, b and E∞ are fitting parameters and THF
N is the Hartree–Fock (or DFT)

kinetic energy of an N -particle system.

• For electron gases etc. THF
∞ can be calculated exactly; otherwise it must be taken

from a HF/DFT calculation with a fine k-point mesh.

• For real systems, obtaining EN at several different cell sizes can be time-consuming.

• There are several variants of this fitting formula in the literature.

• Better to correct finite-size errors than to rely on fitting.



Static Structure Factors

Spin-resolved static structure factor:

Sαβ(r, r′) =
1
N
〈[ρ̂α(r)− ρα(r)][ρ̂β(r′)− ρβ(r′)]〉

where ρ̂α(r) =
∑

i δ(r− riα) is the density operator and ρα(r) = 〈ρ̂α(r)〉 is the density
for electrons of spin α. N.B. ρ̂ =

∑
α ρ̂α and S =

∑
α,β Sαβ.

Translationally averaged structure factor:

Sαβ(r) =
1
Ω

∫

Ω

Sαβ(r′ + r, r′) dr′.

Fourier transform of the translationally averaged structure factor:

Sαβ(G) =
1
N

(〈
ρ̂α(G)ρ̂∗β(G)

〉− ρα(G)ρ∗β(G)
)
,

where ρ̂α(G) =
∑

i exp(−iG · riα) is the Fourier transform of the density operator.



Interaction Energy in Terms of the Structure Factor

Vee =
NvM

2
+

∫ |Ψ(R)|21
2

∑
i 6=j vE(ri − rj) dR∫ |Ψ(R)|2 dR

=
1
2

∫ ∫
[ρ(r, r′)− ρ(r)ρ(r′)] [vE(r− r′)− vM ] dr dr′

+
1
2

∫ ∫
vE(r− r′)ρ(r)ρ(r′) dr dr′

=
N

2


∑

G 6=0

4π
Ω|G|2 [S(G)− 1] + vM


 +

∑

G 6=0

2πΩ
|G|2ρ(G)ρ∗(G),

where ρ(r, r′) =
〈∑

i 6=j δ(r− ri)δ(r′ − rj)
〉

is the pair density.

First term: exchange-correlation energy (interaction of electrons with their XC holes).
Second term: Hartree energy (interaction of charge densities).



Coulomb Finite Size Errors

• Charge density and structure factor converge rapidly with system size; suggests that
finite-size errors are due to slow convergence of Ewald interaction.

• Taylor expansion of Ewald interaction:

vE(r)− vM =
1
r

+
2π
3Ω

rTWr +O
(

r4

Ω5/3

)
,

where tensor W depends on the symmetry of the lattice.

• For large simulation cells first term dominates, but for typical cell sizes second term
is significant.

• Interaction between each electron and its XC hole should be 1/r.

• This is enforced in the model periodic Coulomb interaction.4

4L. M. Fraser et al., Phys. Rev. B 53, 1814 (1996); A. J. Williamson et al., Phys. Rev. B 55, R4851 (1997).



Model Periodic Coulomb Interaction (I)

• MPC interaction operator:

Ĥee =
1
2

∑

i6=j

f(ri − rj) +
∑

i

∫
ρ(r) [vE(ri − r)− f(ri − r)] dr

−1
2

∫
ρ(r)ρ(r′) [vE(r− r′)− f(r− r′)] dr dr′,

where f(r) is 1/r treated within the minimum-image convention.

• Electron-electron interaction energy:

〈Ĥee〉 =
1
2

∫
ρ(r)ρ(r′)vE(r− r′) dr dr′

+
∫ ∫

[ρ(r, r′)− ρ(r)ρ(r′)] f(r− r′) dr dr′,

i.e. Hartree energy + XC energy.



Model Periodic Coulomb Interaction (II)

• The Hartree energy is calculated using the Ewald interaction while the exchange-
correlation energy is calculated using 1/r (within minimum-image convention).

• Can avoid the need to know ρ exactly by replacing it with the approximate charge
density ρA from a DFT or HF calculation.

• The error due to this approximation is O(ρ−ρA)2. Furthermore the operator (vE−f)
vanishes as the size of the simulation cell goes to infinity.

• Ewald and MPC energies per particle are the same in the limit of large system size,
even if approximate charge density is used.



Model Periodic Coulomb Interaction (III)

• First term of MPC interaction is evaluated in real space, second term is evaluated in
reciprocal space and third term is a constant:

Ĥee =
1
2

∑

i6=j

f(ri − rj) +
1
Ω

∑

i

∑

G 6=0

[
4π
|G|2 − fG

]
ρA,Ge

iG·ri

+


− 1

Ω

∑

i

f0ρA,0 − 1
2Ω

∑

G6=0

[
4π
|G|2 − fG

]
ρ∗A,GρA,G +

1
2Ω
f0ρ

∗
A,0ρA,0


 .

• Fourier coefficients fG are evaluated numerically. Requires care because f(r) diverges
at r = 0 and is non-differentiable at the boundary of the Wigner-Seitz cell.



Finite-Size Correction to the XC Energy (I)

• Charge density and hence Hartree energy converge rapidly with system size.

• Form of structure factor converges rapidly with system size.

• So the finite-size error in the Ewald interaction energy is5:

∆V =
N

4π2

∫
S(k)− 1
|k|2 dk− 2πN

Ω

∑

G6=0

S(G)− 1
|G|2 − NvM

2

≈ N

4π2

∫

D

S(k)
|k|2 dk,

where D is a sphere of volume (2π)3/Ω centred on the origin.6

5S. Chiesa et al., Phys. Rev. Lett. 97, 076404 (2006).
6To see this, insert factors of exp(−ε|k|2) and exp(−ε|G|2) in the integrand and summand and choose κ = 1/(2

√
ε)

in the Ewald expression for vM ; finally take the limit ε → 0.



Finite-Size Correction to the XC Energy (II)

• S(k) ∝ |k|2 at small k, so ∆V is O(N0), i.e. error in interaction energy per particle
is O(N−1).

• Finite-size correction is an alternative to using MPC. (Don’t use both!)

• Insert f(r) = vE(r)− vM − 2πrTWr/(3Ω) + . . . into MPC XC energy; find that XC
correction ∆V arises from quadratic term.7

• MPC is “perfect” if XC hole fits into sim. cell; adding ∆V to the Ewald energy is
then merely an approximation to the MPC; however, if XC hole does not fit into sim.
cell then MPC is not perfect and the finite-size correction can make use of known
form of S(k) at small k. Not yet clear which is best.

• For a homogeneous electron gas, random phase approximation implies that S(k) =
|k|2/(2ωp) for small k, where ωp =

√
4πN/Ω is the plasma frequency.

• Hence ∆V = ωp/4 for a HEG.

7W. M. C. Foulkes, unpublished.



Finite-Size Correction to the XC Energy (III)

Results for a 3D electron gas, rs = 3 a.u.:

N EMPC − EEwald (a.u.) ωp/(4N) (a.u.)
54 0.0015(1) 0.00154
102 0.0008(1) 0.000817
226 0.00037(6) 0.000369

EEwald is total SJ-DMC energy per particle obtained using Ewald interaction.
EMPC is total SJ-DMC energy per particle obtained using MPC interaction.8

8EEwald was used in the branching factor in DMC, so the kinetic energy is the same in the two cases.



Finite-Size Correction to the Kinetic Energy (I)

• The two-body correlations described by the Jastrow factor are long ranged.

• They are restricted in a finite simulation cell: leads to bias in kinetic energy.

• Correct for this by interpolating Fourier transformation of two-body Jastrow factor.9

• Write Ψ as the product of a long-ranged two-body Jastrow factor exp(uαβ), which
has the periodicity of the simulation cell and inversion symmetry, and a part consisting
of everything else, Ψs:

Ψ = Ψs exp


∑

α>β

∑

i,j

uαβ(riα − rjβ) +
∑
α

∑

i>j

uαα(riα − rjα)


 ,

= Ψs exp


 1

2Ω

∑

α,β

∑

G 6=0

uαβ(G)ρ̂∗α(G)ρ̂β(G) +K


 .

9S. Chiesa et al., Phys. Rev. Lett. 97, 076404 (2006).



Finite-Size Correction to the Kinetic Energy (II)

• “TI” kinetic-energy estimator:

T (R) =
−1
4
∇2 log(Ψ) = Ts(R)− 1

8Ω

∑

α,β

∑

G6=0

uαβ(G)∇2 [ρ̂∗α(G)ρ̂β(G)] ,

where Ts = −∇2 log(Ψs(R))/4.

• Use ∇2 [ρ̂∗α(G)ρ̂β(G)] = −2|G|2 [ρ̂∗α(G)ρ̂β(G)−Nαδαβ] to show that

〈T 〉 = 〈Ts〉+
1

4Ω

∑

G 6=0

|G|2

∑

α,β

uαβ(G) 〈ρ̂∗α(G)ρ̂β(G)〉 −
∑
α

Nαuαα(G)


 .

• ρα(k) is only nonzero for G vectors of the primitive lattice. Assuming the sum runs
only over small G,

〈T 〉 = 〈Ts〉+
N

4Ω

∑

G 6=0

|G|2
∑

α,β

uαβ(G)S∗αβ(G)− 1
4Ω

∑

G 6=0

|G|2
∑
α

Nαuαα(G).



Finite-Size Correction to the Kinetic Energy (III)

uαα(k) has roughly the same form at different system sizes:
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Finite-Size Correction to the Kinetic Energy (IV)

• In the infinite system limit, the sum over G should be replaced by an integral.

• Leading-order finite-size error is the omission of the G = 0 contribution in the third
term in the expression for 〈T 〉.

• The finite-size correction is therefore

∆T = −
∑
α

Nα

4(2π)3

∫ D

0

4πk2 × k2ūαα(k) dk

in 3D, where ū(k) is the spherical average of u(k) and D is the radius of a sphere of
volume (2π)3/Ω.



Finite-Size Correction to the Kinetic Energy (V)

Infinite-system “random phase approximation” Jastrow factor for same-spin electrons:

uαα(k) = −4πA
(

1
k2
− 1
k2 + 1/(2A)

)
.

where A is a parameter to be determined by fitting. Hence

∆T =
N

4π


D −

tan−1
(√

2AD
)

√
2A




=
πNA

Ω
+O(N−2/3),

so the error in the KE per particle falls off as O(N−1).

• Homogeneous electron gas has A = 1/ωp, where ωp is the plasma frequency.

• Hence leading-order correction to the KE is ∆T = ωp/4 for a HEG.



Example: Finite-Size Errors in a 3D HEG

DMC results for a 3D electron gas, rs = 3 a.u. (using twist averaging and a Slater–
Jastrow wave function):

0 226
-1

102
-1

54
-1

N
-1

-0.069

-0.068

-0.067

-0.066

-0.065

D
M

C
 e

ne
rg

y 
(a

.u
. /

 e
le

ct
ro

n)

Ewald
MPC
Ewald (corr.)
MPC (corr.)

Correction: ωp/(2N) for Ewald data and ωp/(4N) for MPC data.



Conclusions

• QMC simulations of periodic systems suffer from finite-size errors.

• Finite-size errors must be accounted for in any QMC study of condensed matter.

• Methods for dealing with finite-size errors (use appropriate combinations of these):

1. Use a large finite simulation cell!
2. Twist average to reduce single-particle finite-size errors.
3. Extrapolate to infinite system size using fitting formulae.
4. Use MPC interaction to reduce Coulomb finite-size biases.
5. Add corrections to the kinetic and potential energy to account for differences

between finite- and infinite-system two-body Jastrow factor and structure factor.

• Can usually expect reasonable cancellation of finite-size biases when energy differences
are taken.


