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Periodic Boundary Conditions

e Suppose we are interested in the bulk properties of a material.

e Could in principle study a large finite system, but would have to simulate an infeasibly
large numbers of particles to make surface effects negligible.

e Eliminate surfaces by using periodic boundary conditions.
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The Ewald Interaction (I): the Problem

Naive expression for the electrostatic energy of a neutral, periodic cell:

V(I'ly--wrN) — ;Z |I'7; _q;;jj_ R‘j
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where ¢; is the charge of particle 7 and {R} are the lattice vectors.
Unfortunately this sum is conditionally convergent.

Riemann series theorem: can rearrange terms of a conditionally convergent sum to
get any answer you like. . .

Physically, O(r?) distant, neutral cells at distance r make dipole contributions
[O(r~2)] to the electrostatic potential at any given point.

Practical solution: use Ewald method to calculate interaction energy.!

IP. P. Ewald, Ann. Phys. 64, 253 (1921).



The Ewald Interaction (ll): Fourier Series

e Add uniform, neutralising background if nec. and write the charge density as

p(r) = Zquﬁ(r —r,—R) - %,

where () = ) . ¢; is the total charge of the cell and €2 is the cell volume.

e Fourier representation of charge density:

1 .
p(r) = Q Z pc exp(—iG - ),
G#0

where G = 0 is excluded because the cell is electrically neutral.

e Assume the electrostatic potential is periodic. Choose it to be 0 on average. Then

1
D(r) = 5 Y ®gexp(—iG ).
G+#0



The Ewald Interaction (I11): Poisson’s Equation

e Poisson’s equation for the electrostatic potential:

V2®(r) = —4mp(r).

e Hence the Fourier components are related by

Ampa
Pg = :
G|?




The Ewald Interaction (IV): the Charge Density

The charge density due to a set of point charges can be written as

p(r) = pa(r)+ ps(r) [ZZ%( >3/2exp V\r—ri—RP)—g

+ Z;q (5(1'— ri—R)— (%f/zexp [—Alr —r; - R?})].
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The Ewald Interaction (V): the Reciprocal-Space Sum

e The Fourier components of p, are

PaG = Z ¢i exp[—|G[?/(47)] exp(iG - 1;).

e Hence the electrostatic potential due to p, is

@, > o S O epiic - -
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The Ewald Interaction (VI): the Real-Space Sum

e Consider a Gaussian charge distribution centred on the origin:

po() = (1) exp(=rf?).

T

The electrostatic potential is

. /2
Bo(r) = (2 3/2 exp(—r'?) ., _ et (VAlr])
All space

7T ' — 1| B 1|

e The potential due to py is therefore

l1—erf(\Ar—r;—R|) 7Q
ZZ r—r; — R| QY

where we have added the constant term —7Q/(€7) to ensure that [, ®(r)dr = 0.



The Ewald Interaction (VII): the Ewald Energy

e The electrostatic energy of a set of point charges is
1
=52_4%,
J

where ®; is the potential at r; due to the charges other than j.

e Noting that lim,_,gerf(x)/x = 2//m, we find that

ZZ exp[—|G[*/(47)] exp[iG - (rj —1;)]

¢, = lim &(r) — GP

o T — rj| o

erfc (\/|r; —r; — RJ) \/; - 7@
+ZZ r; —r; — R o ;QJ_Q—’W

where Z; means that ¢ = j is excluded when R = 0.




The Ewald Interaction (VIII)

e Can write Ewald energy in the form

where

vg(r)

UM
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Vo= 9 Z QinUE(I'i — rj) + 2 Z Q?UM
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e Fourier transform of vg(r) is vg(G) = 4n/|G|?. Fourier series for vg is not
convergent; interpret vg(G) as a distribution.



The Ewald Interaction (I1X): Comments

e Ewald energy V is independent of ~. Larger values of v make real-space sum more
rapidly convergent; smaller values make reciprocal-space sum more rapidly convergent.

e Periodic solution to Poisson’s equation corresponds to adding a constant electric field
to cancel that due to the nonzero dipole moment of the simulation cell.

e Ewald interaction corresponds to embedding the material in a perfect metal so that
surface polarisation charges are screened. Tin foil boundary conditions.
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Simulation and Primitive Unit Cells

e |n one-electron theories (e.g. density-functional or Hartree—Fock theory) we can reduce
the problem to the primitive unit cell and integrate over the first Brillouin zone.

e Reduction to the primitive unit cell is not possible in many-body calculations:
correlation effects may be long-ranged.

e Must build simulation cell from several primitive cells.
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Minimum Images

e Minimum image distance between particles A and B: distance from A to closest
periodic image of B.
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e Minimum image of r is r — R, where R¢ is closest sim.-cell lattice point to r.



Translational Symmetry

e Translational symmetries of the Hamiltonian:

1. Ig(rh...,ri—l—RS,...,rN):ﬁ(rl,...,ri,A...,rN) Vie{l,...,N},
2. Hri+R,,....,1; +R,,...,tx+R,) = H(ry,...,14,...,TN)

where R and R, are the simulation-cell and primitive-cell lattice vectors.

e Lead to many-body Bloch conditions:

1. \Ifks(l‘l, e 7I‘N) = Uks(rl, cee 7rN) exXp (st ' Zz ri)
2. Wy, (r1,...,rn) = Wi, (r1,...,rn) exp (ikp - 7 >, 15)

where U has periodicity of the simulation cell for all coordinates and W is invariant
under simultaneous translation of all coordinates through R,,.

e Nonzero k;: twisted boundary conditions (see later).

e Use ideas from band structure; e.g., for insulators choose k to be Baldereschi point.

2G. Rajagopal et al., Phys. Rev. Lett. 73, 1959 (1994); G. Rajagopal et al., Phys. Rev. B 51, 10591 (1995).



Single-Particle Finite-Size Errors

Momentum quantisation: Bloch k vectors must be integer multiples of simulation-cell
reciprocal lattice vectors, so that orbitals are periodic.

Instead of integrating over k inside the Fermi surface, one sums over the discrete set
of k vectors when a finite cell is used. (k-point sampling.)

UsuaIIy find EQMc(n) — EQMc(OO) X [EDFT(n) — EDFT(OO)] where E(n) Is the
energy obtained using an n X n X n k-point mesh.

Hence can use DFT (or HF) data to extrapolate to infinite system size.

Large numbers of k points are prohibitively expensive in QMC because an n X n X n
k-point mesh must be unfolded into an n X n X n simulation cell.



Twist Averaging (I)

e Periodic boundary conditions: ¥(r; + Rs) = ¥(r;). Single-particle orbitals are of the
Bloch form 1y (r) = exp(ik - r)ux(r), where u has the periodicity of the primitive
cell and k is an integer multiple of the simulation-cell reciprocal lattice vectors in the
first Brillouin zone of the primitive cell.

e Twisted boundary conditions: ¥(r; + Rs) = exp(iks - Rs)¥(r;), where kg is in the
first Brillouin zone of the simulation cell. Single-particle orbitals are of the form

Yr(r) = expli(k + kg) - r]uk(r).

e Twist averaging>: average over all kg, i.e. average over all offsets to the grid of k
vectors. Greatly reduces single-particle finite-size errors.

3C. Lin et al., Phys. Rev. E 64, 016702 (2001).



Twist Averaging (I1)

Effect of twist averaging on Hartree—Fock kinetic and exchange energies for a 3D
paramagnetic electron gas of density parameter vy, =1 a.u.:
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Twist averaging greatly dampens the energy fluctuations caused by shell filling.



Making Real Orbitals (1)

QMC calculations run much faster if real arithmetic is used.

Suppose Bloch orbitals at £k are occupied. Then
Pi(r) = exp(—ik - r)u(r) = Y_k(r).

Nonsingular linear transformations of the columns of the Slater determinant leave the
wave function unchanged (up to normalisation).

So can replace occupied orbitals 1y and ¢ _y by

1
Yy = 7 [Yx(r) + Y_k(r)] = V2Re [thi(r)]

1
Y- = NG [Yic(r) — Y_i(r)] = v2Im [t(1)]

without changing the Slater wave function.



Making Real Orbitals (1)

The k points are in £k pairs if the offset is k, = 0 or ks = G;/2, where G4 and G,
are simulation-cell and primitive-cell G vectors.
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Finite-Size Extrapolation

e Fit QMC data {En} to

En=Ex+a(Ty" —TL") — %

where a, b and E., are fitting parameters and T3/" is the Hartree—Fock (or DFT)
kinetic energy of an IN-particle system.

For electron gases etc. TO%F can be calculated exactly; otherwise it must be taken
from a HF/DFT calculation with a fine k-point mesh.

For real systems, obtaining E'n at several different cell sizes can be time-consuming.
There are several variants of this fitting formula in the literature.

Better to correct finite-size errors than to rely on fitting.



Static Structure Factors

Spin-resolved static structure factor:

1

Sap(r, 1) = = ([Palr) = pa(r)][Ps(r') = ps(r)])

where po(r) =) . d(r — ;o) is the density operator and p,(r) = (pn(r)) is the density
for electrons of spin a. N.B. p=5_ poand S=3_  5Sas.

Translationally averaged structure factor:

1
Sas(r) = 5/95045(1" +7r,r’)dr.

Fourier transform of the translationally averaged structure factor:

Sas(G) = = ((Pa(G)H5(G)) — pa(G)pj(G)) ,

where po(G) = ) . exp(—iG - r;,) is the Fourier transform of the density operator.



Interaction Energy in Terms of the Structure Factor

Now IV, 0ste,—r) dR
TP (R)PdR

_ / / v ) — p(0)p(r')] [om(r — ') — vny] dr dr’

//vEr_r )o(x') dr i’

27
_ ]
Z Q’G|2 | +om | + Z ,(;|2p G),
G40

where p(r,r’) = <Zi¢j O(r —r;)d(r" — rj)> is the pair density.
First term: exchange-correlation energy (interaction of electrons with their XC holes).
Second term: Hartree energy (interaction of charge densities).



Coulomb Finite Size Errors

e Charge density and structure factor converge rapidly with system size; suggests that
finite-size errors are due to slow convergence of Ewald interaction.

e Taylor expansion of Ewald interaction:

1 2 4
vE(r)—vM:—+—7TrTWr+(’)< " ),

r 30 (5/3
where tensor W depends on the symmetry of the lattice.

e For large simulation cells first term dominates, but for typical cell sizes second term
is significant.

e Interaction between each electron and its XC hole should be 1/r.

e This is enforced in the model periodic Coulomb interaction.*

4L. M. Fraser et al., Phys. Rev. B 53, 1814 (1996); A. J. Williamson et al., Phys. Rev. B 55, R4851 (1997).



Model Periodic Coulomb Interaction (1)

e MPC interaction operator:

H., = —Zf r;, —7r;) +Z/ —r)— f(r; —r)] dr

17

1

~5 [ POR) olr — 1) = f(x 1) dr ',

where f(r) is 1/r treated within the minimum-image convention.

e Electron-electron interaction energy:

A 1

() = ° / o()p(xu(x — ') dr dr’

// r, 1) — p(r)p(r')] f(r — 1) dr dr’,

i.e. Hartree energy 4+ XC energy.



Model Periodic Coulomb Interaction (II)

The Hartree energy is calculated using the Ewald interaction while the exchange-
correlation energy is calculated using 1/r (within minimum-image convention).

Can avoid the need to know p exactly by replacing it with the approximate charge
density pa from a DFT or HF calculation.

The error due to this approximation is O(p—pa)?. Furthermore the operator (vg — f)
vanishes as the size of the simulation cell goes to infinity.

Ewald and MPC energies per particle are the same in the limit of large system size,
even if approximate charge density is used.



Model Periodic Coulomb Interaction (111)

e First term of MPC interaction is evaluated in real space, second term is evaluated in
reciprocal space and third term is a constant:

- _Zf + Z Z [|G‘2 fG] PA,GGZ‘G'PZ'

1%£] 1 G#0

4 X
5 — Ja PA GPA,G T fO,OA,oPA,O
; & LIGP 24

e Fourier coefficients fg are evaluated numerically. Requires care because f(r) diverges
at r = 0 and is non-differentiable at the boundary of the Wigner-Seitz cell.



Finite-Size Correction to the XC Energy (I)

e Charge density and hence Hartree energy converge rapidly with system size.
e Form of structure factor converges rapidly with system size.

e So the finite-size error in the Ewald interaction energy is°:

N S(k) — 27N S(G)—1 Nuy
A = — dk — —
v 472 k|2 Y G2 2
G0
N k
~ S( )dk

4m? p k[?

where D is a sphere of volume (27)2/€) centred on the origin.”

°S. Chiesa et al., Phys. Rev. Lett. 97, 076404 (2006).

%To see this, insert factors of exp(—e|k|?) and exp(—e|G|?) in the integrand and summand and choose k = 1/(2+/€)
in the Ewald expression for v ; finally take the limit e — O.



Finite-Size Correction to the XC Energy (Il)

S(k) o |k|? at small k, so AV is O(NY), i.e. error in interaction energy per particle
is O(N—1).

Finite-size correction is an alternative to using MPC. (Don't use both!)

Insert f(r) = vg(r) — vy — 20t Wr/(3Q) + ... into MPC XC energy; find that XC
correction AV arises from quadratic term.’

MPC is “perfect” if XC hole fits into sim. cell; adding AV to the Ewald energy is
then merely an approximation to the MPC; however, if XC hole does not fit into sim.
cell then MPC is not perfect and the finite-size correction can make use of known
form of S(k) at small k. Not yet clear which is best.

For a homogeneous electron gas, random phase approximation implies that S(k) =
k|?/(2w,) for small k, where w, = /47 N/Q is the plasma frequency.

Hence AV = w, /4 for a HEG.

"W. M. C. Foulkes, unpublished.



Finite-Size Correction to the XC Energy (ll1)

Results for a 3D electron gas, rs = 3 a.u.:

N EMPC — EEwald (a.u.) wp/(4N) (a.u.)

54 0.0015(1) 0.00154
102 0.0008(1) 0.000817
226 0.00037(6) 0.000369

Erwala is total SJ-DMC energy per particle obtained using Ewald interaction.
Eyipc is total SJI-DMC energy per particle obtained using MPC interaction.®

SEEwald was used in the branching factor in DMC, so the kinetic energy is the same in the two cases.



Finite-Size Correction to the Kinetic Energy (1)

The two-body correlations described by the Jastrow factor are long ranged.
They are restricted in a finite simulation cell: leads to bias in kinetic energy.
Correct for this by interpolating Fourier transformation of two-body Jastrow factor.’
Write U as the product of a long-ranged two-body Jastrow factor exp(uqz), which

has the periodicity of the simulation cell and inversion symmetry, and a part consisting
of everything else, W,:

v = Wgexp Z Zuaﬁ(ria - rjﬁ) + Z Zuaa(ria _ rja) ;

a>f i,j a 1>j

1 e
= Wsexp | o5 Y > uap(G)pi(G)ps(G) + K
a,B G#£0

9S. Chiesa et al., Phys. Rev. Lett. 97, 076404 (2006).



Finite-Size Correction to the Kinetic Energy (Il)

e "“TI" kinetic-energy estimator:

T(R) = _TlVQ log(W) = T( Z ua3(G Pe(G)ps(G)],
o, G#0

where T, = —V?1og(¥,(R))/4.
o Use V2 [05(G)ps(Q)] = ~2G? [74(G)ps(Q) — Nadins] to show that

(T) = Z GJ? Zuaﬁ (G)ps(G)) — ZNauaa(G

G;AO

e p.(k) is only nonzero for G vectors of the primitive lattice. Assuming the sum runs
only over small G,

(T) = (T,) + |G|22uaﬁ G) - I3 Nottan G

G#O G;éo



Finite-Size Correction to the Kinetic Energy (111)

Uao (k) has roughly the same form at different system sizes:

e 54 dlectrons
= 102 electrons

K°u(k) (a.u.)
N

226 €lectrons
-30 — RPA -
4% 1 2



Finite-Size Correction to the Kinetic Energy (1V)

e |n the infinite system limit, the sum over G should be replaced by an integral.

e |eading-order finite-size error is the omission of the G = 0 contribution in the third
term in the expression for (7).

e [ he finite-size correction is therefore

N D
AT = — a Atk? X k2o (k) dk
;4(%)3/0 k2 X k2T (k)

in 3D, where (k) is the spherical average of u(k) and D is the radius of a sphere of
volume (27)3 /<.



Finite-Size Correction to the Kinetic Energy (V)

Infinite-system “random phase approximation” Jastrow factor for same-spin electrons:

Uaa(k) = —4TA </€12 k24 11/ (2A)) |

where A is a parameter to be determined by fitting. Hence

N tan~! (ﬂD)

AT = 2 |[D-
47 V2A
= A o)

so the error in the KE per particle falls off as O(N 1),

e Homogeneous electron gas has A = 1/w,, where w,, is the plasma frequency.

e Hence leading-order correction to the KE is AT = w,/4 for a HEG.



Example: Finite-Size Errors in a 3D HEG

DMC results for a 3D electron gas, r; = 3 a.u. (using twist averaging and a Slater—

Jastrow wave function):
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a » MPC (corr.)
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Correction: w,/(2N) for Ewald data and w,/(4N) for MPC data.



Conclusions

e QMC simulations of periodic systems suffer from finite-size errors.
e Finite-size errors must be accounted for in any QMC study of condensed matter.

e Methods for dealing with finite-size errors (use appropriate combinations of these):

Use a large finite simulation cell!

Twist average to reduce single-particle finite-size errors.

Extrapolate to infinite system size using fitting formulae.

Use MPC interaction to reduce Coulomb finite-size biases.

Add corrections to the kinetic and potential energy to account for differences
between finite- and infinite-system two-body Jastrow factor and structure factor.

ok

e Can usually expect reasonable cancellation of finite-size biases when energy differences
are taken.



