Fixed-node methods and geminal nodes
(or Topology of fermion nodes and pairing
wavefunctions)

Lubos Mitas

North Carolina State University
Urbana, July 2007

. [
NC STATE UNIVERSITY 5 @1_ Lubos_Mitas@ncsu.edu
- .:' v



Hmmm, fermion nodes

Fermion nodes is a challenging, rather advanced topic. Why ?

- essentially the only key approximation for QMC to scale as
a low-order polynomial in the number of particles

- different ideas, tools and language from typical electronic structure

- seem hopelessly complicated, difficult to improve, unsolved problem
but

- recently, some progress in understanding the properties of f.n.

- a few ideas and successes how to improve the nodes of wavefunctions

- perhaps even fundamental connections with physical properties
Llubos Mitas@ncsu.edu



Outline of this talk

- fermion sign problem and fixed-node approximation, toy model
- beyond fixed-node approximation: accuracy!

- properties of fermion nodes

- fermion nodes and nodal cells: importance of topology

- two-nodal cells of generic fermionic ground states

- single-particle vs pairing orbital wavefunctions

- relevance of pfaffians and their properties

- pfaffian calculations
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DMC method in a nutshell

DMC is a stochastic realization of projection of the (ground) state in
imaginary time (projection parameter)

(R, t)=exp(—tH)y+(R)
_atqj<R’t>:H([j(R1t>
v (R,t+7)=[ G(R,R",7)y¢(R",t)dR’

Wave function can be sampled and the equation solved by

interpreting the Green's functions as a transition probability

density: simulation of an equivalent stochastic process ->
essentially an exact mapping
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Toy model: 1D harmonic oscillator

H=T+V(X) v

(ljlnlt ' '
Propagator
G(x,x',T) - ©
v
—(x=x"\’12T —(V(x)-
Ce ™™ T-e((\> o ®
diffusion renorm
(ljground A
Lubos Mitas@ncsu.edu



But wavefunctions is both + and -: statistics
suffers from the fermion sign problem

Naive approach for fermionic wave functions: decompose to + and -

y+(R)=y1(R)—wi(R)
—0,y (R, t)=Hy (R,t)
-0, (R,t)=Hy (R,t)

Unfortunately, + and - components converge independently to the
lowest energy solution (which is bosonic) because Schr. eq. is linear!

M/K\ T~

Iimt—>oo (lj+(R’t)_ |imt—>oo (lj-<R’t> oC exp[_(EFermi_EBoson)t]

Fermion "signal"” decays exponentially quickly into a bosonic "noise"
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Importance sampling and fixed-node diffusion Monte
Carlo (FNDMC)

f(R,t+7)=] G'(R,R",7)f(R",1)dR'’

f(R,t)=y:(R)$(R,1), Yr=Wyee " =det(¢, | det{ep;] €’
Rlexp(—TH)|R’'|
(IJT(R)LI/T<R)

f(R,t=o0) o ¢7(R)bgom(R) G (R,R',7)=

Fermion node: (3N-1)-dimen. hypersurface defined as CP(rl, [y, rN)—O

Fixed-node (FN) approximation: f(R,t)>0

- antisymmetry (nonlocal) replaced by a boundary (local)
- exact node implies recovering exact energy (in polynomial time)

Accuracy quite high: energy differences within a few % of experiment
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Fermion node toy model: excited state of
harmonic oscillator

V(x)=x°
H=T+V(x)
Wit (X) T !
Propagator
G(x,X,7) , ALre
v
Ce—(X—X')Z/ZT.e—<V(X)—ET)T T 1 ®

/ \

diffusion renorm
+ boundary condition . (X) node\
(evaluate trial function) excit

Assuming you know where the node is! Lubos Mitas@nosu.edu




Propagator with importance sampling using
a trial function

f(R,t+7)=] G'(R,R",7)f(R",1)dR"

. Riexp(—TtH)|R'
Propagator G (R,R',T):< | p<. — >| >
¢+(R")y: (R)
drift term
..which for a small time slice tau is /

G(R,R',7)=Cexp[-(R-R'=t VIny-(R"))/27]X
x exp|—(E, (R)+E, (R')—2E,)t/2]+0(7’)

where EL(R):[H (IJT(R)]/(I/T(R) is the local energy

- node naturally enforced by divergence of the drift at the node

NC STATE UNIVERSITY Lubos Mitas@ncsu.edu



Role of drift in the fixed-node DMC walker evolution:
pushes away from the node

drift: TViny(R)

diverges at the node R—node: 7ViIny(R)—w

diffusion

walker
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Fixed-node approximation (assumes that
reasonably accurate nodes can be
constructed)

- bosonization of the fermionic problem

- important (funadmental) approximation:

antisymmetry -> boundary condition
(nonlocal) (local)

- fermion node is (3N-1)-dim hyper -
surface:

- easy to enforce (check the sign of
the determinant)

Green surface: 3D cut of
59-dimensional fermion node
hypersurface

- difficult to parametrize with arbitrary
accuracy (more on that later)
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Beyond the fixed-node DMC: higher accuracy
heeded for magnetism, superconductivity, etc
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which work
here ???
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Fermion node: manifold of configurations for which
the wave function vanishes
Key approximation in quantum Monte Carlo

f(R,t+7)= | G'(R,R",7)f(R",t)dR'

QMC solves the Schrodinger eq.
f(Rit_)oo>:qurial(R)(bground(R)

Fixed-node approximation: f(R,t)>0 (boundary replaces antisymmetry)

[ Fermion node: d)(rl,rz,...,rN):O (DN-1)-dimen. hypersurface]

[ Exact node -> exact energy in polynomial time |

Find the exact node, in general: difficult multi-D many-body problem!
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Antisymmetry/fermion sign problem and fixed-node
approximation: strategies to deal with the nodes

"Sample-it-out”: - nodal realease (Ceperley '80s)

- walker pairing algorithms (Kalos '90s)
- transform into another space
(Hubbard -Stratonovitch) ...

“Capture the nodes/physics”:

- more sophisticated wavefunctions
- backflow

- pair orbitals, pfaffians, ...

“Understand the nodes”: - general properties h
- cases of exact nodes (special)
- way to describe, simplify
- new insights, something more
L fundamental (?) )
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Focus on fermion nodes:
How much do we know ?

¢(ry,ryy .., ry)=0 -> (DN-1)-dim. smooth manifold divides the space
into cells/domains with constant wf. sign (“+” or “- )

- 1D systems, ground state node known exactly: N! domains
- 3D, special cases of 2e,3e atoms known exactly: 2 domains

Tiling property for nondegenerate ground states (Ceperley '92):
Let G(R,)— nodal cell /domainaround R, P — particle permutation

Can show that ZPP[G(RO)] = wholeconfiguration space

(

.

However, it does not say how many domains are there ?2?27?

But that is the key question: the nodal topology!
Also, we want to know:

- accurate nodal shapes ? how complicated are they ?
- nodes <-> types of wavefunctions ?
- nodes <-> physical effects ?

J
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Conjecture: for d >1 ground states have only two

nodal cells, one “+” and one “-

Numerical proof: 200 noninteracting fermions in 2,3D (Ceperley '92):

For a given ¢(R) find a point such that triple exchanges connect all
the particles into a single cluster: then there are only two nodal cells

All-particle 'N
configuration ri

space

2

(Why ? Connected cluster of triple exchanges exhausts all even/odd
permutations + tiling property -> no space left)

[ Conjecture unproven even for noninteracting particles!!! J
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Explicit proof of two nodal cells for spin-polarized
noninteracting 2D harmonic fermions of any size:
Step 1 -> Wavefunction factorization
Place fermions on a Pascal-like triangle y4

M lines -> N,,=(M+1)(M+2)/2 fermions (closed shell)

Wavefunction factorizes by “lines of particles”:

(IJM(]-’"’NM):Cgaussdet[liX1y’X21Xy’y21'"]: +- -X>
El EM—l EM

|,j€|§1

=¥u-t(Lo NM/I‘fl) 1_[i<j <yj;yi)H1<k<M (&—E)"

_ lines coords
particle coords

Factorizable along vertical, horizontal or diagonal lines, recursive.
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Explicit proof of two nodal cells for spin-polarized
harmonic fermions: Step 2 -> Induction

Ny
e
4 M-M+1 “lines” particles
f —_— factorized - connected
assume out . /
particles
connected \'(‘)_._"

by exchanges

0099

Therefore all particles connected, any size. Q.E.D.
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The key points of the proof generalize to other
paradigmatic models and arbitrary d>1

(True for any model which transforms to homog. polynomials! )

- fermions in a periodic box ¢ __(x,y)=€"™*"™=2"w"

2D, 3D
- fermions on a sphere surface Y|m(9,¢)=(0039)n(8in9€i¢)m
- fermions in a box bu(X,Y)=8in(x)sin(y)U,_;(p)U,,,(q)

homeomorphic variable map: p=cos(x), g=cos(y) — p "

(Works for any d>1: factorization along lines, planes, hyperplanesa
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Two nodal cells theorem: generic (and fundamental)
property of fermionic ground states of many models

r w
Two nodal cells theorem. Consider a spin-polarized system

with a closed-shell ground state given by a Slater determinant
times an arbitrary prefactor (which does not affect the nodes)

Weaa=C(L,....N)det{¢;(j)] |

Let the Slater matrix elements be monomials X.'Y."Z
of positions or their homeomorphic maps in d>1.

. Then the wavefunction has only two nodal cells. )

Can be generalized to some open shells, to nonpolynomial
cases such as HF wavefunctions of atomic states, etc.
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What if matrix elements are not monomials ?
Atomic states (different radial factors for subshells):
Proof of two cells for nonint. and HF wavefunctions

- position subshells of electrons onto spherical surfaces:
Wie= W1V o0 Wagrig

- exchanges between the subshells: simple numerical proof up
to size 15S(1s2s2p33s3p33d>5) and beyond (n=4 subshell)

123 -> 312
326 -> 632
=2
0 ,
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For noninteracting/HF systems adding another spin
channel or imposing additional symmetries generate
more nodal cells

Unpolarized nonintenracting/HF systems: 2*2=4 nodal cells!!!
-> product of two independent Slater determinants

(//HF:detT{qba}detl{qbﬁ}

- in general, imposing symmetries generates more nodal cells:

the lowest quartet of S symmetry 4S(15253s) has six nodal cells

r ™
What happens when interactions are switched on ?

“Nodal/topological degeneracy” is lifted and multiple
nodal cells fuse into the minimal two again!

. /

First time showed on the case of Be atom, Bressanini etal '03
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Sketch the proof idea on a singlet of interacting
harmonic fermions using the BCS wave function

Example: 6 harmonic 2D fermions in the singlet ground state.
Rotation by 1™ exchanges particles in .
each spin channel: positioned on HF node

—detT[ <'>]det¢[ <m=
ety vl |=det[ ¢l (i,])]=0 >0

BCS pair orbital -> add correlations:

becsli )=y 1)+ & b (1) :
"virtuals from the first unoccupied subshell

[ (//Bcs:det{d%t:s(i 7j)}:0‘rarbcos<¢>[2<rarbCOS((b))z—I‘z—ri];éO J
|

BCS wavefunction is nonvanishing for arbitrary weak interaction!
Lubos Mitas@ncsu.edu




Correlation in the BCS wavefunction is enough to fuse
the noninteracting four cells into the minimal two

Arbitrary size: position
the particles on HF node
(wf. is rotationally invariant)

HF pairing (sum over occupieds, linear dependence in Sl. dets)
e=det[w,(i)]det[w,(j)]=det|>, _ w,(i)w,(j)]=det[pyei,j)]=0

CBCS pairing (sum over occupieds and virtuals, eliminate lin. dep.)}

bcsliz])=dpe(] ’j)+o‘zn’m>,\| ComWnll)Win(])
Ypcs=det| pges(i, j)|#det|w (i) det| g (j)] - LIJBCS;'&O
Llubos Mitas@ncsu.edu




Effect of correlation in homogeneous electron gas:
singlet pair of e- winds around the box without
crossing the node

Wavefunction along the winding

rt=r gl+offset, i=1..5 ~  path
oo i
Co——*;-—-—}':-‘,?—‘o
-
ol-iene : ................. 'r ........
i
®, 0
s i
& 0 g X

0
(Xy + Xg )/2
HF crosses the node multiple times, BCS does not (supercond.)
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The same is true for the nodes of
temperature/imaginary time density matrix

Analogous argument applies to temperature density matrix

p(RR',B)=2. exp[—BE, |y, (R)y, (R
fix R',§ -> nodes/cells inthe R subspace

High (classical) temperature: p(R,R', 8)=C,det {exp[—(r,—r".)’/2 ]}

N
enables to prove that R and R' subspaces have only two nodal
cells. Stunning: sum over the whole spectrum!!!
kL.M. PRL, 96, 240402; cond-mat/0605550

J

4 )
The next problem: more efficient description of nodal shapes.

Calls for better description of correlations -> pfaffians ...
\. J
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Let us introduce a pfaffian: signed sum of all distinct
pair partitions (Pfaff, Cayley ~ 1850)

pf[aij]zzp(—1)Pai1jl...aiNjN, <jo k=1..,N

Example: pfaffian of a skew-symmetric matrix

0 dy, diz Ay
—dy, 0 dy; Ay

pf =d 8y~ Ay3ay, T A,y
—dj3 —dy 0 Ay,
__a14 —dy —dy O_
Signs: + - +
N S N N e~
1 2 3 4 1 2 3 4 1 2 3 4
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Relations of pfaffians and determinants

* For any square matrix B (nxn)

0 B

det (B)=(- >““pf[ .

* For any skew-symmetric matrix A (2nx2n)

det(A)=[pf(A)]*

* Any determinant can be written as pfaffian but not vice versa:
pfaffian is more general, determinant is a special case

Algebra similar to determinants: pfaffian can be expanded in
minors, evaluated by Gauss-like elimination directly, etc.
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Why is pfaffian useful ?
The simplest antisymmetric wavefunction constructed
from pair spinorbital!

' One-particle orbitals + antisymmetry -> Slater determinant/HF

. Wue=Alhy (X)) hy(X,)...] = det[h,(x;)] x=(r,o) 1,k=1...,N

" Pair orbital + antisymmetry -> pfaffian !!!

WPF:A[¢(X1’X2)¢(X3’X4)"']:pf[d)(Xi’Xj>] 1,]=1,...,2N )

.

Note: in the simplest case only one pair (spin)orbital

b (X, %)= (1, 1) (TL=LT) X (r,r ) () +X 7 (ry,r (L)X (1) (TL417)

symmetric/singlet antisymmetric/triplet
Lubos Mitas@ncsu.edu



Pfaffian special cases: for example, Bardeen-Cooper-
Schrieffer (BCS) wavefunction

Antisymmetized product of singlet pair orbitals ¢ (i, ])
Wees= Al (i, ])]=det|p(i,])]
- supeconductivity, BEC; Casula, Sorella etal '04 for atoms
Problem with spin-polarized cases: N'=n while N'=n+m

Wacs=AlP(L,n)...¢(n,2n)xh,(2n+1)...h_(2n+m)]

where h (i) are one-particle orbitals

- fully spin-polarized state trivially recovers Hartree-Fock,
pair correlations gone :-(

Wacs=Alh(i)|=det[h(i)|=y
Lubos Mitas@ncsu.edu



Pfaffian wavefunctions with both singlet and triplet
pairs (beyond BCS!) -> all spin states treated
consistently: simple, elegant

XTT (l)Tl (I/T
(,UpF:pf _(leT Xll (ljl >< eXp[UCOH]
_(IJTT _Llle O

- pairing orbitals expanded in one-particle basis
B(i,1)= 2, sl Nl Dy()+hy ()0, ()
X(i,1)=2,., eglhy i)y (1)=hy(i)h, ()]

- unpaired w(i)=Z(x c N (i)

- expansion coefficients and the Jastrow correlation optimized
(M.Bajdich, L.M., et al, PRL, 2006)
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DMC correlation energies of atoms, dimers
Pfaffians: more accurate and systematic than HF
while scalable (unlike ClI)

100}

[%]
©
L

E_corr

851
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Expansions in multiple pfaffians for first row atoms:
FNDMC ~ 98 % of correlation with a few pfaffians

Table of correlation energies [%] recovered: MPF vs Cl nodes

n= # of pfs/dets

WF n C n N n O
DMC/MPF 3 98.9 5 98.4 11 97.2
DMC/CI 98 99.3 85 98.9 136 98.4

- further generalizations: pairing with backflow coordinates,
independent pairs, etc (talk by M. Bajdich, V21.11)

[Pfaffians describe nodes more efficiently J
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Nodes of different WFs (%E_corr in DMC):
oxygen atom wavefunction scanned by 2e- singlet

(projection into 3D -> node subset)
HF (94.0(2)%) MPF (97.4(1)%) Cl1 (99.8(3)%)




Summary

- fixed-node approximation: in most cases the most accurate
and practical electronic structure method around; to reach
beyond one needs to understand the properties of nodes

- explicit proof of two nodal cells for d>1 and for any size:
fundamental property of fermionic ground states

- antisymmetrized pair spinorbital wavefunction: pfaffian

- nodal shapes subtle: ~ 5 % of correlation energy;
pfaffian: compact, has the right topology

- fermion nodes: another example of importance of quantum
geometry and topology for electronic structure
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Observations from comparison of HF and “exact” (Cl)
nodes

- the two nodal cells for
Coulomb interactions as well

- the nodal openings have very
fine structure: ~ 5% of E_corr

- although topologically incorrect,
away from openings the HF nodes CI
unexpectedly close to exact
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