# Fixed-node methods and geminal nodes (or Topology of fermion nodes and pairing wavefunctions)



**Lubos Mitas North Carolina State University** 

Urbana, July 2007



#### **Hmmm**, fermion nodes

Fermion nodes is a challenging, rather advanced topic. Why?

- essentially the only key approximation for QMC to scale as a low-order polynomial in the number of particles
- different ideas, tools and language from typical electronic structure
- seem hopelessly complicated, difficult to improve, unsolved problem but
- recently, some progress in understanding the properties of f.n.
- a few ideas and successes how to improve the nodes of wavefunctions
- perhaps even fundamental connections with physical properties

#### **Outline of this talk**

- fermion sign problem and fixed-node approximation, toy model
- beyond fixed-node approximation: accuracy!
- properties of fermion nodes
- fermion nodes and nodal cells: importance of topology
- two-nodal cells of generic fermionic ground states
- single-particle vs pairing orbital wavefunctions
- relevance of pfaffians and their properties
- pfaffian calculations



#### DMC method in a nutshell

DMC is a stochastic realization of projection of the (ground) state in imaginary time (projection parameter)

$$\psi(\mathbf{R}, t) = \exp(-tH)\psi_{T}(\mathbf{R})$$

$$-\partial_{t}\psi(\mathbf{R}, t) = H\psi(\mathbf{R}, t)$$

$$\psi(\mathbf{R}, t+\tau) = \int G(\mathbf{R}, \mathbf{R}', \tau)\psi(\mathbf{R}', t)d\mathbf{R}'$$

Wave function can be sampled and the equation solved by interpreting the Green's functions as a transition probability density: simulation of an equivalent stochastic process -> essentially an exact mapping



#### Toy model: 1D harmonic oscillator

$$H = T + V(x)$$

### $V(x)=x^2$

#### **Propagator**

$$G(x, x', \tau)$$

$$\downarrow$$

$$Ce^{-(x-x')^2/2\tau} \cdot e^{-(V(x)-E_T)\tau}$$
diffusion renorm





### But wavefunctions is both + and -: statistics suffers from the fermion sign problem

Naïve approach for fermionic wave functions: decompose to + and -

$$\psi_{T}(\mathbf{R}) = \psi_{T}^{+}(\mathbf{R}) - \psi_{T}^{-}(\mathbf{R})$$

$$-\partial_{t}\psi^{+}(\mathbf{R},t) = H\psi^{+}(\mathbf{R},t)$$

$$-\partial_{t}\psi^{-}(\mathbf{R},t) = H\psi^{-}(\mathbf{R},t)$$

Unfortunately, + and - components converge independently to the lowest energy solution (which is bosonic) because Schr. eq. is linear!



$$\lim_{t\to\infty} \psi^+(\boldsymbol{R},t) - \lim_{t\to\infty} \psi^-(\boldsymbol{R},t) \propto \exp[-(E_{Fermi} - E_{Boson})t]$$

Fermion "signal" decays exponentially quickly into a bosonic "noise"

### Importance sampling and fixed-node diffusion Monte Carlo (FNDMC)

$$f(\mathbf{R}, t+\tau) = \int G^*(\mathbf{R}, \mathbf{R}', \tau) f(\mathbf{R}', t) d\mathbf{R}'$$

$$f(\mathbf{R},t) = \psi_T(\mathbf{R})\phi(\mathbf{R},t),$$

$$\psi_T = \psi_{HF} e^{U_{corr}} = det\{\phi_{\alpha}\} det\{\phi_{\beta}\} e^{U_{corr}}$$

$$f(\mathbf{R}, t \rightarrow \infty) \propto \psi_T(\mathbf{R}) \phi_{ground}(\mathbf{R})$$

$$G^{*}(\boldsymbol{R}, \boldsymbol{R}', \tau) = \frac{\langle \boldsymbol{R} | \exp(-\tau H) | \boldsymbol{R}' \rangle}{\psi_{T}(\boldsymbol{R}') \psi_{T}^{-1}(\boldsymbol{R})}$$

Fermion node: (3N-1)-dimen. hypersurface defined as  $\phi(r_1, r_2, ..., r_N)=0$ 

Fixed-node (FN) approximation:  $f(\mathbf{R}, t) > 0$ 

- antisymmetry (nonlocal) replaced by a boundary (local)
- exact node implies recovering exact energy (in polynomial time)

Accuracy quite high: energy differences within a few % of experiment



### Fermion node toy model: excited state of harmonic oscillator

$$H = T + V(x)$$



#### **Propagator**

$$G(x, x', \tau)$$

$$Ce^{-(x-x')^2/2\tau} \cdot e^{-(V(x)-E_T)\tau}$$



+ boundary condition (evaluate trial function)



### Propagator with importance sampling using a trial function

$$f(\mathbf{R}, t+\tau) = \int G^*(\mathbf{R}, \mathbf{R}', \tau) f(\mathbf{R}', t) d\mathbf{R}'$$

**Propagator** 

$$G^{*}(\boldsymbol{R}, \boldsymbol{R}', \tau) = \frac{\langle \boldsymbol{R} | \exp(-\tau H) | \boldsymbol{R}' \rangle}{\psi_{T}(\boldsymbol{R}') \psi_{T}^{-1}(\boldsymbol{R})}$$

...which for a small time slice tau is



$$G(R, R', \tau) = C \exp\left[-(R - R' - \tau \nabla \ln \psi_T(R'))^2 / 2\tau\right] \times \exp\left[-(E_L(R) + E_L(R') - 2E_T)\tau / 2\right] + O(\tau^3)$$

where 
$$E_I(R) = [H\psi_T(R)]/\psi_T(R)$$
 is the local energy

- node naturally enforced by divergence of the drift at the node

### Role of drift in the fixed-node DMC walker evolution: pushes away from the node

drift:  $au \nabla \ln \psi_T(R)$ 

diverges at the node

 $R \rightarrow node: \ \tau \nabla \ln \psi_T(R) \rightarrow \infty$ 



# Fixed-node approximation (assumes that reasonably accurate nodes can be constructed)

- bosonization of the fermionic problem
- important (funadmental) approximation:
  - antisymmetry -> boundary condition (nonlocal) (local)
- fermion node is (3N-1)-dim hyper surface:
  - easy to enforce (check the sign of the determinant)
- difficult to parametrize with arbitrary accuracy (more on that later)



Green surface: 3D cut of 59-dimensional fermion node hypersurface

### Beyond the fixed-node DMC: higher accuracy needed for magnetism, superconductivity, etc



Methods
which work
here ???
(beyond the
fixed-node ...)

- agree with exper: ~ 1-2%



## Fermion node: manifold of configurations for which the wave function vanishes Key approximation in quantum Monte Carlo

QMC solves the Schrodinger eq.

$$f(\mathbf{R}, t+\tau) = \int G^{*}(\mathbf{R}, \mathbf{R}', \tau) f(\mathbf{R}', t) d\mathbf{R}'$$
$$f(\mathbf{R}, t \to \infty) = \psi_{Trial}(\mathbf{R}) \phi_{ground}(\mathbf{R})$$

Fixed-node approximation:  $f(\mathbf{R}, t) > 0$  (boundary replaces antisymmetry)

Fermion node:  $\phi(r_1, r_2, ..., r_N) = 0$  (DN-1)-dimen. hypersurface

**Exact node** -> **exact energy in polynomial time** 

Find the exact node, in general: difficult multi-D many-body problem!



#### Antisymmetry/fermion sign problem and fixed-node approximation: strategies to deal with the nodes

"Sample-it-out":

- nodal realease (Ceperley '80s)
- walker pairing algorithms (Kalos '90s)
- transform into another space (Hubbard -Stratonovitch) ...

#### "Capture the nodes/physics":

- more sophisticated wavefunctions
- backflow
- pair orbitals, pfaffians, ...

"Understand the nodes": - general properties

- cases of exact nodes (special)
- way to describe, simplify
- new insights, something more fundamental (?)

### Focus on fermion nodes: How much do we know?

 $\phi(r_1,r_2,...,r_N)=0$  -> (DN-1)-dim. smooth manifold divides the space into cells/domains with constant wf. sign ("+" or "-")

- 1D systems, ground state node known exactly: N! domains
- 3D, special cases of 2e,3e atoms known exactly: 2 domains

Tiling property for nondegenerate ground states (Ceperley '92):

Let  $G(R_0) \rightarrow nodal \ cell \ l \ domain \ around \ R_0$   $P \rightarrow particle \ permutation$  Can show that  $\sum_P P[G(R_0)] = whole \ configuration \ space$ 

However, it does not say how many domains are there ??? But that is the key question: the nodal topology! Also, we want to know:

- accurate nodal shapes? how complicated are they?
- nodes <-> types of wavefunctions?
- nodes <-> physical effects?

### Conjecture: for d >1 ground states have only two nodal cells, one "+" and one "-"

Numerical proof: 200 noninteracting fermions in 2,3D (Ceperley '92):

For a given  $\phi(R)$  find a point such that triple exchanges connect all the particles into a single cluster: then there are only two nodal cells



(Why? Connected cluster of triple exchanges exhausts all even/odd permutations + tiling property -> no space left)

Conjecture unproven even for noninteracting particles!!!



## Explicit proof of two nodal cells for spin-polarized noninteracting 2D harmonic fermions of any size: Step 1 -> Wavefunction factorization

Place fermions on a Pascal-like triangle

M lines ->  $N_M = (M+1)(M+2)/2$  fermions (closed shell)

Wavefunction factorizes by "lines of particles":

$$\psi_{M}(1,...,N_{M}) = C_{gauss} det[1,x,y,x^{2},xy,y^{2},...] = \begin{cases} \psi_{M-1}(1,...,N_{M}/I_{\xi_{1}}) \prod_{i< j}^{i,j \in I_{\xi_{i}}} (y_{j}-y_{i}) \prod_{1< k \leq M} (\xi_{k}-\underline{\xi_{1}})^{n_{k}} \end{cases}$$

$$= \psi_{M-1}(1,...,N_{M}/I_{\xi_{1}}) \prod_{i< j}^{i,j \in I_{\xi_{i}}} (y_{j}-y_{i}) \prod_{1< k \leq M} (\xi_{k}-\underline{\xi_{1}})^{n_{k}}$$
lines coords
particle coords

Factorizable along vertical, horizontal or diagonal lines, recursive.

### Explicit proof of two nodal cells for spin-polarized harmonic fermions: Step 2 -> Induction



Therefore all particles connected, any size. Q.E.D.

NC STATE UNIVERSITY

### The key points of the proof generalize to other paradigmatic models and arbitrary d>1

#### True for any model which transforms to homog. polynomials!

- fermions in a periodic box  $\phi_{nm}(x,y)=e^{i(nx+my)}=z^nw^m$  2D, 3D
- fermions on a sphere surface  $Y_{lm}(\theta, \phi) = (\cos \theta)^n (\sin \theta e^{i\phi})^m$
- fermions in a box  $\phi_{nm}(x,y) = \sin(x)\sin(y) U_{n-1}(p) U_{m-1}(q)$

homeomorphic variable map: p = cos(x),  $q = cos(y) \rightarrow p^m q^n$ 

Works for any d>1: factorization along lines, planes, hyperplanes!

### Two nodal cells theorem: generic (and fundamental) property of fermionic ground states of many models

Two nodal cells theorem. Consider a spin-polarized system with a closed-shell ground state given by a Slater determinant times an arbitrary prefactor (which does not affect the nodes)

$$\psi_{exact} = C(1,...,N) det \{\phi_i(j)\}$$

Let the Slater matrix elements be monomials  $x_i^n y_i^m z_i^l \dots$  of positions or their homeomorphic maps in d>1.

Then the wavefunction has only two nodal cells.

Can be generalized to some open shells, to nonpolynomial cases such as HF wavefunctions of atomic states, etc.

#### What if matrix elements are not monomials? **Atomic states (different radial factors for subshells):** Proof of two cells for nonint, and HF wavefunctions

- position subshells of electrons onto spherical surfaces:

$$\psi_{HF} = \psi_{1s} \psi_{2s2p^3} \psi_{3s3p^3d^5} \dots$$

- exchanges between the subshells: simple numerical proof up to size  $^{15}S(1s2s2p^33s3p^33d^5)$  and beyond (n=4 subshell)





## For noninteracting/HF systems adding another spin channel or imposing additional symmetries generate more nodal cells

Unpolarized nonintenracting/HF systems: 2\*2=4 nodal cells!!!

-> product of two independent Slater determinants

$$\psi_{HF} = det^{\uparrow} \{\phi_{\alpha}\} det^{\downarrow} \{\phi_{\beta}\}$$

- in general, imposing symmetries generates more nodal cells: the lowest quartet of S symmetry <sup>4</sup>S(1s2s3s) has six nodal cells

What happens when interactions are switched on?

"Nodal/topological degeneracy" is lifted and multiple nodal cells fuse into the minimal two again!

First time showed on the case of Be atom, Bressanini etal '03



### Sketch the proof idea on a singlet of *interacting* harmonic fermions using the BCS wave function

Example: 6 harmonic 2D fermions in the singlet ground state.

Rotation by  $\pi$  exchanges particles in each spin channel: positioned on HF node

$$\psi_{HF} = \det^{\uparrow} [\psi_{n}(i)] \det^{\downarrow} [\psi_{n}(j)] =$$

$$= \det [\sum_{n}^{N} \psi_{n}^{\uparrow}(i) \psi_{n}^{\downarrow}(j)] = \det [\phi_{HF}^{\uparrow\downarrow}(i,j)] = 0$$



$$\phi_{BCS}^{\uparrow\downarrow}(i,j) = \phi_{HF}^{\uparrow\downarrow}(i,j) + \alpha \phi_{corr}^{\uparrow\downarrow}(i,j)$$

virtuals from the first unoccupied subshell



$$\psi_{BCS} = det\{\phi_{BCS}^{\uparrow\downarrow}(i,j)\} = \alpha r_a r_b \cos(\phi) [2(r_a r_b \cos(\phi))^2 - r_a^2 - r_b^2] \neq 0$$

BCS wavefunction is nonvanishing for arbitrary weak interaction!

### Correlation in the BCS wavefunction is enough to fuse the noninteracting four cells into the minimal two

Arbitrary size: position the particles on HF node (wf. is rotationally invariant)



HF pairing (sum over occupieds, linear dependence in Sl. dets)

$$\psi_{\mathit{HF}} = det[\psi_{\mathit{n}}(i)] det[\psi_{\mathit{n}}(j)] = det[\sum_{n \leq N} \psi_{\mathit{n}}(i) \psi_{\mathit{n}}(j)] = det[\phi_{\mathit{HF}}(i,j)] = 0$$

BCS pairing (sum over occupieds and virtuals, eliminate lin. dep.)

$$\begin{split} \phi_{BCS}(i,j) &= \phi_{HF}(i,j) + \alpha \sum_{n,m>N} c_{nm} \psi_n(i) \psi_m(j) \\ \psi_{BCS} &= \det[\phi_{BCS}(i,j)] \neq \det[\psi_{nm}(i)] \det[\psi_{nm}(j)] \quad \rightarrow \quad \psi_{BCS} \neq 0 \end{split}$$

## Effect of correlation in homogeneous electron gas: singlet pair of e- winds around the box without crossing the node

### Wavefunction along the winding path







HF crosses the node multiple times, BCS does not (supercond.)

### The same is true for the nodes of temperature/imaginary time density matrix

Analogous argument applies to temperature density matrix

$$\rho(R, R', \beta) = \sum_{\alpha} \exp[-\beta E_{\alpha}] \psi *_{\alpha}(R) \psi_{\alpha}(R')$$

fix R',  $\beta$  -> nodes/cells in the R subspace

High (classical) temperature:  $\rho(R, R', \beta) = C_N det \{ \exp[-(r_i - r'_j)^2/2\beta] \}$ 

enables to prove that R and R' subspaces have only two nodal cells. Stunning: sum over the whole spectrum!!!

L.M. PRL, 96, 240402; cond-mat/0605550

The next problem: more efficient description of nodal shapes. Calls for better description of correlations -> pfaffians ...

### Let us introduce a pfaffian: signed sum of all distinct pair partitions (Pfaff, Cayley ~ 1850)

$$pf[a_{ij}] = \sum_{P} (-1)^{P} a_{i_1 j_1} ... a_{i_N j_N}, \quad i_k < j_k, \quad k = 1, ..., N$$

Example: pfaffian of a skew-symmetric matrix

$$pf\begin{bmatrix} 0 & a_{12} & a_{13} & a_{14} \\ -a_{12} & 0 & a_{23} & a_{24} \\ -a_{13} & -a_{23} & 0 & a_{34} \\ -a_{14} & -a_{24} & -a_{34} & 0 \end{bmatrix} = a_{12}a_{34} - a_{13}a_{24} + a_{14}a_{23}$$

Signs: +

1 2 3 4





#### Relations of pfaffians and determinants

For any square matrix B (nxn)

$$det(B) = (-1)^{n(n-1)/2} pf \begin{bmatrix} 0 & B \\ -B^T & 0 \end{bmatrix}$$

For any skew-symmetric matrix A (2nx2n)

$$det(A) = [pf(A)]^2$$

 Any determinant can be written as pfaffian but not vice versa: pfaffian is more general, determinant is a special case

Algebra similar to determinants: pfaffian can be expanded in minors, evaluated by Gauss-like elimination directly, etc.

#### Why is pfaffian useful? The simplest antisymmetric wavefunction constructed from pair spinorbital!

One-particle orbitals + antisymmetry -> Slater determinant/HF

$$\psi_{HF} = A[h_1(x_1)h_2(x_2)...] = det[h_k(x_i)] \qquad x_i = (r_i, \sigma_i) \qquad i, k = 1,..., N$$

$$x_i = (r_i, \sigma_i)$$

$$i, k = 1, ..., N$$

Pair orbital + antisymmetry -> pfaffian !!!

$$\psi_{PF} = A[\phi(x_1, x_2)\phi(x_3, x_4)...] = pf[\phi(x_i, x_j)]$$

$$i, j = 1, ..., 2N$$

Note: in the simplest case only one pair (spin)orbital

$$\phi\left(x_{i},x_{j}\right)=\phi^{\uparrow\downarrow}(r_{i},r_{j})(\uparrow\downarrow-\downarrow\uparrow)+\chi^{\uparrow\uparrow}(r_{i},r_{j})(\uparrow\uparrow)+\chi^{\downarrow\downarrow}(r_{i},r_{j})(\downarrow\downarrow)+\chi^{\uparrow\downarrow}(r_{i},r_{j})(\uparrow\downarrow+\downarrow\uparrow)$$



symmetric/singlet antisymmetric/triplet

### Pfaffian special cases: for example, Bardeen-Cooper-Schrieffer (BCS) wavefunction

Antisymmetized product of singlet pair orbitals  $\phi^{\uparrow\downarrow}(i,j)$ 

$$\psi_{BCS} = A[\phi(i,j)] = det[\phi(i,j)]$$

- supeconductivity, BEC; Casula, Sorella etal '04 for atoms

**Problem with spin-polarized cases:**  $N^{\downarrow} = n$  while  $N^{\uparrow} = n + m$ 

$$\psi_{BCS} = A \left[ \phi(1, n) ... \phi(n, 2n) \times h_1(2n+1) ... h_m(2n+m) \right]$$

where  $h_k(i)$  are one-particle orbitals

- fully spin-polarized state trivially recovers Hartree-Fock, pair correlations gone :-(

$$\psi_{BCS} = A[h_k(i)] = det[h_k(i)] = \psi_{HF}$$



## Pfaffian wavefunctions with both singlet and triplet pairs (beyond BCS!) -> all spin states treated consistently: simple, elegant

$$\psi_{PF} = pf \begin{bmatrix} \chi^{\uparrow\uparrow} & \phi^{\uparrow\downarrow} & \psi^{\uparrow} \\ -\phi^{\uparrow\downarrow T} & \chi^{\downarrow\downarrow} & \psi^{\downarrow} \\ -\psi^{\uparrow T} & -\psi^{\downarrow T} & 0 \end{bmatrix} \times \exp[U_{corr}]$$

- pairing orbitals expanded in one-particle basis

$$\begin{split} \phi(i,j) &= \sum_{\alpha \geq \beta} a_{\alpha\beta} \big[ h_{\alpha}(i) h_{\beta}(j) + h_{\beta}(i) h_{\alpha}(j) \big] \\ \chi(i,j) &= \sum_{\alpha > \beta} b_{\alpha\beta} \big[ h_{\alpha}(i) h_{\beta}(j) - h_{\beta}(i) h_{\alpha}(j) \big] \end{split}$$

- unpaired 
$$\psi(i) = \sum_{\alpha} c_{\alpha} h_{\alpha}(i)$$

- expansion coefficients and the Jastrow correlation optimized (M.Bajdich, L.M., et al, PRL, 2006)

## DMC correlation energies of atoms, dimers Pfaffians: more accurate and systematic than HF while scalable (unlike CI)



### Expansions in multiple pfaffians for first row atoms: FNDMC ~ 98 % of correlation with a few pfaffians

Table of correlation energies [%] recovered: MPF vs CI nodes

| WF      | n  | С    | n  | N    | n   | 0    |
|---------|----|------|----|------|-----|------|
| DMC/MPF | 3  | 98.9 | 5  | 98.4 | 11  | 97.2 |
| DMC/CI  | 98 | 99.3 | 85 | 98.9 | 136 | 98.4 |

- further generalizations: pairing with backflow coordinates, independent pairs, etc (talk by M. Bajdich, V21.11)

**Pfaffians describe nodes more efficiently** 

## Nodes of different WFs (%E\_corr in DMC): oxygen atom wavefunction scanned by 2e- singlet (projection into 3D -> node subset)



#### **Summary**

- fixed-node approximation: in most cases the most accurate and practical electronic structure method around; to reach beyond one needs to understand the properties of nodes
- explicit proof of two nodal cells for d>1 and for any size: fundamental property of fermionic ground states
- antisymmetrized pair spinorbital wavefunction: pfaffian
- nodal shapes subtle: ~ 5 % of correlation energy;
   pfaffian: compact, has the right topology
- fermion nodes: another example of importance of quantum geometry and topology for electronic structure



### Observations from comparison of HF and "exact" (CI) nodes

HF

 the two nodal cells for Coulomb interactions as well

- the nodal openings have very fine structure: ~ 5% of E\_corr

although topologically incorrect,
 away from openings the HF nodes CI unexpectedly close to exact



NC STATE UNIVERSITY