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Hmmm, fermion nodes 

Fermion nodes is a challenging, rather advanced topic. Why ? 

- essentially the only key approximation for  QMC to scale as 
  a low-order polynomial in the number of particles

- different ideas, tools and language from typical electronic structure

- seem hopelessly complicated, difficult to improve, unsolved problem 

 but 

- recently, some progress in understanding the properties of f.n.
  
- a few ideas and successes how to improve the nodes of wavefunctions

- perhaps even fundamental connections with physical properties
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Outline of this talk

- fermion sign problem and fixed-node approximation, toy model

- beyond fixed-node approximation: accuracy!

- properties of fermion nodes

- fermion nodes and nodal cells: importance of topology

- two-nodal cells of generic fermionic ground states
  
- single-particle vs pairing orbital wavefunctions

- relevance of pfaffians and their properties

- pfaffian calculations
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  DMC method in a nutshell
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DMC is a stochastic realization of projection of the (ground) state in
imaginary time (projection parameter)

R , t=∫G R , R ' ,R ' , t d R '

R , t =exp −tHT R 

−∂tR , t =HR , t 

 Wave function can be sampled and the equation solved by
 interpreting the Green's functions as a transition probability
 density: simulation of an equivalent stochastic process ->
                                 essentially an exact mapping



Toy model: 1D harmonic oscillator
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Propagator

G x , x ' ,



t

 diffusion 

init x

C e−x−x '2 /2⋅e−V x−ET

ground x

H=TV x

renorm

V x=x2



But wavefunctions is both + and -: statistics 
suffers from the fermion sign problem

Lubos_Mitas@ncsu.edu

 Naïve approach for  fermionic wave functions: decompose to + and -

Unfortunately,  + and - components converge independently to the 
lowest energy solution (which is bosonic) because Schr. eq. is linear! 

T R =T
+ R−T

- R

−∂t
+R , t =H+R , t 

 Fermion "signal" decays exponentially quickly into a bosonic "noise" 

lim t∞
+ R , t − lim t∞

-R , t   ∝  exp [−EFermi−EBoson t ]

−∂t
-R , t =H-R , t 

 +     -



Importance sampling and fixed-node diffusion Monte 
Carlo (FNDMC) 
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f R , t=∫G*R , R ' , f R ' , t d R '

f R , t∞  ∝  T Rground R

Fermion node: (3N-1)-dimen. hypersurface defined as                      

         
  Fixed-node (FN) approximation:                             
          
            - antisymmetry (nonlocal) replaced by a boundary (local)
            - exact node implies recovering exact energy (in polynomial time) 
           
   Accuracy quite high:  energy differences within a  few %  of experiment

G*R , R ' ,=
〈R∣exp −H∣R ' 〉
T R 'T

−1R 

f R , t 0

f R , t =T R R , t , T=HF eUcorr=det { }det {}e
Ucorr

r1 , r2 , ... , rN=0



Fermion node toy model: excited state  of 
harmonic oscillator
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Propagator

G x , x ' ,



t

init x

excit x

H=TV x
V x=x2

+ boundary condition
(evaluate trial function)

node
 diffusion 

C e−x−x '2 /2⋅e−V x−ET

renorm

Assuming you know where the node is!



Propagator with importance sampling using 
a trial function 
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Propagator 

...which  for a small time slice tau is

EL R =[HT R ]/T R where                                                            is the local energy

- node naturally enforced by divergence of the drift at the node 

G R , R ' ,=C exp [−R−R '−∇ lnT R '2 /2]×

 drift term

×exp [−EL R EL R '−2 ET/2]O 3

f R , t=∫G*R , R ' , f R ' , t d R '

G*R , R ' ,=
〈R∣exp −H∣R ' 〉
T R 'T

−1R



Role of drift in the fixed-node DMC walker evolution: 
pushes away from the node
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                                 drift:                      

    diverges at the node 

                                                                                           
         
                                drift

                         diffusion

        walker
  

∇ lnT R

Rnode : ∇ lnT R∞

 

+             _



Fixed-node approximation (assumes that 
reasonably accurate nodes can be 

constructed)

- bosonization of the fermionic problem

- important (funadmental) approximation: 

  antisymmetry   ->  boundary condition
     (nonlocal)                      (local)
 
- fermion node is (3N-1)-dim hyper -
  surface:

  - easy to enforce (check the sign of
                                 the determinant)

 - difficult to parametrize with arbitrary
   accuracy (more on that later)   

Green surface: 3D cut of 
59-dimensional fermion node 
hypersurface



Beyond the fixed-node DMC: higher accuracy 
needed for magnetism, superconductivity, etc
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 Fermion node: manifold of configurations for which 
the wave function vanishes

Key approximation in quantum Monte Carlo
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 f R , t=∫G*R , R ' , f R ' , t d R '

               

           
           QMC solves the Schrodinger eq.

          
          Fixed-node approximation:                    (boundary replaces antisymmetry)   

            
                 Fermion node:                                         (DN-1)-dimen. hypersurface 
                  
                        
                         Exact node       ->     exact energy in polynomial time

      

f R , t 0

f R , t∞=Trial R ground R

r1 , r2 , ... , rN=0

 Find the exact node, in general: difficult multi-D many-body problem!
 
 



Antisymmetry/fermion sign problem and fixed-node 
approximation: strategies to deal with the nodes
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”Sample-it-out”:            - nodal realease (Ceperley '80s)
                                        - walker pairing algorithms (Kalos '90s)
                                        - transform into another space 
                                          (Hubbard -Stratonovitch) ...

 “Capture the nodes/physics”: 
                                         - more sophisticated wavefunctions 
                                         - backflow 
                                         - pair orbitals, pfaffians, ...

 “Understand the nodes”:  - general properties
                                              - cases of exact nodes (special)
                                              - way to describe, simplify
                                              - new insights, something more
                                                 fundamental (?)  
   



Focus on fermion nodes:
How much do we know ?
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r1 , r2 , ... , rN=0                                         ->  (DN-1)-dim. smooth manifold divides the space
            into cells/domains with constant wf. sign (“+”  or  “- “)

            - 1D systems, ground state node known exactly: N! domains
            - 3D, special cases of 2e,3e atoms known exactly: 2 domains

          Tiling property for nondegenerate ground states (Ceperley '92):
           Let
           Can show that
  
             However, it does not say how many domains are there ??? 
             But that is the key question: the nodal topology!
             Also, we want to know:
                       -  accurate nodal shapes ?  how complicated are they ?
                       -  nodes <-> types of wavefunctions ?
                       -  nodes <-> physical effects ? 

         
  

G R0nodal cell /domain around R0 Pparticle permutation
∑P

P [G R0] = whole configuration space



Lubos_Mitas@ncsu.edu

 Conjecture: for d >1 ground states have only two 
nodal cells, one “+” and one “-”

  Numerical proof: 200 noninteracting fermions in 2,3D (Ceperley '92):

  For a given           find a point such that triple exchanges connect all 
  the particles into a single cluster: then there are only two nodal cells

                           

               +    _

  (Why ? Connected cluster of triple exchanges exhausts all even/odd 
               permutations + tiling property -> no space left)

                                     rN

    r1    

             r2

           All-particle
      configuration 
                   space

R 

 Conjecture unproven even for noninteracting particles!!! 
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Explicit proof of two nodal cells for spin-polarized 
noninteracting 2D harmonic fermions of any size:

Step 1 -> Wavefunction factorization

=M−11,. .. , NM / I1
∏i j

i , j∈I1 y j−y i∏1k≤M
k−1

nk

1 ... M−1 M

M 1,. . , NM=Cgauss det [1, x , y , x2 , xy , y2 , ...]=

Place fermions on a Pascal-like triangle 

     lines ->                               fermions (closed shell)

Wavefunction factorizes by “lines of particles”:

y

1

3

2

NM=M1M2/2M

   lines coords

Factorizable along vertical, horizontal or diagonal lines, recursive. 

x

   particle coords
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Explicit proof of two nodal cells for spin-polarized 
harmonic fermions: Step  2  -> Induction 

Therefore all particles connected, any size. Q.E.D.

assume
particles
connected 
by exchanges

1

3

2

NM
NM1

1

3

2

1

3

2

MM1 particles
connected 

“lines”
factorized
    out 
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The key points of the proof generalize to other 
paradigmatic models and arbitrary d>1  

True for any model which transforms to homog. polynomials!

- fermions in a periodic box
   2D, 3D

- fermions on a sphere surface   

- fermions in a box
       
   homeomorphic variable map:  

Works for any d>1: factorization along lines, planes, hyperplanes!

nm x , y=sin xsin yUn−1pUm−1q

Y lm  ,=cosn sineim

p=cosx , q=cosy  pm qn

nm x , y=ei nxmy=zn wm
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Two nodal cells theorem: generic (and fundamental) 
property of fermionic ground states of  many models

Two nodal cells theorem. Consider a spin-polarized system 
with a closed-shell ground state given by a Slater determinant 
times an arbitrary prefactor (which does not affect the nodes)

Let the Slater matrix elements be monomials             
 of positions or their homeomorphic maps in d>1. 

Then the wavefunction has only two nodal cells.

Can be generalized to some open shells, to nonpolynomial 
cases such as HF wavefunctions of atomic states, etc.  

exact=C 1,. .. , N det {i  j}
xi

n yi
m zi

l ...
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What if matrix elements are not monomials ?
 Atomic states (different radial factors for subshells):
Proof of two cells for nonint. and HF wavefunctions

- position subshells of electrons onto spherical surfaces:

- exchanges between the subshells: simple numerical proof up
  to size 15S(1s2s2p33s3p33d5) and beyond (n=4 subshell)

                                                                    
                                                                        123 -> 312
                                                                        326 -> 632
                                                                              . . . 
                                                                        
  

             
      

HF=1s2 s2p33s3p3 d5 ....
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For noninteracting/HF systems adding another spin 
channel or imposing additional symmetries generate 

more nodal cells

 Unpolarized nonintenracting/HF systems: 2*2=4 nodal cells!!!
        ->    product of two independent Slater determinants

- in general, imposing symmetries generates more nodal cells:

  the lowest quartet of S symmetry 4S(1s2s3s) has six nodal cells 

         What happens when interactions are switched on ?

        “Nodal/topological degeneracy” is lifted and multiple
              nodal cells fuse into the minimal two again!

    First time showed on the case of Be atom, Bressanini etal '03
 

HF=det  { }det  {}
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Sketch the proof idea on a singlet of interacting 
harmonic fermions using the BCS wave function

Example:  6 harmonic 2D fermions in the singlet ground state.
Rotation by      exchanges particles in 
each spin channel: positioned on HF node

            
 

BCS pair orbital -> add correlations: 

virtuals from the first unoccupied subshell

BCS wavefunction is nonvanishing for arbitrary weak interaction!

                                                      
 

BCS
  i , j=HF

  i , jcorr
  i , j

BCS=det {BCS
  i , j}= ra rb cos [2 ra rb cos 2−ra

2−rb
2 ]≠0



HF=det  [n i]det  [n  j]=

=det [∑n

N
n
 in

  j]=det [HF
  i , j]=0
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Correlation in the BCS wavefunction is enough to fuse 
the noninteracting four cells into the minimal two 

Arbitrary size: position
the particles on HF node
(wf. is rotationally invariant)

HF pairing (sum over occupieds, linear dependence in Sl. dets)

   
BCS pairing (sum over occupieds and virtuals, eliminate lin. dep.)

                                                      
 

HF=det [n i]det [n  j]=det [∑n≤N
n in  j]=det [HF i , j]=0

BCS=det [BCSi , j]≠det [nm i]det [nm  j]  BCS≠0

BCSi , j=HF i , j∑n , mN
cnmn im  j
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Effect of correlation in homogeneous electron gas: 
singlet pair of e- winds around the box without 

crossing the node

r i =r i5 offset , i=1,. .. ,5

Correl.
    

            HF

HF crosses the node multiple times, BCS does not (supercond.) 

Wavefunction along the winding
                      path 
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The same is true for the nodes of 
temperature/imaginary time density matrix

Analogous argument applies to temperature density matrix

fix            ->  nodes/cells  in the       subspace

High (classical) temperature: 
 
enables to prove that R and R' subspaces have only two nodal
cells.  Stunning: sum over the whole spectrum!!!
L.M. PRL, 96, 240402; cond-mat/0605550

The next problem: more efficient description of nodal shapes. 
Calls for better description of correlations -> pfaffians ...
   

R , R ' ,=CN det {exp [−r i−r ' j
2 /2]}

R , R ' ,=∑
exp [−E]∗RR '

R ' , R
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Let us introduce a pfaffian: signed sum of all distinct 
pair partitions (Pfaff, Cayley ~ 1850)

  Example: pfaffian of a skew-symmetric matrix 

       
Signs:         +                                   -                                     +

           1    2    3    4                 1    2     3     4                1     2     3      4

pf [a ij]=∑P
−1P a i1 j1

...a iN jN
, ik jk , k=1,. .. , N

pf [ 0 a12 a13 a14

−a12 0 a23 a24

−a13 −a23 0 a34

−a14 −a24 −a34 0
]=a12 a34−a13 a24a14 a23
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Relations of pfaffians and determinants

● For any square matrix B (nxn)

● For any skew-symmetric matrix A (2nx2n) 
 

● Any determinant can be written as pfaffian but not vice versa: 
  pfaffian is more general, determinant is a special case

Algebra similar to determinants: pfaffian can be expanded in 
minors, evaluated by Gauss-like elimination directly, etc.

det A =[pf A ] 2

det B=−1n n−1/2 pf [ 0 B
−BT 0 ]
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Why is pfaffian useful ?
The simplest antisymmetric wavefunction constructed 

from pair spinorbital! 
 One-particle orbitals + antisymmetry  ->  Slater determinant/HF 
      
           

Pair orbital + antisymmetry -> pfaffian !!!

 

Note: in the simplest case only one pair (spin)orbital 

           symmetric/singlet            antisymmetric/triplet

                        

xi , x j=
  r i , r j − 

  r i , r j 
  r i , r j 

  r i , r j  

HF=A [h1x1h2x2 ...] = det [hk x i] x i=r i , i i , k=1,. .. , N

PF=A [x1 , x2x3 , x4...]=pf [xi , x j] i , j=1,. .. ,2 N
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Pfaffian special cases: for example, Bardeen-Cooper-
Schrieffer  (BCS) wavefunction

  Antisymmetized product of singlet pair orbitals          

 - supeconductivity, BEC;  Casula, Sorella etal '04 for atoms 
 
Problem with spin-polarized cases:               while

      where             are one-particle orbitals 
 
-  fully spin-polarized state trivially recovers Hartree-Fock,
    pair correlations gone  :-( 

BCS=A [1, n ...n ,2 n×h12 n1... hm 2 nm ]
N=nm

 i , j

N=n

hk i

BCS=A [ i , j]=det [i , j]

BCS=A [hk i]=det [hk i]=HF



Lubos_Mitas@ncsu.edu

Pfaffian wavefunctions with both singlet and triplet 
pairs (beyond BCS!) -> all spin states treated 

consistently: simple, elegant

   

-  pairing orbitals expanded in one-particle basis 
 

 
- unpaired        

 - expansion coefficients and the Jastrow correlation optimized 
   (M.Bajdich, L.M., et al, PRL, 2006)

PF=pf [ 
    

− T   

−T −T 0 ]× exp [Ucorr ]

i , j=∑
b[h ih j−h ih j]

i , j=∑≥
a[h ih jh ih j]

 i=∑
c h i
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 DMC correlation energies of atoms, dimers  
Pfaffians: more accurate and systematic than HF 

while scalable (unlike CI)



Lubos_Mitas@ncsu.edu

Expansions in multiple pfaffians for first row atoms: 
FNDMC ~ 98 % of correlation with a few pfaffians

Table of correlation energies [%] recovered: MPF vs CI nodes

                                           n=   # of pfs/dets

WF                         n          C           n          N          n            O      

DMC/MPF              3        98.9         5        98.4       11        97.2

DMC/CI                 98       99.3        85       98.9     136        98.4
   
- further generalizations: pairing with backflow coordinates,
  independent pairs, etc (talk by M. Bajdich, V21.11 )
 
                Pfaffians describe nodes more efficiently
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Nodes of different WFs (%E_corr in DMC): 
oxygen atom wavefunction scanned by 2e- singlet 

(projection into 3D -> node subset)
    HF (94.0(2)%)        MPF (97.4(1)%)   CI (99.8(3)%)
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Summary

- fixed-node approximation: in most cases the most accurate
  and practical electronic structure method around; to reach
  beyond one needs to understand the properties of nodes

- explicit proof  of two nodal cells for d>1 and for any size:
  fundamental property of fermionic ground states

- antisymmetrized pair spinorbital wavefunction: pfaffian 

- nodal shapes subtle: ~ 5 % of correlation energy; 
  pfaffian: compact, has the right topology

- fermion nodes: another example of importance of quantum
  geometry and topology for electronic structure
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Observations from comparison  of HF and “exact” (CI) 
nodes

- the two nodal cells for
  Coulomb interactions as well
 
                                                                 HF
- the nodal openings have very           
  fine structure: ~ 5% of E_corr

- although topologically incorrect, 
  away from openings the HF nodes     CI
  unexpectedly close to exact


