2007 Summer School on Computational Materials Science

Quantum Monte Carlo: From Minerals and Materials to Molecules

July 9 -19, 2007 • University of Illinois at Urbana-Champaign

http://www.mcc.uiuc.edu/summerschool/2007/qmc/

Geophysics, Mineral Physics, and QMC

Lars Stixrude

[University of Michigan]

Earth as a laboratory sample?

Compositionally complex and inhomogeneous Multiple phases

Pressure and temperature inhomogeneous

Produced by adiabatic gravitational self-compression

Internal heat source

Internal motion

Largely intangible (spatially and temporally!)

What would we like to know?

How did it form?
How did it evolve?
How does it work today?

Process

Earth subject to various thermal and mechanical forcings throughout its history

Response depends on material properties at extreme conditions

Pressure, temperature, composition

Probe: Earthquakes

Many each year strong enough to generate signal at antipodes

10 major (magnitudes 7-8)

100 large (6-7)

1000 damaging (5-6)

32 megaton ~ Largest test

1 megaton

32 kiloton ~ Trinity

www.iris.edu

U.S. earthquakes

New Madrid, Missouri, 4 earthquakes magnitude > 7.0 Dec. 16, 1811 to Feb. 7, 1812

Detector: seismograph

Seismic networks

Seismic phases

Shown:
P
PKP
PKIKP (or PKPdf)

Many not shown e.g. PcP (reflection off core-mantle boundary

Outer core (Gutenberg, 1913)

P shadow zone

Inner core (Lehmann, 1936)

Weak arrivals in shadow zone

Antipodal travel time ~20 minutes

TU Clausthal

Travel time curves

- •Travel time increases with distance
- •Shape requires velocity to increase with depth
- "Scatter" reflects asphericity
- "Shadow zone" caused by core

Observable: elastic wave velocities and density

~radially homogeneous, Isotropic

Monotonic and smooth increase with depth except:

- Core-mantle boundary
- Smaller discontinuities
- Near surface

Density

Toroidal ,T, - 43.8 min

- Normal modes of oscillation
- •Frequency depends on velocity and density distribution
- Excited by earthquakes
- Most normal modes undetectable except after largest earthquakes
- Rigidity of inner core

Geoid

Geoid (m)

Lithgow-Bertelloni and Richards (1998) Rev. Geophys.

$$V_P = \sqrt{\frac{K_S + 4/3G}{\rho}}$$

$$V_S = \sqrt{\frac{G}{\rho}}$$

$$\Phi = V_P^2 - \frac{4}{3}V_S^2 = \frac{K_S}{\rho} = \left(\frac{\partial P}{\partial \rho}\right)_{S,i}$$

$$\frac{\Phi}{\rho g} \left(\frac{\partial \rho}{\partial z} \right)_{Earth}$$

- Unity for homogeneous, adiabatic layers
- •Deviations from unity:
 - –Inhomogeneous chemical composition
 - -Phase transformations
 - -Non-adiabatic temperature gradient

Radial inhomogeneity

PREM: Dziewonski and Anderson (1981) PEPI

Overdetermined inversion of inaccurate, incomplete data

Resolution - Error tradeoff curve Higher spatial resolution means larger uncertainty Better resolution and higher accuracy? More data!

Backus and Gilbert (19&) Phil. Trans. A

Waveforms

Waveforms contain information on velocity gradients

Regional studies with dense arrays can dramatically improve spatial resolution

D" layer bounded by Velocity discontinuity (top) Ultra-low velocity zone (bottom)

Lay et al. (2004) PEPI

Spherically symmetric Earth?

Smith and Sandwell (1997) Science

Seismic tomography

Systematic spatial variations in travel times at the same distance

Conventions:

Plot relative lateral variations about the average velocity at a given depth, i.e.

Average spherical structure removed

Blue: fast

Red: slow

Seismic tomography

Blue tabular feature interpreted as a subducted slab

Supported by geologic evidence for subduction of Pacific seafloor beneath California

This part of now subducted Pacific seafloor was called the Farallon plate

2770 km depth 2700 km depth FARALLON SLAB

Grand et al., (1997) GSA Today

Seismic tomography

Near surface
Old oceans fast
Young oceans slow
Cratons (old parts of continents) fast

Core-mantle boundary
Past subduction fast
African and Pacific anomalies
slow

Cause?

Ritsema

Anisotropy

Seismic wave velocity depends on direction of:

Propagation (P- & S-waves) Polarization (S-waves)

Explaination

 $V_{avg} = 5.5 \text{ cm/yr}$

- Elastic anisotropy of olivine
- Alignment of olivine crystals

Polarization anisotropy aka shear-wave splitting

Upper mantle xenolith

Calcite: CaCO₃

Polarization anisotropy

Most of shallow Pacific mantle:

Horizontally polarized shear wave faster than vertically polarized shear wave

$$V_{SH} > V_{SV}$$

If origin of anisotropy is related to plate motion, might expect V_{SH} - V_{SV} to increase systematically westward. It doesn't!

Ekstrom and Dziewonski (1999) Nature

Geomagnetic field

Elburn, IL Latitude: 42 degrees N

Vine (1966) Science

Geomagnetic field

Field at coremantle boundary

Inner core may

- •Be an important heat source for the field
- •Stabilize field against reversals
- Influence shape of field

Glatzmaier & Roberts (1996) Science

Tangent Cylinder

Inner Core

Inner core

- •1200 km radius
- Nearly pure iron
- •P-wave anisotropy!
- •3 % faster along rotation axis
- Fast axis slightly tilted

Other recent findings:

- Heterogeneous
- Layered (innermost inner core)

Volume 382 No. 6588 18 July 1996 \$10.00 Rotation of the inner core

Song & Richards (1996) Nature

Earth structure

Seismology can tell us V_P , V_S , $\rho(r,\theta,\phi)$

What about temperature and composition?

Dynamics, differentiation, ...

Connection through mineralogical models

Central

Given a point in a planet

of known pressure, temperature, and bulk composition, compute...

Press & Siever

Physical properties of the stable multi-phase assemblage including

In situ observables (V_P, V_S, ρ) Those governing dynamics Those governing energy transfer

What is Earth made of?

Xenoliths

Upper mantle xenolith: depth ~ 100 km

yellow-green black green red olivine (ol) orthopyroxene (opx) clinopyroxene (cpx) garnet (gt) Mg_2SiO_4 $Mg_2Si_2O_6$ $CaMgSi_2O_6$ $Mg_3Al_2Si_3O_{12}$ + 10 %Fe for Mg

Olivine, Mg₂SiO₄

Easiest dislocation glide direction

Shortest repeat distance

High pressure polymorphs

Many found in meteorites

Originally discovered in laboratory

Purple ringwoodite, high pressure polymorph of olivine, in the Tenham chondrite (Spray, 1999)

Plagioclase (plg); Spinel (sp); Wadsleyite (wa); Ringwoodite (ri); akimotoite (ak); Mg-perovskite (mgpv); Ca-perovskite (capv); Ferropericlase (fp)

Stixrude et al. (2007) EPSL

Blue hydrous ringwoodite viewed in situ through the diamond anvil cell, transformed in laser-heated spots to perovskite+ferropericlase

Jacobsen and Lin (2005) Elements

Earth structure

Phase transformations

- Produce discontinuities
- Thermometers
- Influence dynamics

Computation

- •Global Gibbs free energy minimization
- New self-consistent method
 - -Phase equilbria
 - -Physical properties
 - -Elasticity

Stixrude & Lithgow-Bertelloni (2005) GJI Stixrude & Jeanloz (2007) Treatise on Geophysics

Phase equilibria

- Invert phase equilibria data for reference free energy, characteristic vibrational frequency
- Experimental Data
 - − N~1000
 - CaO-FeO-MgO-Al₂O₃-SiO₂
 - One-component, two-component phase equilibria
 - Element partitioning

Stixrude and Lithgow-Bertelloni (2007)

Pressure (GPa)

$$\chi^2 = \sum_{i}^{stability} \left[G(P_i, T_i, \vec{n}_i) - G(P_i, T_i, \vec{n}_{\min}) \right]^2 + \sum_{i}^{reactions} \left[\Delta G_{0i}^{calc} - \Delta G_{0i}^{\exp} \right]^2$$

Femperature (K)

Phase transitions

- Clapeyron slope
- •Relate pressure of transition to depth of seismic discontinuity

Grüneisen parameter

$$\left(\frac{\partial \ln T}{\partial P}\right)_{S} = \frac{\gamma}{K_{S}}$$

Elastic wave velocity

•V of assumed bulk composition = seismologically observed

Thermometers

Core

Alfe et al. (2002) EPSL: Fe-X melting

Steinle-Neumann et al. (2001) Nature: V of inner core

Temperature of the inner core

- Compare elastic moduli of
 - hcp iron (theory)
 - inner core (seismology)
- Estimate consistent with those based on
 - Iron melting curve
 - Mantle temperatures, adiabatic outer core, ...
- Implies relatively large component of basal heating driving mantle convection
- Low Poisson ratio (G/K) of inner core explained

Steinle-Neumann (2001) Nature

Influence of phase transitions on mantle dynamics

cold slabs

Christensen (1995) Annual Reviews

Influence of phase transitions on mantle dynamics

Composition

575 km (4.0%)

Upper mantle ~ Geology + half-space cooling Lower mantle ~ Subduction history Transition zone?

Ritsema et al. (2004)

Origin of lateral heterogeneity

Velocity-temperature scaling

Metamorphic term

$$\left(\frac{\partial \ln V_S}{\partial n_i}\right)_{P.T} \left(\frac{\partial n_i}{\partial T}\right)_P \approx f\left(\frac{\partial P}{\partial T}\right)_{eq} \frac{\Delta \ln V_S}{\Delta P}$$

Topography?

$$\left(\frac{\partial P}{\partial T}\right)_{eq} \delta T < \Delta P$$

 $-\mathrm{dInV_S/dT}\;(10^5\;\mathrm{K}^{-1})$

Depth (km)

Stixrude & Lithgow-Bertelloni (2005) GJI, JGR Cammarano et al. (2003) PEPI

African anomaly

Large low velocity feature
Sharp sided!
Cannot be entirely thermal
in origin
Composition?
Phase?

Limitations:

Elasticity of high pressure phases

Phase equilibria at high pressure

Ni et al. (2002) Science

Density functional theory

- Density Functional Theory
 - Kohn, Sham, Hohenberg
- Local Density and Generalized Gradient approximation to V_{xc} Plane-wave pseudopotential mothod approximation to V_{xc}
- method
 - Heine, Cohen
- VASP
 - Kresse, Hafner, Furthmüller

$$\left\{ -\nabla^2 + V_{KS}[\rho(\vec{r})] \right\} \psi_i(\vec{r}) = \varepsilon_i \psi_i(\vec{r})$$

$$V_{KS}[\rho(\vec{r})] = V_{N}(\vec{r}) + \int \frac{\rho(\vec{r}')}{\vec{r} - \vec{r}'} d\vec{r}' + V_{XC}[\rho(\vec{r})]$$

Circles: Karki et al., 1997, Am. Min. Squares: Murakami et al., 2006, EPSL

Methods: elastic constants 1

Variation of the total energy with isochoric strain

$$c_{ijkl} = \left(\frac{\partial \sigma_{ij}}{\partial \varepsilon_{kl}}\right)_{T,\varepsilon'} = \frac{1}{V} \left(\frac{\partial^2 F}{\partial S_{ij} \partial S_{kl}}\right)_{S'_{ij},T} + P\left(\delta_{ij} \delta_{kl} + \delta_{il} \delta_{jk} + \delta_{jl} \delta_{ik}\right)$$

$$\frac{c_{ijkl}\delta_{ij}\delta_{kl}}{9} = K = -V\left(\frac{\partial P}{\partial V}\right)_T = V\left(\frac{\partial^2 F}{\partial V^2}\right)$$
 (Lagrangian different)

$$\varepsilon(\delta) \begin{pmatrix} 0 & 0 & \delta \\ 0 & \delta^2/(1-\delta^2) & 0 \\ \delta & 0 & 0 \end{pmatrix}$$

$$F(\delta) = F(0) + 2c_{44}\delta^2 + O(\delta^4)$$

Stixrude & Cohen (1995) Science Steinle-Neumann et al. (1999) PRB Stixrude & Lithgow-Bertelloni (2005) GJI

Eulerian

Methods: elastic constants 2

Variation of stress with strain

Karki et al. (1997) Am. Min.; Karki et al., (2001) Rev. Geophys.

Density functional perturbation theory (linear response)

CaSiO₃ Perovskite

- Phonon spectrum
- Shows instability at zone boundary
- Predict phase transformation to tetragonal I4/mcm

Stixrude et al. (1996) Am. Min.

Elasticity of CaSiO₃ perovskite

Tetragonal phase much softer than cubic! Particularly c_{44} (40 %) VRH shear modulus 29 % smaller at 100 GPa Stixrude et al. (2007) PRB

Origin of shear softening

Strain-induced excitation of additional octahedral rotation

Stixrude et al. (2007) PRB

CaSiO₃ phase diagram

Tetragonal to cubic phase transition

Lower mantle pressure-temperature conditions

Large elastic anomaly should be seismically detectable

Stixrude et al. (2007) PRB

Post-perovskite MgSiO₃

- Transition near base of mantle
- Layered, presumably strongly anisotropic
- Possible implications for D" structure

Murakami et al. (2004) Science

Post-perovskite transition

- Transition occurs near core-mantle boundary
- May explain discontinuity at the top of D"
- May explain anomalies in lateral heterogeneity
- "Double-crossing" seems possible

Blue: Tsuchiya et al. (2004) EPSL

Green: Oganov & Ono (2004) Nature Points: Murakami et al. (2004) Science

search of the terrestrial hydrosphere

- How is water distributed?
 - Surface, crust, mantle, core
 - What is the solubility of water in mantle and core?
 - Can we detect water at depth?
 - Physics of the hydrogen bond at high pressure?
- Has the distribution changed with time?
 - Is the mantle (de)hydrating?
 - How is "freeboard" related to oceanic mass?
 - How does (de)hydration influence mantle dynamics?
- Where did the hydrosphere come from?
- What does the existence of a hydrosphere tell us about Earth's origin?

Hydrous phases

10 Å phase

- Important for carrying water from surface to deep interior
- Subduction zones
- Some water removed to melt
- •How much is subducted?
- •How much is retained in the slab?
- Phase stability

Fumagalli et al. (2001) EPSL Fumagalli & Stixrude (2007) EPSL Where's the water?

ocean

Source of deep water? Surface (subduction)

Accretion (chondrites)

Chondrites have very large water contents (much greater than Earth)

How much of this water could be retained on accretion?

Ohtani (2005) Elements

Nominally anhydrous phases

- Stishovite
- Charge balance: Si⁴⁺ -> Al³⁺ + H⁺
- Low pressure asymmetric O-H...O
- High pressure symmetric O-H-O
- Implications for
 - Elasticity, transport, strength, melting

Panero & Stixrude (2004) EPSL

SiO₂:AlOOH stishovite

- Primary reservoir of water in mantle?
- Incorporation of H requires charge balance
- Investigate Al+H for Si in stishovite

 End-member (AlOOH) is a stable isomorph
 Enthalpy and entropy of solution
 Solubility
 Consistent with experiment High Large!

- Large!

Panero & Stixrude (2004) EPSL

The core mantle boundary

Largest contrast in physical properties in the planet

- Density
- Elasticity
- Conductivity
- Viscosity...

Structural features

- •D"
- •ULVZ
- Dense thermochemical piles
- Internal discontinuities

Garnero, 2006

Processes

- Melting
- Core-mantle chemical reaction
- Upward core-side sedimentation
- Phase transformation

Spin pairing transition

(Mg,Fe)O

Transition in Fe²⁺ from

high spin (4 unpaired electrons) to

low spin (0 unpaired electrons)

Experiment: Kβ x-ray emission spectroscopy

Theory: DFT+U with U determined self-consistently

Badro et al. (2003) Science

Tsuchiya et al., (2006) PRL

Spin-pairing transition

Influences many physical properties

Transition likely spread out in pressure via entropic effects

Softening of elasticity within transition region

Lin et al. (2005) Science

Tsuchiya et al. (2006) PRL

(Mg,Fe)SiO₃ perovskite

- Experimental evidence for spin-pairing transition
- Possibly an intermediate spin state
- •Evidence for Fe³⁺ even in samples initially synthesized with only Fe²⁺
- •Dilute solid solution!
- •Method for computing elastic constants: (high spin Fe²⁺)

$$c_{ijkl} = \frac{1}{4} \sum_{s=1}^{4} R_{im}^s R_{jn}^s R_{ko}^s R_{lp}^s \tilde{c}_{mnop}$$

Other planets

2M1207b

Chauvin et al. (2006)

Sanchez-La Vega (2006) Cont. Phys.

Pressure-temperature regime of planets

Hubbard et al. (2002) Ann. Rev. Astro. Astro.

Press & Siever