2007 Summer School on Computational Materials Science Quantum Monte Carlo: From Minerals and Materials to Molecules July 9 –19, 2007 • University of Illinois at Urbana–Champaign http://www.mcc.uiuc.edu/summerschool/2007/qmc/

Order(N) methods in QMC

Dario Alfè

[d.alfe@ucl.ac.uk]

Monte Carlo methods

- Evaluation of multidimensional integrals:
 - Quadrature methods, error ~ M^{-4/d}
 - Monte Carlo methods, error ~ $M^{-0.5}$

$$I = \int d\mathbf{R}g(\mathbf{R})$$

$$\wp(\mathbf{R}) \ge 0; \quad \int d\mathbf{R} \wp(\mathbf{R}) = 1$$

$$I = \int d\mathbf{R}f(\mathbf{R}) \wp(\mathbf{R}); \qquad f(\mathbf{R}) = g(\mathbf{R}) / \wp(\mathbf{R})$$

$$I = \lim_{M \to \infty} \left\{ \frac{1}{M} \sum_{m=1}^{M} f(\mathbf{R}_{m}) \right\} \approx \frac{1}{M} \sum_{m=1}^{M} f(\mathbf{R}_{m})$$

Variational Monte Carlo

$$E_{V} = \frac{\int \Psi_{T}^{*}(\mathbf{R}) \hat{H} \Psi_{T}(\mathbf{R}) d\mathbf{R}}{\int \Psi_{T}^{*}(\mathbf{R}) \Psi_{T}(\mathbf{R}) d\mathbf{R}} \ge E_{0}$$

$$E_{V} = \frac{\int \left|\Psi_{T}(\mathbf{R})\right|^{2} \left[\Psi_{T}(\mathbf{R})^{-1} \hat{H} \Psi_{T}(\mathbf{R})\right] d\mathbf{R}}{\int \left|\Psi_{T}(\mathbf{R})\right|^{2} d\mathbf{R}}$$

$$\wp(\mathbf{R}) = \left| \Psi_T(\mathbf{R}) \right|^2 / \int \left| \Psi_T(\mathbf{R}) \right|^2 d\mathbf{R}$$

 $E_{V} \approx \frac{1}{M} \sum_{m=1}^{M} E_{L}(\mathbf{R}_{m}); \qquad E_{L}(\mathbf{R}_{m}) = \Psi_{T}(\mathbf{R}_{m})^{-1} \mathbf{H} \mathbf{\Psi}_{T}(\mathbf{R}_{m})$

Diffusion Monte Carlo

$$-\frac{\partial \Psi(\mathbf{R},t)}{i\partial t} = \left(\hat{H} - E_T\right)\Psi(\mathbf{R},t)$$

Extracting the ground state: substitute $\tau = it$

$$\tau \to \infty, \quad \Psi(\mathbf{R}, \tau) \to \Phi_0(\mathbf{R})$$

Fixed nodes:

$$\tau \to \infty, \quad \Psi(\mathbf{R}, \tau) \to \Phi_0^{FN}(\mathbf{R})$$

$$\Psi_T(\mathbf{R}) = \exp[J(\mathbf{R})] \sum_{n} c_n D_n^{\uparrow} \{\phi_i(\mathbf{r}_j)\} D_n^{\downarrow} \{\phi_i(\mathbf{r}_j)\}$$

Cost of evaluating Ψ_T

$$\Psi_T(\mathbf{R}) = \exp[J(\mathbf{R})] \sum_n c_n D_n^{\uparrow} \{\phi_i(\mathbf{r}_j)\} D_n^{\downarrow} \{\phi_i(\mathbf{r}_j)\}$$

- N electrons
- N single particle orbitals ϕ_i
- ~ N basis functions for each ϕ_i if

$$\phi_i(\mathbf{r}_j) = \sum_{\mathbf{G}} c_{\mathbf{G}} \exp\{-i\mathbf{G} \cdot \mathbf{r}_j\}$$

Cost proportional to N³

Cost of evaluating Energy E

Variance of E is proportional to N \rightarrow

Cost of total energy proportional to N⁴

HOWEVER Variance of E/atom is proportional to $1/N \rightarrow$

> Cost of energy/atom proportional to N² (relevant to free energies in phase transitions, surface energies,)

Cost of evaluating Ψ_T

$$\Psi_T(\mathbf{R}) = \exp[J(\mathbf{R})] \sum_n c_n D_n^{\uparrow} \{\phi_i(\mathbf{r}_j)\} D_n^{\downarrow} \{\phi_i(\mathbf{r}_j)\}$$

- N electrons
- N single particle orbitals ϕ_i
- ~ N basis functions for each ϕ_i if

$$\phi_i(\mathbf{r}_j) = \sum_{\mathbf{G}} c_{\mathbf{G}} \exp\{-i\mathbf{G} \cdot \mathbf{r}_j\}$$

Cost proportional to N^3

Cost of evaluating Ψ_T

$$\Psi_T(\mathbf{R}) = \exp[J(\mathbf{R})] \sum_n c_n D_n^{\uparrow} \{\phi_i(\mathbf{r}_j)\} D_n^{\downarrow} \{\phi_i(\mathbf{r}_j)\}$$

- N electrons
- N single particle orbitals ϕ_i
- ~ o(1) basis functions for each ϕ_i if

$$\phi_i(\mathbf{r}_j) = \sum_l c_l f_l(\mathbf{r}_j)$$
 if $f_l(\mathbf{r})$ is localised

Cost proportional to N²

Cost of evaluating Energy E

Variance of E is proportional to N \rightarrow

Cost of total energy proportional to N³

HOWEVER Variance of E/atom is proportional to 1/N \rightarrow

Cost of energy/atom proportional to **N** (relevant to free energies in phase transitions, surface energies,)

B-splines: Localised functions sitting at the points of a uniform grid

E. Hernàndez, M. J. Gillan and C. M. Goringe, Phys. Rev. B, 20 (1997)
D. Alfè and M. J. Gillan, Phys. Rev. B, Rapid Comm., 70, 161101, (2004)

Cost of evaluating Ψ_T

$$\Psi_T(\mathbf{R}) = \exp[J(\mathbf{R})] \sum_n c_n D_n^{\uparrow} \{\phi_i(\mathbf{r}_j)\} D_n^{\downarrow} \{\phi_i(\mathbf{r}_j)\}$$

- N electrons
- N single particle orbitals ϕ_i
- ~ o(1) basis functions for each ϕ_i if

$$\phi_i(\mathbf{r}_j) = \sum_l c_l f_l(\mathbf{r}_j)$$

Cost proportional to N^2

Cost of evaluating Ψ_T

$$\Psi_T(\mathbf{R}) = \exp[J(\mathbf{R})] \sum_n c_n D_n^{\uparrow} \{\phi_i(\mathbf{r}_j)\} D_n^{\downarrow} \{\phi_i(\mathbf{r}_j)\}$$

- N electrons
- ~ o(1) single particle localised orbitals ϕ_i , if ϕ_i is localised
- ~ o(1) basis functions for each ϕ_i if

$$\phi_i(\mathbf{r}_j) = \sum_l c_l f_l(\mathbf{r}_j)$$

Cost proportional to N (Linear scaling)

Cost of evaluating Energy E

Variance of E is proportional to N \rightarrow

Cost of total energy proportional to N²

HOWEVER Variance of E/atom is proportional to $1/N \rightarrow$

> Cost of energy/atom independent on N! (relevant to free energies in phase transitions, surface energies,)

B-splines (blips)

Grid spacing 1:

Grid spacing *a*:

• Defined on a uniform grid

• Localised: f(x)=0 for |x|>2

• Continuous with first and second derivative continuous

$$f(x) = 1 - \frac{3}{2}x^{2} + \frac{3}{4}|x|^{3} \qquad 0 \le |x| \le 1$$
$$= \frac{1}{4}(2 - |x|)^{3} \qquad 1 \le |x| \le 2$$
$$X_{i} = ia$$
$$\Theta(x - X_{i}) = f((x - X_{i})/a)$$

Blips in three dimensions:

$$\Theta(\mathbf{r} - \mathbf{R}_i) = \Theta(x - X_i)\Theta(y - Y_i)\Theta(z - Z_i)$$

Single-particle orbital representation:

$$\psi_n(\mathbf{r}) = \sum_i a_{ni} \Theta(\mathbf{r} - \mathbf{R}_i)$$

For each position *r* there are only 64 blip functions that are non zero. By contrast, in a plane wave representation:

$$\psi_n(\mathbf{r}) = \sum_{\mathbf{G}} c_{n\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}}$$

The number of plane waves in MgO is ~ 3000 per atom! (HF pseudopotentials, 100 Ha PW cutoff)

Approximate equivalence between blips and plane waves

One dimension:

$$\phi_n(x) = e^{2\pi i n x/L} = e^{ik_n x}$$
 $k_n = 2\pi n/L;$ $k_{max} = \pi/a$

$$\chi_n(x) = \sum_{j=0}^{N-1} \Theta_j(x) e^{2\pi i j n/N} \qquad -\frac{1}{2} N + 1 \le n \le \frac{1}{2} N$$

UCL

$$\left\langle \phi_n \left| \chi_m \right\rangle = \int_0^L dx \sum_{j=0}^{N-1} \theta_j(x) e^{2\pi i j m/N} e^{-ik_n x} = k_n = \frac{2\pi n}{aN}$$

$$= \sum_{j=0}^{N-1} e^{2\pi i (m-n)j/N} \int_{0}^{L} \theta_{j}(x) e^{2\pi i n (j-x/a)/N} dx = (\text{use PBC}) x - ja \to x, \Theta_{j} \to \Theta_{0}$$
$$= \sum_{i=0}^{N-1} e^{2\pi i (m-n)j/N} \int_{0}^{L} \theta_{0}(x) e^{-2\pi i n x/aN} dx = N\delta_{nm} \int_{0}^{L} f(x/a) e^{-2\pi i n x/aN} dx =$$

$$= N \delta_{nm} a \int_{0}^{L/a} f(y) e^{-2\pi i n y/N} dy = L \delta_{nm} \oint (2\pi n/N)$$

$$\oint (q) = \int_{-\infty}^{+\infty} f(x)e^{-iqx}dx = \int_{-2}^{+2} f(x)e^{-iqx}dx = \frac{3}{q^4} \left[3 - 4\cos(q) + \cos(2q)\right]$$

Now consider:

$$\alpha_{n} = \frac{\langle \phi_{n} | \chi_{n} \rangle}{\sqrt{\langle \phi_{n} | \phi_{n} \rangle^{2} \langle \chi_{n} | \chi_{n} \rangle^{2}}}$$

If χ_n and ϕ_n were proportional then $\alpha_n = 1$, and blip waves would be identical to plane waves. Let's see what value of α_n has for a few values on *n*.

n	k _n	α_n
0	0	1.00
1	$\pi/6a$	0.9986
3	$\pi/2a$	0.9858
6	π/a	0.6532

Take *N*=12, for example

$$k_n = 2\pi n / Na$$

$$k_{\max} = \pi / a$$

Therefore if we replace ϕ_n with χ_n we make a small error at low *k* but maybe a significant error for large values of *k*. Let's do it anyway, then we will come back to the size of the error and how to reduce it.

Representing single particle orbitals in 3 d

$$\psi_n(\mathbf{r})$$
; $\sum_{\mathbf{G}} \gamma_{\mathbf{G}} c_{n\mathbf{G}} \chi_{\mathbf{G}}(\mathbf{r}) = \sum_{\mathbf{G}} c_{n\mathbf{G}} \gamma_{\mathbf{G}} \sum_{j} \Theta_j(\mathbf{r}) e^{i\mathbf{G}\cdot\mathbf{R}_j} = \sum_{j} a_{nj} \Theta_j(\mathbf{r})$

$$a_{nj} = \sum_{\mathbf{G}} \gamma_{\mathbf{G}} c_{n\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{R}_{j}} \quad (\mathbf{I}$$

(note that in DA & MJG, PRB 70, 16101 (2004) $\gamma_{\rm G}$ should be $1/\gamma_{\rm G}$)

Improving the quality of the B-spline representation

Example: Silicon in the ß-Sn structure, 16 atoms, 1st orbital

$$\alpha_{n} = \frac{\left\langle \psi_{n}^{B-splines} \middle| \psi_{n}^{PW} \right\rangle}{\sqrt{\left\langle \psi_{n}^{B-splines} \middle| \psi_{n}^{B-splines} \right\rangle \left\langle \psi_{n}^{PW} \middle| \psi_{n}^{PW} \right\rangle}}$$

	ψ	Δψ	$ abla x \psi$	$ abla$ y ψ	$ abla z \psi$
$\alpha_1(a = \pi / k_{\text{max}})$.999977	.892597	.991164	.991164	.996006
$\alpha_1(a = \pi / 2k_{\text{max}})$.999999998	.995315	.999988	.999988	.999993

Energies in QMC (eV/atom)

(Silicon in ß-Sn structure, 16 atoms, 15 Ry PW cutoff)

	PW	Blips ($a=\pi/k_{max}$)	Blips ($a=\pi/2k_{max}$)
E _k (DFT)	43.863		
E _{loc} (DFT)	15.057		
E _{nl} (DFT)	1.543		
E _k (VMC)	43.864(3)	43.924(3)	43.862(3)
E _{loc} (VMC)	15.057(3)	15.063(3)	15.058(3)
E _{nl} (VMC)	1.533(3)	1.525(3)	1.535(3)
E _{tot} (VMC)	-101.335(3)	-101.277(3)	-101.341(3)
σ(VMC)	4.50	4.74	4.55
T(s/step)	1.83	0.32	0.34
E _{tot} (DMC)	-105.714(4)	-105.713(5)	-105.716(5)
σ(VMC)	2.29	2.95	2.38
T(s/step)	2.28	0.21	0.25

Energies in QMC (eV/atom)

(MgO in NaCl structure, 8 atoms, 200 Ry PW cutoff)

	PW	Blips ($a=\pi/k_{max}$)	Blips ($a=\pi/2k_{max}$)
E _k (VMC)	178.349(49)	178.360(22)	178.369(22)
E _{loc} (VMC)	-225.191(50)	-225.128(24)	-225.177(23)
E _{nl} (VMC)	-17.955(25)	-17.974(11)	-17.976(11)
E _{tot} (VMC)	-227.677(8)	-227.648(4)	-227.669(4)
σ(VMC)	14	15	14.5
T(s/step)	7.8	5.6x10 ⁻²	7.1x10 ⁻²

Blips and plane waves give identical results, blips are 2 orders of magnitude faster on 8 atoms, 3 and 4 order of magnitudes faster on 80 ad 800 atoms respectively (on 800 atoms: Blips 1 day, PW 38 years)

Achieving linear scaling

Maximally localised Wannier functions (Marzari Vanderbilt) [Williamson et al., PRL, **87**, 246406 (2001)]

Unitary transformation:

$$\phi_i(\mathbf{r}) = \sum_{m=1}^N c_{mi} \psi_m(\mathbf{r})$$

Linear scaling obtained by truncating orbitals to zero outside their localisation region.

And:

 $D\{\phi_i(\mathbf{r})\} = D\{\psi_m(\mathbf{r})\}$

$$\Psi_{T}(\mathbf{R}) = \exp[J(\mathbf{R})] \sum_{n} c_{n} D_{n}^{\uparrow} \{\psi_{i}(\mathbf{r}_{j})\} D_{n}^{\downarrow} \{\psi_{i}(\mathbf{r}_{j})\}$$
$$= \exp[J(\mathbf{R})] \sum_{n} c_{n} D_{n}^{\uparrow} \{\phi_{i}(\mathbf{r}_{j})\} D_{n}^{\downarrow} \{\phi_{i}(\mathbf{r}_{j})\}$$

$$E_{L}(\mathbf{R}) = \Psi_{T}(\mathbf{R})^{-1} H \Psi_{T}(\mathbf{R})$$

The VMC and DMC total energies are exactly invariant with respect to arbitrary (non singular) linear combinations of single-electron orbitals! Transformation does not have to be unitary.

Arbitrary linear combination:

$$\phi_i(\mathbf{r}) = \sum_{m=1}^N c_{mi} \psi_m(\mathbf{r})$$

And:

$$D\{\phi_m(\mathbf{r})\} = D\{c_{ij}\} D\{\psi_i(\mathbf{r})\} \qquad \text{Provided} \qquad D\{c_{ij}\} \neq 0$$

UCL

We have set of orbitals $\psi_n(\mathbf{r})$ extending over region Ω Want to make orbital $\phi(\mathbf{r}) = \sum_n c_n \psi_n(\mathbf{r})$ maximally localised in sub-region $\omega \in \Omega$. Maximise "localisation weight" *P*:

$$P = \int_{\omega} d\mathbf{r} \left| \phi(\mathbf{r}) \right|^2 / \int_{\Omega} d\mathbf{r} \left| \phi(\mathbf{r}) \right|^2$$

Express *P* as:
$$P = \sum_{m,n} c_m^* A_{mn}^{\omega} c_n / \sum_{m,n} c_m^* A_{mn}^{\Omega} c_n$$

where: $A_{mn}^{\omega} = \int_{\omega} d\mathbf{r} \ \psi_m^* \psi_n$, $A_{mn}^{\Omega} = \int_{\Omega} d\mathbf{r} \ \psi_m^* \ \psi_n$

Ω

Linear scaling obtained by truncating localised orbitals to zero outside their localisation region ω . Then for given **r** number of nonzero orbitals $\phi_m(\mathbf{r})$ is O(1).

Weight *P* is maximal when c_n eigenvector of $\sum_{n} A_{mn}^{\omega} c_n = \lambda_{\alpha} \sum_{n} A_{mn}^{\Omega} c_n$ associated with maximum eigenvalue λ_{max} , and $P = \lambda_{max}$

Localisation weight in MgO

Convergence of localisation weight Q=1-P in MgO. Squares: present

method (D. Alfè and M. J. Gillan, J. Phys. Cond. Matter **16**, L305-L311 (2004))

Diamonds: MLWF

(Williamson et al. PRL, 87, 246406 (2001)

^AUCL

Localisation weight in MgO

Convergence of localisation weight Q=1-P in MgO. Squares: present

method (D. Alfè and M. J. Gillan, J. Phys. Cond. Matter **16**, L305-L311 (2004))

Diamonds: MLWF

(Williamson et al. PRL, 87, 246406 (2001)

UCL

VMC and DMC energies in MgO

Convergence of VMC energy. Squares: Non-orthogonal orbitals. Diamons: MLWF Convergence of DMC energy, nonorthogonal orbitals

UCL

VMC and DMC energies in MgO

Convergence of VMC energy. Squares: Non-orthogonal orbitals. Diamons: MLWF Convergence of DMC energy, nonorthogonal orbitals

Spherical cutoff at 6 a.u on a 7.8 a.u. cubic box (64 atoms):

- WF evaluation 4 times faster
- Memory occupancy 4 times smaller