Order(N) methods in QMC

Dario Alfè

[d.alfe@ucl.ac.uk]

Monte Carlo methods

- Evaluation of multidimensional integrals:
- Quadrature methods, error ~ $\mathrm{M}^{-4 / \mathrm{d}}$
- Monte Carlo methods, error $\sim \mathrm{M}^{-0.5}$

$$
\begin{gathered}
\mathrm{I}=\int \mathrm{d} \mathbf{R} g(\mathbf{R}) \\
\wp(\mathbf{R}) \geq 0 ; \quad \int \mathrm{d} \mathbf{R} \wp(\mathbf{R})=1 \\
\mathrm{I}=\int \mathrm{d} \mathbf{R} f(\mathbf{R}) \wp(\mathbf{R}) ; \quad f(\mathbf{R})=g(\mathbf{R}) / \wp(\mathbf{R}) \\
\mathrm{I}=\lim _{M \rightarrow \infty}\left\{\frac{1}{M} \sum_{m=1}^{M} f\left(\mathbf{R}_{m}\right)\right\} \approx \frac{1}{M} \sum_{m=1}^{M} f\left(\mathbf{R}_{m}\right)
\end{gathered}
$$

Variational Monte Carlo

$$
\begin{gathered}
E_{V}=\frac{\int \Psi_{T}^{*}(\mathbf{R}) \hat{H} \Psi_{T}(\mathbf{R}) d \mathbf{R}}{\int \Psi_{T}^{*}(\mathbf{R}) \Psi_{T}(\mathbf{R}) d \mathbf{R}} \geq E_{0} \\
E_{V}=\frac{\int\left|\Psi_{T}(\mathbf{R})\right|^{2}\left[\Psi_{T}(\mathbf{R})^{-1} \hat{H} \Psi_{T}(\mathbf{R})\right] d \mathbf{R}}{\int\left|\Psi_{T}(\mathbf{R})\right|^{2} d \mathbf{R}} \\
\wp(\mathbf{R})=\left|\Psi_{T}(\mathbf{R})\right|^{2} / \int\left|\Psi_{T}(\mathbf{R})\right|^{2} d \mathbf{R} \\
E_{V} \approx \frac{1}{M} \sum_{m=1}^{M} E_{L}\left(\mathbf{R}_{m}\right) ; \quad E_{L}\left(\mathbf{R}_{m}\right)=\Psi_{T}\left(\mathbf{R}_{m}\right)^{-1} \ddot{\varphi} \Psi_{T}\left(\mathbf{R}_{m}\right)
\end{gathered}
$$

Diffusion Monte Carlo

$$
-\frac{\partial \Psi(\mathbf{R}, t)}{i \partial t}=\left(\hat{H}-E_{T}\right) \Psi(\mathbf{R}, t)
$$

Extracting the ground state: substitute $\tau=$ it

$$
\tau \rightarrow \infty, \quad \Psi(\mathbf{R}, \tau) \rightarrow \Phi_{0}(\mathbf{R})
$$

Fixed nodes:

$$
\begin{gathered}
\tau \rightarrow \infty, \quad \Psi(\mathbf{R}, \tau) \rightarrow \Phi_{0}^{F N}(\mathbf{R}) \\
\Psi_{T}(\mathbf{R})=\exp [J(\mathbf{R})] \sum_{n} c_{n} D_{n}^{\uparrow}\left\{\phi_{i}\left(\mathbf{r}_{j}\right)\right\} D_{n}^{\downarrow}\left\{\phi_{i}\left(\mathbf{r}_{j}\right)\right\}
\end{gathered}
$$

Cost of evaluating Ψ_{T}

$$
\Psi_{T}(\mathbf{R})=\exp [J(\mathbf{R})] \sum_{n} c_{n} D_{n}^{\uparrow}\left\{\phi_{i}\left(\mathbf{r}_{j}\right)\right\} D_{n}^{\downarrow}\left\{\phi_{i}\left(\mathbf{r}_{j}\right)\right\}
$$

- N electrons
- N single particle orbitals ϕ_{i}
- ~ N basis functions for each ϕ_{i} if

$$
\phi_{i}\left(\mathbf{r}_{j}\right)=\sum_{\mathbf{G}} c_{\mathbf{G}} \exp \left\{-i \mathbf{G} \cdot \mathbf{r}_{j}\right\}
$$

Cost proportional to $\mathbf{N}^{\mathbf{3}}$

Cost of evaluating Energy E

Variance of E is proportional to $\mathrm{N} \rightarrow$
Cost of total energy proportional to \mathbf{N}^{4}

HOWEVER
 Variance of E/atom is proportional to $1 / \mathrm{N} \rightarrow$

Cost of energy/atom proportional to \mathbf{N}^{2}
(relevant to free energies in phase transitions, surface energies,)

Cost of evaluating Ψ_{T}

$$
\Psi_{T}(\mathbf{R})=\exp [J(\mathbf{R})] \sum_{n} c_{n} D_{n}^{\uparrow}\left\{\phi_{i}\left(\mathbf{r}_{j}\right)\right\} D_{n}^{\downarrow}\left\{\phi_{i}\left(\mathbf{r}_{j}\right)\right\}
$$

- N electrons
- N single particle orbitals ϕ_{i}
- ~ N basis functions for each ϕ_{i} if

$$
\phi_{i}\left(\mathbf{r}_{j}\right)=\sum_{\mathbf{G}} c_{\mathbf{G}} \exp \left\{-i \mathbf{G} \cdot \mathbf{r}_{j}\right\}
$$

Cost proportional to $\mathbf{N}^{\mathbf{3}}$

Cost of evaluating Ψ_{T}

$$
\Psi_{T}(\mathbf{R})=\exp [J(\mathbf{R})] \sum_{n} c_{n} D_{n}^{\uparrow}\left\{\phi_{i}\left(\mathbf{r}_{j}\right)\right\} D_{n}^{\downarrow}\left\{\phi_{i}\left(\mathbf{r}_{j}\right)\right\}
$$

- N electrons
- N single particle orbitals ϕ_{i}
- ~ o(1) basis functions for each ϕ_{i} if

$$
\phi_{i}\left(\mathbf{r}_{j}\right)=\sum_{l} c_{l} f_{l}\left(\mathbf{r}_{j}\right) \quad \begin{aligned}
& \text { if } f_{l}(\mathbf{r}) \text { is } \\
& \text { localised }
\end{aligned}
$$

Cost proportional to $\mathbf{N}^{\mathbf{2}}$

Cost of evaluating Energy E

Variance of E is proportional to $\mathrm{N} \rightarrow$
Cost of total energy proportional to $\mathbf{N}^{\mathbf{3}}$

HOWEVER
 Variance of E/atom is proportional to $1 / \mathrm{N} \rightarrow$

Cost of energy/atom proportional to \mathbf{N}
(relevant to free energies in phase transitions, surface energies,)

AUC.

B-splines: Localised functions sitting at the points of a uniform grid

$$
\begin{aligned}
f(x) & =1-\frac{3}{2} x^{2}+\frac{3}{4}|x|^{3} & & 0 \leq|x| \leq 1 \\
& =\frac{1}{4}(2-|x|)^{3} & & 1 \leq|x| \leq 2
\end{aligned}
$$

E. Hernàndez, M. J. Gillan and C. M. Goringe, Phys. Rev. B, 20 (1997)
D. Alfè and M. J. Gillan, Phys. Rev. B, Rapid Comm., 70, 161101, (2004)

Cost of evaluating Ψ_{T}

$$
\Psi_{T}(\mathbf{R})=\exp [J(\mathbf{R})] \sum_{n} c_{n} D_{n}^{\uparrow}\left\{\phi_{i}\left(\mathbf{r}_{j}\right)\right\} D_{n}^{\downarrow}\left\{\phi_{i}\left(\mathbf{r}_{j}\right)\right\}
$$

- N electrons
- N single particle orbitals ϕ_{i}
- ~ o(1) basis functions for each ϕ_{i} if

$$
\phi_{i}\left(\mathbf{r}_{j}\right)=\sum_{l} c_{l} f_{l}\left(\mathbf{r}_{j}\right)
$$

Cost proportional to $\mathbf{N}^{\mathbf{2}}$

Cost of evaluating Ψ_{T}

$$
\Psi_{T}(\mathbf{R})=\exp [J(\mathbf{R})] \sum_{n} c_{n} D_{n}^{\uparrow}\left\{\phi_{i}\left(\mathbf{r}_{j}\right)\right\} D_{n}^{\downarrow}\left\{\phi_{i}\left(\mathbf{r}_{j}\right)\right\}
$$

- N electrons
- ~ o(1) single particle localised orbitals ϕ_{i}, if ϕ_{i} is localised
- ~ o(1) basis functions for each ϕ_{i} if

$$
\phi_{i}\left(\mathbf{r}_{j}\right)=\sum_{l} c_{l} f_{l}\left(\mathbf{r}_{j}\right)
$$

Cost proportional to \mathbf{N} (Linear scaling)

Cost of evaluating Energy E

Variance of E is proportional to $\mathrm{N} \rightarrow$
Cost of total energy proportional to $\mathbf{N}^{\mathbf{2}}$

HOWEVER
 Variance of E/atom is proportional to $1 / \mathrm{N} \rightarrow$

Cost of energy/atom independent on N !
(relevant to free energies in phase transitions, surface energies,)

B-splines (blips)

- Defined on a uniform grid
- Localised: $f(x)=0$ for $|x|>2$
- Continuous with first and second derivative continuous

$$
f(x)=1-\frac{3}{2} x^{2}+\frac{3}{4}|x|^{3} \quad 0 \leq|x| \leq 1
$$

$$
=\frac{1}{4}(2-|x|)^{3} \quad 1 \leq|x| \leq 2
$$

Grid spacing a :

$$
X_{i}=i a
$$

$$
\Theta\left(x-X_{i}\right)=f\left(\left(x-X_{i}\right) / a\right)
$$

Blips in three dimensions:

$$
\Theta\left(\mathbf{r}-\mathbf{R}_{i}\right)=\Theta\left(x-X_{i}\right) \Theta\left(y-Y_{i}\right) \Theta\left(z-Z_{i}\right)
$$

Single-particle orbital representation:

$$
\psi_{n}(\mathbf{r})=\sum_{i} a_{n i} \Theta\left(\mathbf{r}-\mathbf{R}_{i}\right)
$$

For each position r there are only 64 blip functions that are non zero. By contrast, in a plane wave representation:

$$
\psi_{n}(\mathbf{r})=\sum_{\mathbf{G}} c_{n \mathbf{G}} e^{i \mathbf{G} \cdot \mathbf{r}}
$$

The number of plane waves in MgO is ~ 3000 per atom! (HF pseudopotentials, 100 Ha PW cutoff)

Approximate equivalence between blips and plane waves

One dimension:

$$
\begin{aligned}
& \uparrow \Theta_{j}(x) \equiv \Theta(x-j a) \\
& a=L / N
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{n}(x)=e^{2 \pi i n x / L}=e^{i k_{n} x} \quad k_{n}=2 \pi n / L ; \quad k_{\max }=\pi / a \\
& \chi_{n}(x)=\sum_{j=0}^{N-1} \Theta_{j}(x) e^{2 \pi i j n / N} \quad-\frac{1}{2} N+1 \leq n \leq \frac{1}{2} N
\end{aligned}
$$

$$
\begin{aligned}
&\left\langle\phi_{n} \mid \chi_{m}\right\rangle=\int_{0}^{L} d x \sum_{j=0}^{N-1} \theta_{j}(x) e^{2 \pi j i m / N} e^{-i k_{n} x}=\quad k_{n}=\frac{2 \pi n}{a N} \\
&= \sum_{j=0}^{N-1} e^{2 \pi i(m-n) j / N} \int_{0}^{L} \theta_{j}(x) e^{2 \pi i n(j-x /(a) / N} d x=(\text { use PBC }) x-j a \rightarrow x, \Theta_{j} \rightarrow \Theta_{0} \\
&= \sum_{i=0}^{N-1} e^{2 \pi i(m-n) j / N} \int_{0}^{L} \theta_{0}(x) e^{-2 \pi i n x / a N} d x=N \delta_{n m}^{L} \int_{0}^{L} f(x / a) e^{-2 \pi i n x / a N} d x= \\
&= N \delta_{n m} a \int_{0}^{L / a} f(y) e^{-2 \pi i n y / N} d y=L \delta_{n m} \mid(2 \pi n / N) \\
& \mathscr{H}(q)=\int_{-\infty}^{+\infty} f(x) e^{-i q x} d x=\int_{-2}^{+2} f(x) e^{-i q x} d x=\frac{3}{q^{4}}[3-4 \cos (q)+\cos (2 q)]
\end{aligned}
$$

Now consider:

$$
\alpha_{n}=\frac{\left\langle\phi_{n} \mid \chi_{n}\right\rangle}{\sqrt{\left\langle\phi_{n} \mid \phi_{n}\right\rangle^{2}\left\langle\chi_{n} \mid \chi_{n}\right\rangle^{2}}}
$$

If χ_{n} and ϕ_{n} were proportional then $\alpha_{n}=1$, and blip waves would be identical to plane waves. Let's see what value of α_{n} has for a few values on n.

n	k_{n}	α_{n}
0	0	1.00
1	$\pi / 6 a$	0.9986
3	$\pi / 2 a$	0.9858
6	π / a	0.6532

Take $N=12$, for example

$$
\begin{aligned}
& k_{n}=2 \pi n / N a \\
& k_{\max }=\pi / a
\end{aligned}
$$

Therefore if we replace ϕ_{n} with χ_{n} we make a small error at low k but maybe a significant error for large values of k. Let's do it anyway, then we will come back to the size of the error and how to reduce it.

ATC

Representing single particle orbitals in 3 d

$$
\begin{aligned}
& \psi_{n}(\mathbf{r})=\sum_{\mathbf{G}} c_{n \mathbf{G}} e^{i \mathbf{G} \cdot \mathbf{r}} \\
& \psi_{n}(\mathbf{r})=\sum_{j} a_{n j} \Theta_{j}(\mathbf{r}) \\
& \chi_{\mathbf{G}}(\mathbf{r})=\sum_{j} \Theta_{j}(\mathbf{r}) e^{i \mathbf{G} \cdot \mathbf{R}_{j}} \\
& e^{i \mathbf{G} \cdot \mathbf{r}} ; \gamma_{\mathbf{G}} \chi_{\mathbf{G}}(\mathbf{r})
\end{aligned}
$$

$$
\psi_{n}(\mathbf{r}) ; \sum_{\mathbf{G}} \gamma_{\mathrm{G}} c_{n \mathrm{G}} \chi_{\mathrm{G}}(\mathbf{r})=\sum_{\mathrm{G}} c_{n \mathrm{G}} \gamma_{\mathrm{G}} \sum_{j} \Theta_{j}(\mathbf{r}) e^{i \mathbf{G} \cdot \mathbf{R}_{j}}=\sum_{j} a_{n j} \Theta_{j}(\mathbf{r})
$$

$$
a_{n j}=\sum_{\mathbf{G}} \gamma_{\mathbf{G}} C_{n \mathbf{G}} e^{i \mathbf{G} \cdot \mathbf{R}_{j}} \quad \text { (note that in DA \& MJG, PRB 70, } 16101 \text { (2004) } \gamma_{\mathbf{G}} \text { should be } 1 / \gamma_{\mathbf{G}} \text {) }
$$

Improving the quality of the B-spline representation

Reduce a and achieve better quality

May not be good enough

$$
a=\pi / k_{\max }
$$

Blips are systematically improvable

Example: Silicon in the $\beta-\mathrm{Sn}$ structure, 16 atoms, $1^{\text {st }}$ orbital

$$
\alpha_{n}=\frac{\left\langle\psi_{n}^{B-\text { splines }} \mid \psi_{n}^{P W}\right\rangle}{\sqrt{\left\langle\psi_{n}^{B-\text { splines }} \mid \psi_{n}^{B-\text { splines }}\right\rangle\left\langle\psi_{n}^{P W} \mid \psi_{n}^{P W}\right\rangle}}
$$

	ψ	$\Delta \psi$	$\nabla_{\mathrm{x}} \psi$	$\nabla_{\mathrm{y}} \psi$	$\nabla_{\mathrm{z}} \psi$
$\alpha_{1}\left(a=\pi / k_{\max }\right)$.999977	.892597	.991164	.991164	.996006
$\alpha_{1}\left(a=\pi / 2 k_{\max }\right)$.99999998	.995315	.999988	.999988	.999993

IJCL

Energies in QMC (eV/atom)

(Silicon in $ß-S n$ structure, 16 atoms, 15 Ry PW cutoff)

	PW	Blips $\left(a=\pi / k_{\max }\right)$	Blips $\left(a=\pi / 2 k_{\max }\right)$
$\mathrm{E}_{\mathrm{k}}(\mathrm{DFT})$	43.863		
$\mathrm{E}_{\text {loc }}(\mathrm{DFT})$	15.057		
$\mathrm{E}_{\mathrm{nl}}(\mathrm{DFT})$	1.543		
$\mathrm{E}_{\mathrm{k}}(\mathrm{VMC})$	$43.864(3)$	$43.924(3)$	$43.862(3)$
$\mathrm{E}_{\text {loc }}(\mathrm{VMC})$	$15.057(3)$	$15.063(3)$	$15.058(3)$
$\mathrm{E}_{\mathrm{nl}}(\mathrm{VMC})$	$1.533(3)$	$1.525(3)$	$1.535(3)$
$\mathrm{E}_{\text {tot }}(\mathrm{VMC})$	$-101.335(3)$	$-101.277(3)$	$-101.341(3)$
$\sigma(\mathrm{VMC})$	4.50	4.74	4.55
$\mathrm{~T}(\mathrm{~s} /$ step $)$	1.83	0.32	0.34
$\mathrm{E}_{\text {tot }}(\mathrm{DMC})$	$-105.714(4)$	$-105.713(5)$	$-105.716(5)$
$\sigma(\mathrm{VMC})$	2.29	2.95	2.38
$\mathrm{~T}(\mathrm{~s} /$ step $)$	2.28	0.21	0.25

Energies in QMC (eV/atom)

(MgO in NaCl structure, 8 atoms, 200 Ry PW cutoff)

	PW	Blips $\left(a=\pi / k_{\max }\right)$	Blips $\left(a=\pi / 2 k_{\max }\right)$
$\mathrm{E}_{\mathrm{k}}(\mathrm{VMC})$	$178.349(49)$	$178.360(22)$	$178.369(22)$
$\mathrm{E}_{\text {loc }}(\mathrm{VMC})$	$-225.191(50)$	$-225.128(24)$	$-225.177(23)$
$\mathrm{E}_{\mathrm{nl}}(\mathrm{VMC})$	$-17.955(25)$	$-17.974(11)$	$-17.976(11)$
$\mathrm{E}_{\text {tot }}(\mathrm{VMC})$	$-227.677(8)$	$-227.648(4)$	$-227.669(4)$
$\sigma(\mathrm{VMC})$	14	15	14.5
$\mathrm{~T}(\mathrm{~s} /$ step $)$	7.8	5.6×10^{-2}	7.1×10^{-2}

Blips and plane waves give identical results, blips are 2 orders of magnitude faster on 8 atoms, 3 and 4 order of magnitudes faster on 80 ad 800 atoms respectively (on 800 atoms: Blips 1 day, PW 38 years)

Achieving linear scaling

Maximally localised Wannier functions
(Marzari Vanderbilt)
[Williamson et al., PRL, 87, 246406 (2001)]

Unitary transformation:

$$
\phi_{i}(\mathbf{r})=\sum_{m=1}^{N} c_{m i} \psi_{m}(\mathbf{r})
$$

Linear scaling obtained by truncating orbitals to zero outside their localisation region.

And:

$$
\begin{aligned}
& D\left\{\phi_{i}(\mathbf{r})\right\}=D\left\{\psi_{m}(\mathbf{r})\right\} \\
& \qquad \begin{aligned}
\Psi_{T}(\mathbf{R}) & =\exp [J(\mathbf{R})] \sum_{n} c_{n} D_{n}^{\uparrow}\left\{\psi_{i}\left(\mathbf{r}_{j}\right)\right\} D_{n}^{\downarrow}\left\{\psi_{i}\left(\mathbf{r}_{j}\right)\right\} \\
& =\exp [J(\mathbf{R})] \sum_{n} c_{n} D_{n}^{\uparrow}\left\{\phi_{i}\left(\mathbf{r}_{j}\right)\right\} D_{n}^{\downarrow}\left\{\phi_{i}\left(\mathbf{r}_{j}\right)\right\}
\end{aligned}
\end{aligned}
$$

$$
E_{L}(\mathbf{R})=\Psi_{T}(\mathbf{R})^{-1} \ddot{\varphi} \Psi_{T}(\mathbf{R})
$$

The VMC and DMC total energies are exactly invariant with respect to arbitrary (non singular) linear combinations of single-electron orbitals! Transformation does not have to be unitary.

Arbitrary linear combination:

$$
\phi_{i}(\mathbf{r})=\sum_{m=1}^{N} c_{m i} \psi_{m}(\mathbf{r})
$$

And:

$$
D\left\{\phi_{m}(\mathbf{r})\right\}=D\left\{c_{i j}\right\} D\left\{\psi_{i}(\mathbf{r})\right\} \quad \text { Provided } \quad D\left\{c_{i j}\right\} \neq 0
$$

AMCI

We have set of orbitals $\psi_{n}(\mathbf{r})$ extending over region Ω

Maximise "localisation weight" P :

$$
P=\int_{\omega} d \mathbf{r}|\phi(\mathbf{r})|^{2} / \int_{\Omega} d \mathbf{r}|\phi(\mathbf{r})|^{2}
$$

Express P as: $P=\sum_{m, n} c_{m}^{*} A_{m n}^{\omega} c_{n} / \sum_{m, n} c_{m}^{*} A_{m n}^{\Omega} c_{n}$

Linear scaling obtained by truncating localised orbitals to zero outside their localisation region ω. Then for given \mathbf{r} number of nonzero orbitals $\phi_{m}(\mathbf{r})$ is $O(1)$.
where: $\quad A_{m n}^{\omega}=\int_{\omega} d \mathbf{r} \psi_{m}^{*} \psi_{n}, \quad A_{m n}^{\Omega}=\int_{\Omega} d \mathbf{r} \psi_{m}^{*} \psi_{n}$
Weight P is maximal when c_{n} eigenvector of $\sum_{n} A_{m n}^{\omega} c_{n}=\lambda_{\alpha} \sum_{n} A_{m n}^{\Omega} c_{n}$ associated with maximum eigenvalue $\lambda_{\max }$, and $P=\lambda_{\max }$

Localisation weight in MgO

Convergence of localisation weight $\mathrm{Q}=1-\mathrm{P}$ in MgO . Squares: present method (D . Alfè and M . J. Gillan, J. Phys. Cond. Matter 16, L305-L311 (2004))

Diamonds: MLWF (Williamson et al. PRL, 87, 246406 (2001)

Localisation weight in MgO

Convergence of localisation weight $\mathrm{Q}=1-\mathrm{P}$ in MgO . Squares: present method (D. Alfè and M. J. Gillan, J. Phys. Cond. Matter 16, L305-L311 (2004))

Diamonds: MLWF (Williamson et al. PRL, 87, 246406 (2001)

VMC and DMC energies in MgO

Convergence of VMC energy.
Squares: Non-orthogonal orbitals.
Diamons: MLWF

Convergence of DMC energy, nonorthogonal orbitals

VMC and DMC energies in MgO

Convergence of VMC energy.
Squares: Non-orthogonal orbitals.
Diamons: MLWF

Convergence of DMC energy, nonorthogonal orbitals

Spherical cutoff at 6 a.u on a 7.8 a.u. cubic box (64 atoms):

- WF evaluation 4 times faster
- Memory occupancy 4 times smaller

