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• Evaluation of multidimensional integrals:
• Quadrature methods, error ~  M-4/d

• Monte Carlo methods, error ~ M-0.5
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Monte Carlo methods
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Variational Monte Carlo
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Extracting the ground state: substitute τ = it

0, ( , ) ( )τ τ→∞ Ψ →ΦR R

Fixed nodes:

0, ( , ) ( )FNτ τ→∞ Ψ →ΦR R

   
ΨT (R) = exp[J (R)] cn

n
∑ Dn

↑{φi (rj )}Dn
↓{φi (rj )}

Diffusion Monte Carlo



• N electrons
• N single particle orbitals φi

• ~ N basis functions for each φi if 

φi (rj ) = cG exp{−iG ⋅rj}
G
∑

Cost proportional to N3

   
ΨT (R) = exp[J (R)] cn

n
∑ Dn

↑{φi (rj )}Dn
↓{φi (rj )}

Cost of evaluating ΨT



Cost of total energy proportional to N4

Variance of E is proportional to N 

HOWEVER
Variance of E/atom is proportional to 1/N 

Cost of energy/atom proportional to N2

(relevant to free energies in phase transitions, surface 
energies, ….)

Cost of evaluating Energy E
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• N electrons
• N single particle orbitals φi

• ~ o(1) basis functions for each φi if 

Cost proportional to N2

   
ΨT (R) = exp[J (R)] cn

n
∑ Dn

↑{φi (rj )}Dn
↓{φi (rj )}

Cost of evaluating ΨT

φi (rj ) = cl fl (rj )
l
∑ if  fl(r) is 

localised



Cost of total energy proportional to N3

Variance of E is proportional to N 

HOWEVER
Variance of E/atom is proportional to 1/N 

Cost of energy/atom proportional to N
(relevant to free energies in phase transitions, surface 
energies, ….)

Cost of evaluating Energy E



B-splines: Localised functions sitting at the points of a uniform grid
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• N electrons
• N single particle orbitals φi

• ~ o(1) basis functions for each φi if 

Cost proportional to N2

   
ΨT (R) = exp[J (R)] cn

n
∑ Dn

↑{φi (rj )}Dn
↓{φi (rj )}

Cost of evaluating ΨT

φi (rj ) = cl fl (rj )
l
∑



• N electrons
• ~ o(1) single particle localised orbitals φi,if φi is localised
• ~ o(1) basis functions for each φi if 

Cost proportional to N (Linear scaling)

   
ΨT (R) = exp[J (R)] cn

n
∑ Dn

↑{φi (rj )}Dn
↓{φi (rj )}

Cost of evaluating ΨT

φi (rj ) = cl fl (rj )
l
∑



Cost of total energy proportional to N2

Variance of E is proportional to N 

HOWEVER
Variance of E/atom is proportional to 1/N 

Cost of energy/atom independent on N !
(relevant to free energies in phase transitions, surface 
energies, ….)

Cost of evaluating Energy E
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Xi = ia
Θ(x − Xi ) = f ((x − Xi ) / a)

Grid spacing a:

B-splines (blips)

Grid spacing 1:

• Defined on a uniform grid
• Localised: f(x)=0 for |x|>2
• Continuous with first and second
derivative continuous



   
ψ n(r) = ani

i
∑ Θ(r −R i )

Blips in three dimensions:

   Θ(r − R i ) = Θ(x − Xi )Θ( y −Yi )Θ(z − Zi )

For each position r there are only 64 blip functions that are non zero. By contrast, in 
a plane wave representation:

Single-particle orbital representation:

   
ψ n(r) = cnG

G
∑ eiG⋅r

The number of plane waves in MgO is ~ 3000 per atom!
(HF pseudopotentials, 100 Ha PW cutoff)



One dimension:
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Approximate equivalence between blips and plane waves
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Now consider:

αn =
φn χn

φn φn
2 χn χn

2

If χn and φn were proportional then αn = 1, and blip waves would be identical to 
plane waves. Let’s see what value of αn has for a few values on n.

0.6532π/a6
0.9858π/2a3
0.9986π/6a1
1.0000
αnknn Take N=12, for example

kn = 2πn / Na

kmax = π / a

Therefore if we replace φn with χn we make a small error at low k but maybe a 
significant error for large values of k. Let’s do it anyway, then we will come back 
to the size of the error and how to reduce it.



   
ψ n(r) = cnG

G
∑ eiG⋅r

Representing single particle orbitals in 3 d
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Improving the quality of the B-spline representation

May not be good enough
Reduce a and achieve better quality

Blips are systematically improvable



B splines PW
n n

n B splines B splines PW PW
n n n n

ψ ψ
α

ψ ψ ψ ψ

−

− −
=

.999993.999988.999988.995315.99999998

.996006.991164.991164.892597.999977
∇z ψ∇y ψ∇x ψΔψψ

1 max( / )a kα π=

  α1(a = π / 2kmax )

Example: Silicon in the ß-Sn structure, 16 atoms, 1st orbital



2.382.952.29σ(VMC)
0.250.212.28T(s/step)

-105.716(5)-105.713(5)-105.714(4)Etot(DMC)
0.340.321.83T(s/step)
4.554.744.50σ(VMC)

1.535(3)1.525(3)1.533(3)Enl(VMC)
15.058(3)15.063(3)15.057(3)Eloc(VMC)
43.862(3)43.924(3)43.864(3)Ek(VMC)

1.543Enl(DFT)

43.863Ek (DFT)

15.057Eloc(DFT)

-101.341(3)-101.277(3)-101.335(3)Etot(VMC)

Blips (a=π/2kmax)Blips (a=π/kmax)PW

Energies in QMC (eV/atom)
(Silicon in ß-Sn structure, 16 atoms, 15 Ry PW cutoff)



7.1x10-25.6x10-27.8T(s/step)
14.51514σ(VMC)

-17.976(11)-17.974(11)-17.955(25)Enl(VMC)
-225.177(23)-225.128(24)-225.191(50)Eloc(VMC)
178.369(22)178.360(22)178.349(49)Ek(VMC)

-227.669(4)-227.648(4)-227.677(8)Etot(VMC)

Blips (a=π/2kmax)Blips (a=π/kmax)PW

Energies in QMC (eV/atom)
(MgO in NaCl structure, 8 atoms, 200 Ry PW cutoff)

Blips and plane waves give identical results, blips are 2 orders 
of magnitude faster on 8 atoms, 3 and 4 order of magnitudes 
faster on 80 ad 800 atoms respectively (on 800 atoms: Blips 1 
day, PW 38 years)



Ω
ω

Maximally localised Wannier functions
(Marzari Vanderbilt)
[Williamson et al., PRL, 87, 246406 (2001)]

   
φi (r) = cmiψ m(

m=1

N

∑ r) Linear scaling obtained by 
truncating orbitals to zero 
outside their localisation region.

Unitary transformation:

And:

   D{φi (r)}= D{ψ m(r)}

Achieving linear scaling

   
ΨT (R) = exp[J (R)] cn

n
∑ Dn

↑{ψ i (rj )}Dn
↓{ψ i (rj )}

= exp[J (R)] cn
n
∑ Dn

↑{φi (rj )}Dn
↓{φi (rj )}



The VMC and DMC total energies are exactly invariant with respect 
to arbitrary (non singular) linear combinations of single-electron 
orbitals! Transformation does not have to be unitary.

   
φi (r) = cmiψ m(

m=1

N

∑ r)

Arbitrary linear combination:

And:

   
D{φm(r)}= D{cij}D{ψ i (r)}

   EL(R) = ΨT (R)−1 öHΨT (R)

Provided D{cij}≠ 0



We have set of orbitals             extending over region        .( )nψ r Ω Ω
ωWant to make orbital                                  

maximally localised in sub-region              .

Maximise “localisation weight” P:
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Express P as:
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where:  ,        mn m n mn m nA d A dω

ω

ψ ψ ψ ψ∗ Ω ∗

Ω

= =∫ ∫r r

Weight P is maximal when cn eigenvector of mn n mn n
n n

A c A cω
αλ

Ω=∑ ∑
associated with maximum eigenvalue , and maxλ maxP λ=

Linear scaling obtained by 
truncating localised orbitals 
to zero outside their 
localisation region      . Then 
for given r number of non-
zero orbitals              is O(1).

ω

( )mφ r



Convergence of
localisation weight 
Q=1-P in MgO. 
Squares: present 
method (D. Alfè and M. 
J. Gillan, J. Phys. Cond. 
Matter 16, L305-L311 
(2004))

Diamonds: MLWF
(Williamson et al. PRL, 87, 
246406 (2001)

Localisation weight in MgO
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Convergence of VMC energy.
Squares: Non-orthogonal orbitals. 
Diamons: MLWF 

Convergence of DMC energy, non-
orthogonal orbitals

VMC and DMC energies in MgO



Convergence of VMC energy.
Squares: Non-orthogonal orbitals. 
Diamons: MLWF 

Convergence of DMC energy, non-
orthogonal orbitals

VMC and DMC energies in MgO

Spherical cutoff at 6 a.u on a 7.8 a.u. cubic box (64 atoms): 
- WF evaluation 4 times faster
- Memory occupancy 4 times smaller


