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Monte Carlo methods

® Evaluation of multidimensional integrals:

» Quadrature methods, error ~ M-#d
e Monte Carlo methods, error ~ M-0->

| = j dRg(R)
(R) 20; [dR@(R)=1

I= [dRER)p(R);  f(R)=0(R)/p(R)

- pml LN A
| = Ilm{MZf(Rm)}~ sz(Rm)

M —o0 1



Variational Monte Carlo
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Diffusion Monte Carlo
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Extracting the ground state: substitute 7= It

T >0, ¥Y(R,7)>D,(R)

Fixed nodes:

r—>o, Y(R,7)—> CI)gN (R)

¥, (R)=exp[J(R)]D_c,D,{4,(r,)}D{4,(r )}



Cost of evaluating Y-

¥, (R)=exp[J(R)]D_c,D, {4, (r,)}D{4,(r )}

* N electrons
N single particle orbitals ¢
« ~ N basis functions for each ¢ if

4,(r,) = > ¢, exp{-iG -r}

Cost proportional to N3



Cost of evaluating Energy E

Variance of E Is proportional to N -
Cost of total energy proportional to N#

HOWEVER
Variance of E/atom is proportional to 1/N -

Cost of energy/atom proportional to N2
(relevant to free energies in phase transitions, surface
energies, ....)
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Cost of evaluating Y-

¥, (R)=exp[J(R)]Y_c,D {4, (r,)}D{4,(r )}

* N electrons
N single particle orbitals ¢
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localised
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Cost of evaluating Energy E

Variance of E Is proportional to N -
Cost of total energy proportional to N3

HOWEVER
Variance of E/atom is proportional to 1/N -
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B-splines: Localised functions sitting at the points of a uniform grid
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Cost of evaluating Y-

¥, (R)=exp[J(R)]Y_c,D {4, (r,)}D{4,(r )}

* N electrons
N single particle orbitals ¢
e ~ 0(1) basis functions for each 4 if

B(r)=c 1 r)
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Cost of evaluating Y-

¥, (R)=exp[J(R)]Y_c,D {4, (r,)}D{4,(r )}

* N electrons
e ~ 0(1) single particle localised orbitals #,if ¢ is localised
e ~ 0(1) basis functions for each 4 if

B(r)=c 1 r)

Cost proportional to N (Linear scaling)



Cost of evaluating Energy E

Variance of E Is proportional to N -
Cost of total energy proportional to N2

HOWEVER
Variance of E/atom is proportional to 1/N -

Cost of energy/atom independent on N'!
(relevant to free energies in phase transitions, surface
energies, ....)



B-splines (blips)
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» Defined on a uniform grid

* Localised: f(x)=0 for |x|>2

» Continuous with first and second
derivative continuous
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Blips in three dimensions:
O(r-R)=0(x— X )O(y-Y)O(z-Z)
Single-particle orbital representation:

v, (=23,0(r-R)

For each position r there are only 64 blip functions that are non zero. By contrast, in
a plane wave representation:

Wn (r) - ZCnGeiG.Ir
G

The number of plane waves in MgO is ~ 3000 per atom!
(HF pseudopotentials, 100 Ha PW cutoff)



Approximate equivalence between blips and plane waves

One dimension:
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Now consider:

(¢ | 20)
J16.Y (] 7Y

If v, and ¢, were proportional then o, = 1, and blip waves would be identical to
plane waves. Let's see what value of ¢ has for a few values on n.

o, =

n kn (oM Take N=12, for example
0 0 1.00
1 | n/6a |0.9986 k, =2zn/ Na
3 n/2a | 0.9858
K =xla
6 n/a | 0.6532 max

Therefore if we replace ¢, with . we make a small error at low k but maybe a
significant error for large values of k. Let’s do it anyway, then we will come back
to the size of the error and how to reduce it.



Representing single particle orbitals in 3 d
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Improving the quality of the B-spline representation

Reduce a and achieve better quality
May not be good enough l

rla

a=mxlk
max +

Blips are systematically improvable a < r/lk zla
max
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Example: Silicon in the 3-Sn structure, 16 atoms, 15t orbital

B—splines

. (s |y )
no \/<WrI13—splines l//rll?,—splines><l//r|]3W ‘l//rIIDW>

U} Ay Vxy |Vyy [Vzvy
999977 | .892597 | .991164 | .991164 | .996006

al(a :”/kmax)
a(a=m/2k

99999998 | .995315 | .999988 | .999988 | .999993

max)




Energies in QMC (eV/atom)

(Silicon in 3-Sn structure, 16 atoms, 15 Ry PW cutoff)

PW Blips (a=m/Kpy) Blips (a=m/2K5,)
E, (DFT) 43.863
E,..(DFT) 15.057
E.(DFT) 1.543
E, (VMC) 43.864(3) 43.924(3) 43.862(3)
Eoc(VMC) 15.057(3) 15.063(3) 15.058(3)
E.(VMC) 1.533(3) 1.525(3) 1.535(3)
E,..(VMC) -101.335(3) -101.277(3) -101.341(3)
o(VMC) 4.50 4.74 4.55
T(s/step) 1.83 0.32 0.34
E,.(DMC) -105.714(4) -105.713(5) -105.716(5)
o(VMC) 2.29 2.95 2.38
T(s/step) 2.28 0.21 0.25




Energies in QMC (eV/atom)
(MgO in NaCl structure, 8 atoms, 200 Ry PW cutoff)

PW Blips (a=n/K4,) Blips (a=n/2kK,,,,)
E,(VMC) 178.349(49) 178.360(22) 178.369(22)
E,..(VMC) -225.191(50) -225.128(24) -225.177(23)
E,(VMC) -17.955(25) -17.974(11) -17.976(11)
E,..(VMC) -227.677(8) -227.648(4) -227.669(4)
s(VMC) 14 15 14.5
T(s/step) 7.8 5.6x102 7.1x102

Blips and plane waves give identical results, blips are 2 orders
of magnitude faster on 8 atoms, 3 and 4 order of magnitudes
faster on 80 ad 800 atoms respectively (on 800 atoms: Blips 1
day, PW 38 years)



Achieving linear scaling

Maximally localised Wannier functions
(Marzari Vanderbilt) Q
[Williamson et al., PRL, 87, 246406 (2001)]

Unitary transformation:

B N Linear scaling obtained by
¢i (r) - Zcmiwm (I’) truncating orbitals to zero
m=1 outside their localisation region.

And:

D{,(r)}= D{w, (")}
¥, (R) = exp[d (RIS ¢, D {w, (r)¥D {w,(r, )}

=exp[J (R)IX_ ¢, D, {¢, (r,)3D, {4,(r)}



E (R)=¥_(R)"HY_(R)

The VMC and DMC total energies are exactly invariant with respect
to arbitrary (non singular) linear combinations of single-electron
orbitals! Transformation does not have to be unitary.

Arbitrary linear combination:

4,(0)= 2 C, (1)
And:

D{4,,(r)}= D{c, }D{w, ()} Provided  D{c, }+0



We have set of orbitals i, (I ) extending over region )

Want to make orbital ¢(r) =Y c,w, (r)

. L n
maximally localised in sub-region @ € Q .

Maximise “localisation weight” P: : : :
Linear scaling obtained by

2 2
P :jdr o(r) /fdr o(r) truncating localised orbitals
@ « to zero outside their

localisation region @ . Then

. _ * ) * Q )

Express P as: P =) cp Aan/Z Crn Amn G for given r number of non-
m,n m,n

zero orbitals #,(r) is O(1).
where: A = [dr oy, An=[dr v v,
) Q

Weight P is maximal when c_ eigenvector of Z A'C = laz A’c

n

. . . . n
associated with maximum eigenvalue A__,and P=A4__



Localisation weight in MgO

Convergence of
localisation weight
Q=1-P in MgO.
Squares: present

7] method (p. Alfe and m.

J. Gillan, J. Phys. Cond.
Matter 16, L305-L311
(2004))

Diamonds: MLWF

(Williamson et al. PRL, 87,
246406 (2001)
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VMC and DMC energies in MgO
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VMC and DMC energies in MgO

-232.21

231.3F b .

£ S oms
-
E 231.35F L
= ¥
T et e e s B e =14
3 S 23225
m £a)
23141 =
| L | L | L = ! ‘ 1 | 1 | 1
4 5 6 7 € 232.274 5 6 7 3
Cutoff distance (a.u.) Cutoff distance (a.u.)
Convergence of VMC energy. Convergence of DMC energy, non-
Squares: Non-orthogonal orbitals. orthogonal orbitals

Diamons: MLWF

Spherical cutoff at 6 a.u on a 7.8 a.u. cubic box (64 atoms):
- WF evaluation 4 times faster
- Memory occupancy 4 times smaller



