Path Integral Monte Carlo I

Summer school "QMC from Minerals and Materials to Molecules"

Burkhard Militzer

Geophysical Laboratory
Carnegie Institution of Washington militzer@gl.ciw.edu
http://militzer.gl.ciw.edu

Carnegie Institution of Washington Geophysical Laboratory

Study earth materials
High pressure experiments
Now also astrobiology

Diamond anvil cell exp.: Ho-kwang Mao, Russell J. Hemley

Department of Terrestrial Magnetism

Original mission: Measure Earth's magnetic field (Carnegie ship)
Today: astronomy (Vera Rubin, Paul Butler,...) and isotope geochemistry

PIMC: Outline of presentations

1: PIMC for distinguishable particles (BM)
2: Lab on distinguishable particles (BM)
3: PIMC for bosons (BM)
4: Bosonic applications of PIMC (BM)
5: PIMC for fermions (David Ceperley)
6: Lab on bosonic application (Brian Clark, Ken Esler)

Molecular Dynamics (MD)

 Simulate the motion of the atoms in real time

Pair potentials:

Forces on the atom, Newton's law:

Change in velocity:

Change in position:

$$
\begin{aligned}
& V(R)=\sum_{i>j} V\left(r_{i}, r_{j}\right) \\
& F_{i}=m_{i} a_{i}=-\frac{\partial V}{\partial r_{i}} \\
& \frac{\partial v_{i}}{\partial t}=\frac{F_{i}}{m_{i}} \\
& \frac{\partial r_{i}}{\partial t}=v_{i} \\
& \hline
\end{aligned}
$$

Microcanonical ensemble: Total energy is constant: $E=K+V$ but K and V fluctuate:

$$
\langle K\rangle=\sum \frac{1}{2} m\left\langle\vec{v}^{2}\right\rangle=\frac{3}{2} N k_{b} T \quad\langle V\rangle=\left\langle\sum_{i>j} V\left(r_{i}, r_{j}\right)\right\rangle
$$

Real time dynamics: Can e.g. determine the diffusion constant or watch proteins fold.

Monte Carlo (MC)

Generate states in the microcanonical ensemble

Pair potentials:	$V(R)=\sum_{i>j} V\left(r_{i}, r_{j}\right)$
Probability of	
configuration	$\pi(R)=\frac{1}{Z} \exp \left[-\frac{V(R)}{k_{b} T}\right]$

Metropolis algorithm (1953):

1. Start from configuration $R_{\text {old }}$
2. Propose a random move $R_{\text {old }} \rightarrow R_{\text {new }}$
3. Compute energies $E_{\text {old }}=V\left(R_{\text {old }}\right)$ and $E_{\text {new }}=V\left(R_{\text {new }}\right)$
4. If $E_{\text {new }}<E_{\text {old }}$ (down-hill) \rightarrow always accept.
5. If $E_{\text {new }}>E_{\text {old }}$ (up-hill) \rightarrow accept with probability

$$
A\left(R_{\text {old }} \rightarrow R_{\text {new }}\right)=\exp \left[-\frac{V\left(R_{\text {new }}\right)-V\left(R_{\text {old }}\right)}{k_{b} T}\right]=\frac{\pi\left(R_{\text {new }}\right)}{\pi\left(R_{\text {old }}\right)}
$$

Monte Carlo (MC)

Generate states in the microcanonical ensemble

Metropolis algorithm (1953):

1. Start from configuration $R_{\text {old }}$
2. Propose a random move $R_{\text {old }} \rightarrow R_{\text {new }}$
3. Compute energies $E_{\text {old }}=V\left(R_{\text {old }}\right)$ and $E_{\text {new }}=V\left(R_{\text {new }}\right)$
4. If $E_{\text {new }}<E_{\text {old }}$ (down-hill) \rightarrow always accept.
5. If $E_{\text {new }}>E_{\text {old }}$ (up-hill) \rightarrow accept with probability

$$
A\left(R_{\text {old }} \rightarrow R_{\text {new }}\right)=\exp \left[-\frac{V\left(R_{\text {new }}\right)-V\left(R_{\text {old }}\right)}{k_{b} T}\right]
$$

Generate a Markov chain of configurations: $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \ldots$

$$
\langle O\rangle=\frac{\int d R O(R) e^{-\beta V(R)}}{\int d R e^{-\beta V(R)}}=\frac{1}{N} \sum_{i=1}^{N} O\left(R_{i}\right)
$$

The Boltzmann factor is absorbed into the generated ensemble.

Quantum systems at finite temperature: Richard Feynman's path integrals

Real time path integrals
(not practical for simulations because oscillating phase)

$$
\begin{aligned}
& \Psi(R, t)=\int d R^{\prime} G\left(R, R^{\prime}, t-t^{\prime}\right) \Psi\left(R^{\prime}, t^{\prime}\right) \\
& \Psi(R, t)=\int d R^{\prime} e^{-i\left(t-t^{\prime}\right) \hat{\mathrm{H}}} \Psi\left(R^{\prime}, t^{\prime}\right)
\end{aligned}
$$

Imaginary time path integrals $\tau=$ it (used for many simulations at $\mathrm{T}=0$ and $\mathrm{T}>0$)

$$
\begin{array}{|c|}
\hline f(R, \tau)=\int d R^{\prime} e^{-\left(\tau-\tau^{\prime}\right) \hat{\mathrm{H}}} f\left(R^{\prime}, \tau^{\prime}\right) \\
\rho\left(R, R^{\prime}, \beta\right)=\langle R| e^{-\beta \hat{\mathrm{H}}}\left|R^{\prime}\right\rangle \\
\hline \hline e^{-\beta \hat{\mathrm{H}}}=e^{-E / k_{B} T}
\end{array}
$$

The principal object in PIMC: Thermal density matrix $\rho\left(R, R^{\prime} ; \beta\right)$

Density matrix definition:

$$
\begin{aligned}
& \rho\left(R, R^{\prime}, \beta\right)=\langle R| e^{-\beta \hat{\mathrm{H}}}\left|R^{\prime}\right\rangle \\
& \rho\left(R, R^{\prime}, \beta\right)=\sum_{S} e^{-\beta E_{S}} \Psi_{S}^{*}(R) \Psi_{S}\left(R^{\prime}\right)
\end{aligned}
$$

Density matrix properties:
Imaginary time path integrals $\tau=$ it
(used for many simulations)

$$
\begin{aligned}
& \operatorname{Tr}[\hat{\rho}]=\int d R\langle R| e^{-\beta \hat{H}}|R\rangle \\
& \langle\hat{O}\rangle=\frac{\operatorname{Tr}[\hat{O} \hat{\rho}]}{\operatorname{Tr}[\hat{\rho}]}
\end{aligned}
$$

$$
\begin{array}{|l}
\hline f(R, \tau)=\int d R^{\prime} e^{-\left(\tau-\tau^{\prime}\right) \hat{\mathrm{H}}} f\left(R^{\prime}, \tau^{\prime}\right) \\
\rho\left(R, R^{\prime}, \beta\right)=\langle R| e^{-\beta \hat{\mathrm{H}}}\left|R^{\prime}\right\rangle \\
\hline \hline e^{-\beta \hat{\mathrm{H}}}=e^{-E / k_{B} T}
\end{array}
$$

The principal object in PIMC: Thermal density matrix $\rho\left(R, R^{\prime} ; \beta\right)$

Density matrix definition:

$$
\begin{aligned}
& \rho\left(R, R^{\prime}, \beta\right)=\langle R| e^{-\beta \hat{H}}\left|R^{\prime}\right\rangle \\
& \rho\left(R, R^{\prime}, \beta\right)=\sum_{S} e^{-\beta E_{S}} \Psi_{S}^{*}(R) \Psi_{S}\left(R^{\prime}\right)
\end{aligned}
$$

Free particle density matrix:

$$
\begin{aligned}
& \rho\left(r, r^{\prime}, \beta\right)=\frac{1}{V} \int d^{3} k e^{-\beta \lambda k^{2}} e^{-i k r} e^{+i k r^{\prime}} \\
& \rho\left(r, r^{\prime}, \beta\right)=(4 \pi \lambda \beta)^{-D / 2} \exp \left[-\frac{\left(r-r^{\prime}\right)^{2}}{4 \lambda \beta}\right] \\
& \lambda=\frac{\hbar^{2}}{2 m} \\
& \beta=\frac{1}{k_{b} T}
\end{aligned}
$$

Burkhard Militzer, Carnegie Institution of Washington: "Path Integral Monte Carlo", 2007

Step 1 towards the path integral

 Matrix squaring property of the density matrixMatrix squaring in operator notation:

$$
\hat{\rho}=e^{-\beta \hat{\mathrm{H}}}=\left(e^{-(\beta / 2) \hat{\mathrm{H}}}\right)\left(e^{-(\beta / 2) \hat{\mathrm{H}}}\right), \quad \beta=\frac{1}{k_{B} T}
$$

Matrix squaring in real-space notation:

$$
\langle R| \hat{\rho}\left|R^{\prime}\right\rangle=\int d R_{1}\langle R| e^{-(\beta / 2) \hat{H}}\left|R_{1}\right\rangle\left\langle R_{1}\right| e^{-(\beta / 2) \hat{\mathrm{H}}}\left|R^{\prime}\right\rangle
$$

Matrix squaring in matrix notation:

$$
\left[\begin{array}{ccc}
\ldots & R^{\prime} & \ldots \\
R & \ddots & \vdots \\
\ldots & \ldots & \ldots
\end{array}\right]=\left[\begin{array}{ccc}
\ldots & R_{1} & \ldots \\
R & \ddots & \vdots \\
\ldots & \ldots & \ldots
\end{array}\right] *\left[\begin{array}{ccc}
\ldots & R^{\prime} & \ldots \\
R_{1} & \ddots & \vdots \\
\ldots & \ldots & \ldots
\end{array}\right]
$$

Burkhard Militzer, Carnegie Institution of Washington: "Path Integral Monte Carlo", 2007

Repeat the matrix squaring step

Matrix squaring in operator notation:

$$
\hat{\rho}=e^{-\beta \hat{\mathrm{H}}}=\left(e^{-(\beta / 4) \hat{\mathrm{H}}}\right)^{4}, \beta=\frac{1}{k_{B} T}
$$

Matrix squaring in real-space notation:
$\langle R| \hat{\rho}\left|R^{\prime}\right\rangle=\int d R_{1} \int d R_{2} \int d R_{3}\langle R| e^{-(\beta / 4) \hat{\mathrm{H}}}\left|R_{\mathrm{I}}\right\rangle\left\langle R_{1}\right| e^{-(\beta / 4) \hat{\mathrm{H}}}\left|R_{2}\right\rangle\left\langle R_{2}\right| e^{-(\beta / 4) \hat{\mathrm{H}}}\left|R_{3}\right\rangle\left\langle R_{3}\right| e^{-(\beta / 4) \hat{\mathrm{H}}}\left|R^{\prime}\right\rangle$

Path Integrals in Imaginary Time

 Simplest form for the paths' action: primitive approx.Density matrix: $\hat{\rho}=e^{-\beta \hat{\mathrm{H}}}=\left(e^{-\tau \hat{\mathrm{H}}}\right)^{M}, \beta=\frac{1}{k_{B} T}, \tau=\frac{\beta}{M}$

$$
\langle\hat{O}\rangle=\frac{\operatorname{Tr}[\hat{O} \hat{\rho}]}{\operatorname{Tr}[\hat{\rho}]}
$$

Trotter break-up:
$\langle R| \hat{\rho}\left|R^{\prime}\right\rangle=\langle R|\left(e^{-\tau \hat{\mathrm{H}}}\right)^{M}\left|R^{\prime}\right\rangle=\int d R_{1} \ldots \int d R_{M-1}\langle R| e^{-\tau \hat{\mathrm{H}}}\left|R_{1}\right\rangle\left\langle R_{1}\right| e^{-\tau \hat{\mathrm{H}}}\left|R_{2}\right\rangle \ldots\left\langle R_{M-1}\right| e^{-\hat{\mathrm{H}}}\left|R^{\prime}\right\rangle$
Trotter formula:

$$
e^{-\beta(\hat{T}+\hat{V})}=\lim _{M \rightarrow \infty}\left[e^{-\tau \hat{T}} e^{-\tau \hat{V}}\right]^{M}
$$

Path integral and primitive action S :

$$
\begin{aligned}
& \langle R| \hat{\rho}\left|R^{\prime}\right\rangle=\oint_{R \rightarrow R^{\prime}} d R e^{-S\left[R_{t}\right]} \\
& S\left[R_{t}\right]=\sum_{i=1}^{M} \frac{\left(R_{i+1}-R_{i}\right)^{2}}{4 \lambda \tau}+\frac{\tau}{2}\left[V\left(R_{i}\right)+V\left(R_{i+1}\right)\right]
\end{aligned}
$$

Path Integrals in Imaginary Time

Every particle is represented by a path, a ring polymer.

Density matrix: $\hat{\rho}=e^{-\beta \hat{\mathrm{H}}}=\left(e^{-\tau \hat{\mathrm{H}}}\right)^{M}, \beta=\frac{1}{k_{B} T}, \tau=\frac{\beta}{M}$

$$
\langle\hat{O}\rangle=\frac{\operatorname{Tr}[\hat{O} \hat{\rho}]}{\operatorname{Tr}[\hat{\rho}]}
$$

Trotter break-up:
$\langle R| \hat{\rho}\left|R^{\prime}\right\rangle=\langle R|\left(e^{-\tau \hat{H}}\right)^{M}\left|R^{\prime}\right\rangle=\int d R_{1} \ldots \int d R_{M-1}\langle R| e^{-\tau \hat{H}}\left|R_{1}\right\rangle\left\langle R_{1}\right| e^{-\hat{H} \hat{H}}\left|R_{2}\right\rangle \ldots\left\langle R_{M-1}\right| e^{-\tau \hat{H}}\left|R^{\prime}\right\rangle$
Analogy to groundstate QMC:
$\Psi_{0}(R)=\lim _{M \rightarrow \infty}\left(e^{-\tau \hat{\mathrm{H}}}\right)^{M}\left|\Psi_{T}\right\rangle=\int d R_{1} \ldots \int d R_{M-1}\langle R| e^{-\tau \hat{\mathrm{H}}}\left|R_{1}\right\rangle\left\langle R_{1}\right| e^{-\tau \hat{\mathrm{H}}}\left|R_{2}\right\rangle \ldots\left\langle R_{M-1}\right| e^{-\tau \hat{\mathrm{H}}}\left|\Psi_{T}\right\rangle$

PIMC literature:
D. Ceperley, Rev. Mod. Phys. 67 (1995) 279.
R. Feynman, "Statistical Mechanics", Addison-Wesley, 1972.
B. Militzer, PhD thesis, see http://militzer.gl.ciw.edu

Write your own PIMC code
 What is needed to start?

1) Initialize the paths as classical particle on a lattice.
2) Pick one "bead" and sample new position
3) Compute the difference in kinetic and potential action
4) Accept or reject based on

$$
A\left(R_{\text {old }} \rightarrow R_{\text {new }}\right)=\min \left\{1, \frac{\exp \left[-S\left(R_{\text {new }}\right)\right]}{\exp \left[-S\left(R_{\text {old }}\right)\right]}\right\}
$$

5) Try a "classical" move - shift a polymer as a whole.

Write your own PIMC code
 What is needed to start?

1) Initialize the paths as classical particle on a lattice.
2) Pick one "bead" and sample new position
3) Compute the difference in kinetic and potential action
4) Accept or reject based on

$$
A\left(R_{\text {old }} \rightarrow R_{\text {new }}\right)=\min \left\{1, \frac{\exp \left[-S\left(R_{\text {new }}\right)\right]}{\exp \left[-S\left(R_{\text {old }}\right)\right]}\right\}
$$

5) Try a "classical" move - shift a polymer as a whole.
6) Compute potential action and accept or reject.
7) Go back to step 2).

Example: PIMC for the harmonic oscillator

Classical simulation for $\mathrm{T} \rightarrow 0$ Gives the classical ground state $E_{0}=0$

PIMC simulation for $\mathrm{T} \rightarrow 0$ give the correct qm groundstate energy $E_{0}=\frac{1}{2} \hbar \omega$

Much better efficiency through direct sampling of the free particle d.m.

Distribution of "beads" for noninteracting particles

$$
P\left(\vec{r}_{i}\right)=\frac{\rho\left(\vec{r}_{i-1}, \vec{r}_{i}, \tau\right) \rho\left(\vec{r}_{i}, \vec{r}_{i+1}, \tau\right)}{Z}
$$

Normalization from density matrix squaring property

$$
\rho\left(\vec{r}_{i-1}, \vec{r}_{i+1}, 2 \tau\right)=\int d \vec{r}_{i} \rho\left(\vec{r}_{i-1}, \vec{r}_{i}, \tau\right) \rho\left(\vec{r}_{i}, \vec{r}_{i+1}, \tau\right)
$$

The distribution $P\left(r_{i}\right)$ is Gaussian centered at the midpoint of r_{i-1} and r_{i+1} Use the Box-Mueller formula to generate points r_{i} according to $P\left(r_{i}\right)$.

$$
A\left(R_{\text {old }} \rightarrow R_{\text {new }}\right)=\min \left\{1, \frac{T\left(R_{\text {old }} \rightarrow R_{\text {new }}\right) \pi\left(R_{\text {old }}\right)}{T\left(R_{\text {new }} \rightarrow R_{\text {old }}\right) \pi\left(R_{\text {new }}\right)}\right\}=1
$$

Building a Browning Bridge Method 1: Levy Flights

Multi-slice moves are more efficient!
Step 0: Pick an imaginary time window Step 1: Sample the first point r_{1} Step 2: Sample the second point r_{2} :

$$
P\left(\vec{r}_{2}\right)=\frac{\rho\left(\vec{r}_{1}, \vec{r}_{2}, \tau\right) \rho\left(\vec{r}_{2}, \vec{r}_{8}, 6 \tau\right)}{\rho\left(\vec{r}_{1}, \vec{r}_{8}, 7 \tau\right)}
$$

Building a Browning Bridge Method 1: Levy Flights

Multi-slice moves are more efficient!
Step 0: Pick an imaginary time window Step 1: Sample the first point r_{1} Step 2: Sample the second point r_{2} Step 3: Sample the third point r_{3} Step 4: Sample the forth point r_{4} Step 5: Sample the fifth point r_{5} Step 6: Sample the sixth point r_{6} Step 7: Sample the seventh point r_{7}

Last step: Accept or reject based on the potential action since it was not considered in the Levy flight generation.

Burkhard Militzer, Carnegie Institution of Washington: "Path Integral Monte Carlo", 2007

Building a Browning Bridge Method 2: Bisection

Multi-slice moves are more efficient!

Step 0: Pick an imaginary time window Step 1: Sample the first point r_{4} :

$$
P\left(\vec{r}_{i}\right)=\frac{\rho\left(\vec{r}_{i-4}, \vec{r}_{i}, 4 \tau\right) \rho\left(\vec{r}_{i} \vec{r}_{i+4}, 4 \tau\right)}{\rho\left(\vec{r}_{i-4}, \vec{r}_{i+4}, 8 \tau\right)}
$$

Building a Browning Bridge Method 2: Bisection

Multi-slice moves are more efficient!
Step 0: Pick an imaginary time window Step 1: Sample the first point r_{4} Step 2: Sample points r_{2} and r_{6} :

$$
P\left(\vec{r}_{i}\right)=\frac{\rho\left(\vec{r}_{i-2}, \vec{r}_{i}, 2 \tau\right) \rho\left(\vec{r}_{i}, \vec{r}_{i+2}, 2 \tau\right)}{\rho\left(\vec{r}_{i-2}, \vec{r}_{i+2}, 4 \tau\right)}
$$

Building a Browning Bridge Method 2: Bisection

Multi-slice moves are more efficient!
Step 0: Pick an imaginary time window Step 1: Sample the first point r_{4} Step 2: Sample points r_{2} and r_{6} Step 3: Sample the points $r_{1} r_{3} r_{5} r_{7}$

Huge efficiency gain by prerejection of unlikely paths using the potential action already at steps 1 and 2.

Burkhard Militzer, Carnegie Institution of Washington: "Path Integral Monte Carlo", 2007

Making a better action: Pair action method

$$
\langle R| \hat{\rho}\left|R^{\prime}\right\rangle=\oint_{R \rightarrow R^{\prime}} d R_{t} e^{-S\left[R_{t}\right]} \quad S\left[R_{t}\right]=\sum_{i=1}^{M} \frac{\left(R_{i+1}-R_{i}\right)^{2}}{4 \lambda \tau}+\frac{\tau}{2}\left[V\left(R_{i}\right)+V\left(R_{i+1}\right)\right]
$$

Pair action method:

$$
\begin{aligned}
& \rho\left(R, R^{\prime}, \tau\right)=\exp \left\{-S_{I}\left(R, R^{\prime}, \tau\right)\right\} \prod_{i} \rho_{0}\left(r_{i}, r_{i}^{\prime}, \tau\right) \\
& \exp \left\{-S_{I}\left(R, R^{\prime}, \tau\right)\right\} \approx \exp \left\{-\sum_{i<j} s_{I}\left(r_{i j}, r_{i j}^{\prime}, \tau\right)\right\}=\prod_{i<j} \frac{\rho\left(r_{i j}, r_{i j}^{\prime}, \tau\right)}{\rho_{0}\left(r_{i j}, r_{i j}^{\prime}, \tau\right)}
\end{aligned}
$$

The many-body action is approximated a sum over pair interactions. The pair action $s_{I}\left(r_{i j}, r_{i j}^{\prime}, \tau\right)$ can be computed exactly by solving the two-particle problem.

Three methods to derive the
 pair action $s_{I}\left(r_{i j}, r_{i j}^{\prime}, \tau\right)$

(1) From definition: Sum over eigenstates:

$$
\rho\left(R, R^{\prime}, \beta\right)=\sum_{S} e^{-\beta E_{S}} \Psi_{S}^{*}(R) \Psi_{S}\left(R^{\prime}\right)
$$

One needs to know all eigenstates analytically (free and bound). They are not known in most cases. Only derived for Coulomb problem [Pollock. Comm. Phys. Comm. 52 (1988) 49].

(2) Matrix squaring:

$$
\rho_{l}\left(r, r^{\prime}, \tau\right)=\int d r^{\prime \prime} \rho_{l}\left(r, r^{\prime \prime}, \tau / 2\right) \rho_{l}\left(r^{\prime \prime}, r^{\prime}, \tau / 2\right)
$$

One starts with a high temperature approximation and applies the squaring formula successively (10 times) to obtain the pair density matrix at temperature $1 / \tau$. Advantage: works for all potentials, provides diagonal and all off-diagaonal elements at once. Disadvantage: Integration is performed on a grid. Grid error must be carefully controlled.

(3) Feynman-Kac formula:

See next slide. Advantage: Very simple and robust. Numerical accuracy can be easily controlled. Disadvantages: Does not work for potentials with negative singularities (e.g. attractive Coulomb potential), off-diagonal elements require more work.

Use a browning bridge to derive the exact 2-particle action: Feynman-Kac

The exact action can be derived by averaging the potential action of free particle paths generated with a browning bridge. Feynman-Kac formula:

$$
\rho\left(r, r^{\prime}, \beta\right) \equiv \exp \left[-S\left(r, r^{\prime}, \beta\right)\right] \equiv \exp \left[-\left(S_{0}+S_{I}\right)\right]=\rho_{0}\left(r, r^{\prime}, \beta\right)\left\langle\exp \left[-\int d t V[r(t)]\right]\right\rangle_{B B}
$$

Burkhard Militzer, Carnegie Institution of Washington: "Path Integral Monte Carlo", 2007

Example for PIMC with distinguishable particles: Melting of Atomic Hydrogen

At extremely high pressure, atomic hydrogen is predicted to form a Wigner crystal of protons (b.c.c. phase)

Electron gas is highly degenerate.
Model calculation for a onecomponent plasma of protons.

Coulomb simulations have been preformed by Jones and Ceperley, Phys. Rev. Lett. (1996).

Here, we include electron screening effects by including Thomas Fermi screening leading to a Yukawa pair potential:

$$
V(r)=\frac{Z^{2}}{r} e^{-r / D_{s}}
$$

1) Distinguish between classical and quantum melting.
2) Study anharmonic effects in the crystal.
