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Reptation Monte Carlo and other topics

OUTLINE

• Review of Diffusion Monte 
Carlo and Path Integral Monte 
Carlo

• Path Integral representation of 
the projector Method

• What action to use?
• How to sample paths?
• Advantages and disadvantages
• Excited states and MaxEnt(?)
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Diffusion Monte Carlo process

• Imaginary time SE.
• This is a diffusion + branching 

process.
• Justify in terms of Trotter’s 

theorem.

Requires interpretation of the 
wavefunction as a probability 
density.
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Trotter’s theorem
• How do we find the solution of:

• The operator solution is:

• Trotter’s theorem (1959):

• Assumes that A,B and A+B are reasonable operators.

• This means we just have to figure out what each operator does 
independently and then alternate their effect.  This is rigorous in the 
limit as n→∞.

• In the DMC case A is diffusion operator, B is a branching operator.
• Just like “molecular dynamics” At small time we evaluate each 

operator separately.
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Importance Sampling
Kalos 1970,Ceperley 1979

• Why should we sample the wavefunction? The physically correct pdf
is |φ|2.

• Importance sample (multiply)by trial wavefunction.

• Evolution = diffusion    + drift         +         branching
• Use accept/reject step for more accurate evolution.

make acceptance ratio>99% . Determines time step.
• We have three terms in the evolution equation. Trotter’s theorem still 

applies.
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• To the pure diffusion algorithm we have added a drift step 
that pushes the random walk in directions of increasing 
trial function:

• Branching is now controlled by the local energy

• Because of zero variance principle, fluctuations are 
controlled.

• Cusp condition can limit infinities coming from singular 
potentials.

• We still determine ET by keeping asymptotic population 
stable.
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Schematic of DMC
Ensemble evolves 

according to

• Diffusion
• Drift
• branching

ensembleensemble
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Fixed-node method
• Initial distribution is a pdf.  

It comes from a VMC simulation.
• Drift term pushes walks away from the 

nodes.
• Impose the condition:
• This is the fixed-node BC

• Will give an upper bound to the exact 
energy, the best upper bound consistent 
with the FNBC.
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•f(R,t) has a discontinuous gradient at the nodal location.
•Accurate method because Bose correlations are done exactly. 
•Scales well, like the VMC method, as N3. Classical complexity.
•Can be generalized from the continuum to lattice finite temperature, 
magnetic fields, …
•One needs trial functions with accurate nodes.
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Fixed-Phase method
Ortiz, Martin, DMC 1993

• Generalize the FN method to complex trial functions:
• Since the Hamiltonian is Hermitian, the variational energy is real:

• We see only one place where the energy depends on the phase of the 
wavefunction.

• If we fix the phase, then we add this term to the potential energy. In a 
magnetic field we get also the vector potential. 

• We can now do VMC or DMC and get upper bounds as before.
• The imaginary part of the local energy will not be zero unless the right 

phase is used.
• Used for twisted boundary conditions, magnetic fields, vortices,

phonons, spin states, … 
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The mixed estimator problem
• Problem is that PMC 

samples the wrong 
distribution.

• OK for the energy
• Linear extrapolation helps 

correct this systematic 
error

• Other solutions:
– Maximum overlap
– Forward walking
– Reptation/path integrals
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• We sample the distribution:

Where the “primitive” link action is:

• Similar to a classical integrand where each particle turns 
into a “polymer.” 
– K.E. is spring term holding polymer together.
– P.E. is inter-polymer potential.

• Trace implies R1=Rm+1 closed or ring polymers
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“Distinguishable” particles
• Each atom is a ring 

polymer; an exact 
representation of a 
quantum wavepacket in 
imaginary time.

• Trace picture of 2D helium.
The dots represent the 
“start” of the path. (but all 
points are equivalent)

• The lower the real 
temperature, the longer the 
“string” and the more 
spread out the wavepacket.
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PIMC Sampling considerations
• Metropolis Monte Carlo that moves a 

single variable is too slow and will not 
generate permutations.

• We need to move many time slices 
together 

• Key concept of sampling is how to 
sample a “bridge”: construct a path 
starting at R0 and ending at Rt.  

• How do we sample Rt/2?  GUIDING GUIDING 
RULE.RULE. Probability is:

.
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How to sample a single slice.
• pdf of the midpoint of the 

bridge:(a pdf because it is 
positive, and integrates to 1)

• For free particles this is easy-a 
Gaussian distribution

PROVE: product of 2 Gaussians is a 
Gaussian.

• Interaction reduces P(R) in 
regions where spectator atoms 
are.

• Better is correlated sampling: we 
add a bias given by derivatives of 
the potential (for justification see 
RMP pg 326)

• Sampling potential Us is a 
smoothed version of the pair 
action.
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Reptation Monte Carlo (RQMC)
Ground State Path Integral (PIGS or GSPI)

• Similar technique to Diffusion MC:
– Instead of  (imaginary time=computer time), keep entire path in memory
– Update with a Metropolis based method instead of branching diffusing 

random walks
• Two key questions:

– How to move the paths? 
• Reptation means move like a snake. This is how polymers can move.
• Bisection since they are path integrals

– What to use for the action
• DMC action
• Path Integral action 

• Advantages
– Get exact properties: no forward walking or mixed estimators
– Good for energy differences.
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Polymer Reptation (slithering snake)

• Sample directly the bonding interaction
• Acceptance probability is change in non-bonding potential.
• Simple moves go quickly through polymer space. 

– But Ergodic?  Not always (what if both ends get trapped?)
• Decorrelation time is O(N2)..
• Completely unphysical dynamics or is it? 

– This is how entangled polymers actually move. (theory of de Gennes)

• Polymers move very slowly because of entanglement.
•A good algorithm is “reptation.” 

• Choose end at random.
• Cut off one end and stick onto the other end.
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Ground State Path Integrals

E(β) is an upper bound converging to the 
exact answer monotonically
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Do Trotter break-up into a 
path of p steps

Project a trial function as in DMC.
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bcc hydrogen, 

N=16 atoms

Reasonable convergence in 10-100 
slices.

DMC

VMC

timestep

300K
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Metropolis algorithm

Three key concepts:
1. Sample by using an ergodic random walk.
2. Determine equilibrium state by using detailed balance
3. Achieve detailed balance by using rejections.

Detailed balance: π (s) P(s → s’) = π (s’)P (s’ → s ).
Rate balance from s to s’.

Put π (s) into the master equation.

• Hence π(s) is an eigenfunction.
• If P(s ⇒s’) is ergodic then π (s)  is the unique steady state 

solution.
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General Metropolis MC
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Metropolis achieves detailed balance by rejecting moves.
Break up transition probability into sampling and 
acceptance:

The optimal acceptance probability that gives detailed 
balance is:

Note that normalization of π(s) is not needed or used!

( ) ( ) ( )
( )
( )

' ' '

' sampling probability

' acceptance probability

P s s T s s A s s

T s s

A s s

→ = → →

→ =

→ =



8/3/2007 Reptation MC           Ceperley 22

Reptation moves
• Let d be the direction of the move

-1 tail move
+1 head move

• Standard method.
– Choose “d” at random: 
– Acceptance probability is:

– Sample the same Gaussian used in DMC!
– Change in action involves wavefunction at new point, and previously saved numbers Takes 

O(p2) steps to decorrelate..
• One way reptation gives the wrong answers.
• Bounce method: 

– add “d” to the state.
– Change “d” only on rejections.
– Use same acceptance formula!!
– Does not satisfy detailed balance but still gives correct answer since it is an eigenfunction

of T.
– Moves are  1/(rejection rate) times more effective!
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Link action
• PIMC method: pair action plus nodal action
• DMC method. Use importanced-sampled evolution to suggest action 

(good for accurate trial functions)

Symmetrize with respect to R and R’ to get higher accuracy.

• time step is longer in RQMC than in DMC because action is 
symmetric (Hermitian).

• For fixed-phase: add a potential to avoid the sign problem.  Exact 
answer if potential is correct.

• Local energy enters through the acceptance rate and not through the 
branching.
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Averages

• Take them in the middle of the reptile.

• But you need to make p twice as large for averages (energy 
always converges faster)

• Forward walking with DMC is inherently unstable for long 
projection times because of weight fluctuations.

• No instability in RQMC; perhaps an ergodic problem.
• Little loss of efficiency in taking the middle with bounce 

algorithm, since every point is the middle one time.

( ) ( ) ( )/ 2lim pO O O Rβ β β→∞= Ψ Ψ =
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Energy difference methods

• We need a fast way of computing difference:           
[E(S)-E(S*)]

• Naïve (direct) method is to do separate 
(uncorrelated) samples of S and S*.  Noise increases 
by √2.

• Correlated methods map S walks into S* walks.
• Simplest is “VMC re-weighting” (1-sided)
• With fixed-node fermions, we need to worry about 

changes in the nodal surfaces. 1-sided methods can 
give the wrong answer because the distributions are 
not defined in the same regions of path space.

• Reptation is convenient because we know the 
probability for a path.
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Optimal Importance Sampling
• What distribution has the lowest variance for the energy difference? (ignoring 

autocorrelation effects)

• Sum of squares is almost as good, and eliminates barriers which might be 
hard to cross. 

• Symmetric in the two distributions.
• 2 orders of magnitude faster
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DMC
• State space: P walkers
• Action/Dynamics determined by H
• Observables have mixed estimator 

problem-need to do forward walking
• No permutations
• Trial function & trial energy
• Population bias
• Energy is “zero variance””

RQMC
• State space: reptile & direction
• Action fixed/Dynamics arbitrary
• Single particle moves more difficult
• Observables from middle of path
• Trial function
• Projection bias
• Energy is “zero variance”

PIMC
• State space: closed path & permutation
• Action fixed/Dynamics arbitrary
• Observables anywhere
• Particle statistics=Permutations
• Temperature>0! T=0 expensive.

'|| ReR Hτ−

COMPARISON OF METHODS
they are all based on thermal density matrix

they share features: the action, the sampling
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Calculation of excited-state energies
Correlation Function MC: J. Chem. Phys. 89, 6316 (1988). 

• No fixed-node upper bound for all excited states.
• Construct a basis of trial functions spanning excited states 

in question.
• Using VMC, calculate all the matrix elements as a function 

of imaginary time
• Find lowest energy in this basis
• Solve the generalized eigenvalue problem: 
• McDonald’s theorem

• Then           approaches the exact eigenvalue from above.
• Use correlated sampling to calculate all energies together. 

Best guiding function: 
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Properties of solution to GEP

• For a basis of size m, there exist “m” eigenvalues and 
orthonormal eigenfunctions:

• McDonald’s theorem: the nth eigenvalue in a basis is an upper 
bound to the nth “exact eigenvalue.

• We can always lower all the energies by augmenting the basis 
• When basis is complete, we get exact answers!
• Orthogonality taken into account in the solution.
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Diffusion/Reptation Monte Carlo method

• The time-evolved basis approaches the exact eigenfunctions:

• Using bosonic DMC (no nodes) or reptation calculate the N and H as a 
function of imaginary time. Note, H=dN/dt.

• In reptation it is the end-end correlation function
• Use same guiding function for importance sampling.
• Solve the generalized eigenvalue problem:

• Then                 approaches the exact λth energy exponentially fast and 
from above.
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ij i jN t f e f
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Typical results

• Look for plateau in energy.
• Error bars grows exponentially in time (sign problem).
• Best results are for lower energy states
• Can use symmetry to reduce matrix size.
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Remarks on CFMC

• Zero variance principle applies.
• Can treat a large basis and hence get a whole spectrum at 

once.
• Sign problem is still there.  In practice “t” cannot be too 

large.
• If nodes in the DMC are present, excited state energies will 

be wrong.
• Maybe MaxEnt methods can do better. But problems 

working in energy space. Much better in effective 
Hamiltonian space.

• Difficult to make realistic basis for many-body systems.
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Exciton-Exciton scattering
Shumway and DC, Phys. Rev. B 63, 165209-165215 (2001).

• 4-quantum particles
• Boundary conditions and energy 

determine phase shifts
• Use excited state method to get 

exact energies inside boundaries.
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Imaginary time correlations

• With PIMC and DMC we can calculate imaginary time 
dynamics:

(DMC corresponds to β→∞)
• If we could determine this analytically we could just 

substitute imaginary values of τ for real values.
• Dynamic structure function is the response to a density 

perturbation is (e.g. density-density response)
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Little structure or 
information in F(q,t)

but much in S(k,w). 
Sharp peaks at the 
excitations.

( ) ( ) ˆˆ1 HH
OF Z Oe Oe β τττ − −− −=
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Bayes’ theorem
• What is the most probable value of Sk(w) given:

– The PIMC data
– Prior knowledge of Sk(w).

• Bayes’ theorem (also used by Laplace)

• Likelihood function follows from central limit theorem:

• But what to choose for the prior Pp(S)?  Typical choice is 
the “entropy.”
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Now two routes to making the inversion:
1. Sample Sk(w). AvEnt Using MCMC make moves in 

Sk(w) space. Take averages and also get idea of the 
allowed fluctuations. Model defined self consistently

2. Find most probable Sk(w). MaxEnt Maximize function. Ok 
if the p.d.f. is highly peaked. Estimate errors by the 
curvature at the maximum. Fast to do numerically but 
makes more assumptions.

How do we choose α?  Choose it from its own prior function so the 
strength of the likelhood function and the prior function are balanced.  
P(α)=1/ α.
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Example: Liquid 4He
Boninsegni and DMC

• Calculate Fk(τ) using PIMC (UPI).
• AvEnt works beautifully in normal phase.
• Gives peaks too broad in the superfluid phase. Failure of 

the entropic prior.
• It makes the assumption that energy modes are uncoupled. 

This is false! Energy levels repel each other so that if there 
is energy at one level, it is unlikely at nearby values.

• Would require incredible precision to get sharp features.
• But good method for determining the excitation energy. 
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Comparison in normal liquid He phase

• MaxEnt works 
well in normal 
phase (T=4K)

• Modes are 
quantum but 
independent of 
each other
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Comparison in Superfluid
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Excitation energies

• Better PIMC data, more time 
values, smaller errors.

• Better to work in effective 
hamiltonian space, not 
energy space.

• Get more information, for 
example, 
– multiphonon correlation 

functions 
– Incorporate exchange 

values
– Analytic information about 

response properties

Reasonable excitation energies

Phonons                  rotons


