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Did we remove bias introduced by wave function?

We wanted to go beyond VMC → Fixed-node approximation

Results depend on the nodes of the trail wave function Ψ

How well does it work if we do not worry too much about Ψ?



DMC as black-box approach?

How well are we doing with a simple Ψ?

One determinant of natural orbitals, 6-311++G(2d ,2p) basis

Atomization energy of the 55 molecules of the G1 set

Mean absolute deviation from experiments εMAD

QMC CCSD(T)/aug-cc-pVQZ

εMAD 2.9 2.8 kcal/mol

Grossman, J. Chem. Phys. 117, 1434 (2002)

We are doing very well without much effort on Ψ !



How far can we go with the no-brain-no-pain approach?

QMC CCSD(T) DFT/B3LYP

εMAD 2.9 2.8 2.5 kcal/mol

Disappointing how well B3LYP works!

But with some more effort . . . QMC can do much better!

Example: Atomization energy of P2

DMC one-det 107.9(2)

DMC multi-det 115.9(2)

Experiment 116.1(5)

kcal/mol

Grossman, J. Chem. Phys. 117, 1434 (2002)



Alleviating wave function bias by optimization

How do we obtain the parameters in the wave function?

Ψ(r1, . . . , rN) = J
∑
k

dkD↑
kD↓

k

C10N2O2H
−
7 70 electrons and 21 atoms

VTZ s-p basis + 1 polarization

3 s + 3 p + 1 d functions for C, N, O

2 s + 1 p for H

. Parameters in the Jastrow factor J (≈ 100)

. CI coefficients dk (< 10)

. Linear coefficients in expansion of the orbitals (5540 !)



Customary practice for optimizing wave function

Jastrow-Slater wave function

Ψ(r1, . . . , rN) = J
∑
k

dkD↑
kD↓

k

. Jastrow factor optimized in variance/energy minimization

. Orbitals and dk coefficients in determinantal part are from

◦ Hartree-Fock or DFT (LDA, GGA, B3LYP . . .)

◦ CI or multi-configuration self-consistent-field calculation

◦ Optimized in variance minimization (small systems)

◦ Optimized in energy minimization (very simple for dk)



Optimization of trial wave function

How do we find the best parameters in Ψ = JΦ ?

First thought Let us minimize the energy!

EV =

∫
dRΨ∗(R)HΨ(R)∫
dRΨ∗(R)Ψ(R)

=

∫
dR
HΨ(R)

Ψ(R)

|Ψ(R)|2∫
dR|Ψ(R)|2

= 〈HΨ(R)

Ψ(R)
〉Ψ2

Straightforward minimization on finite MC sample will not work!



Why problems with straightforward energy minimization ?

Let us write the energy on a finite MC sample

Sample Nconf configurations from |Ψ(R, {α0})|2 with Metropolis

Energy of Ψ(R, {α}) on this set of MC configurations

E [α] =
1

Nconf

Nconf∑
i=1

HΨ(Ri , {α})
Ψ(Ri , {α})

wi

where

wi =

∣∣∣∣ Ψ(Ri , {α})
Ψ(Ri , {α0})

∣∣∣∣2
/

Nconf∑
i=1

∣∣∣∣ Ψ(R, {α})
Ψ(R, {α0})

∣∣∣∣2

E [α] on a finite MC sample is not bounded from below

⇒ Straightforward minimization of E [α] does not work



Is variance minimization an alternative?

Minimize the variance of the local energy

σ2 =
〈Ψ|(H− EV )2|Ψ〉

〈Ψ|Ψ〉
= 〈(EL(R)− EV )2〉Ψ2

Would this work?

Consider variance on a finite number of MC configurations

σ2[α] =

Nconf∑
i=1

(
HΨ(Ri , {α})
Ψ(Ri , {α})

− Ē

)2

wi

σ2 has a known lower bound σ2 = 0

Robust and stable optimization for very small values of Nconf



Variance minimization (1)

. Variance minimization on a fixed set of MC configurations

σ2[α] =

Nconf∑
i=1

(
HΨ(Ri , {α})
Ψ(Ri , {α})

− Ē

)2

wi

◦ Ē substituted with Eguess a bit smaller than current estimate Ē

⇔ Minimize a combination of variance and energy

◦ wi must be limited to a max value (or some Ri may dominate)

◦ Nconf =2000-3000 for 100 parameters in as many as 800 dim

. Variance minimization on-the-fly by computing gradient/Hessian

See next week lecture by Umrigar



Variance minimization (2)

Other advantages

. All eigenstates have zero variance

⇒ It is possible to optimize true excited states

. Cusp conditions or other constraints easily added

⇒ Minimize χ2 = σ2 +penalty functions

. Efficient procedures to optimize a sum of squares

e.g. Levenberg-Marquard

Main disadvantage

. It is variance not energy minimization



What about energy minimization?

We want the parameters in Ψ which give lowest VMC energy

But it would seem simple !?!

Let us compute gradient and Hessian of the energy in VMC



Energy minimization and statistical fluctuations

Wave function Ψ depends on parameters {αk}
Energy and derivatives of the energy wrt parameters {αk} are

EV =

∫
dR
HΨ(R)

Ψ(R)

|Ψ(R)|2∫
dR|Ψ(R)|2

= 〈EL〉Ψ2

∂kEV =

〈
∂kΨ

Ψ
EL +

H∂kΨ

Ψ
− 2EV

∂kΨ

Ψ

〉
Ψ2

= 2

〈
∂kΨ

Ψ
(EL − EV )

〉
Ψ2

The last expression is obtained using Hermiticity of H



Use gradient/Hessian expressions with smaller fluctuations

Two mathematically equivalent expressions of the energy gradient

∂kEV =

〈
∂kΨ

Ψ
EL +

H∂kΨ

Ψ
− 2EV

∂kΨ

Ψ

〉
Ψ2

= 2

〈
∂kΨ

Ψ
(EL − EV )

〉
Ψ2

Why using the last expression?

0

δE Ψ =Ψ0

Lower fluctuations → 0 as Ψ→ Ψ0



Computation of Hessian → Play similar tricks as for the gradient!

Rewrite expression in terms of covariances

→ 〈ab〉 − 〈a〉〈b〉 usually smaller fluctuations than 〈ab〉

Optimization of J
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5 orders of magnitude efficiency gain wrt use of original Hessian

C. Umrigar and C. Filippi, PRL 94, 150201 (2005)



Energy minimization is possible

. . . with simple modifications of straightforward approach

Various energy minimization schemes are available:

. Stochastic reconfiguration (Sorella, Casula)

. Energy fluctuation potential (Fahy, Filippi, Prendergast, Schautz)

. Perturbative method (Filippi, Scemama)

. Hessian method (Umrigar, Filippi, Sorella)

. Linear method (Nightingale, Umrigar, Toulouse, Filippi, Sorella)

See next week lecture by Umrigar



Importance of optimizing the wave function

Example: Excitation energy of hexatriene (C6H8)

State Wave function EVMC EDMC ∆E (eV)

11Ag HF -38.684(1) -38.7979(7) –

B3LYP -38.691(1) -38.7997(7) –

optimized -38.691(1) -38.7992(7) –

11Bu CAS(2,2) -38.472(1) -38.5910(7) 5.63(3)

B3LYP -38.482(1) -38.6030(7) 5.35(3)

optimized -38.493(1) -38.6069(8) 5.23(3)

expt. 5.22



Fixed-node diffusion Monte Carlo and excited states

Finds the best solution with the same nodes as trial Ψ

Is fixed-node DMC variational?

For lowest state in each 1-dim irreducible representation

What about “real” excited states?

In general, exact excited state for exact nodal structure

For excited states, even bigger role of the trial wave function

→ Enforces fermionic antisymmetry + selects the state



Excited states and the trial wave function

Dependence of DMC energy from wave function Ψ = J
∑

i ciDi

Lowest singlet excitation along torsional path of formaldimine
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At 0◦ and 90◦, ground and excited states have different symmetry

Otherwise, same symmetry → “Real” excited state



Excited state optimal wave function

Wave functions for multiple states of the same symmetry

ΨI (r1, . . . , rN) =
∑

i

c I
i J (r1, . . . , rN)× Di (r1, . . . , rN)

Common set of parameters in J and Di but different coefficients c I
i

Optimize parameters in J and Di by state averaging

ESA =
∑

I

wI
〈ΨI |H|ΨI 〉
〈ΨI |ΨI 〉

and preserve orthogonality through coefficients c I
i

Schautz and Filippi, J. Chem. Phys. 120, 10931 (2004); Filippi (2007)



Excitation energies of ethene C2H4

Difficulties: Valence-Rydberg mixing + core relaxation

defaults used                           

                                        

single point                            
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Schautz and Filippi, JCP (2004)
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Correlated sampling in VMC

Given two operators O, O′ and wave functions Ψ, Ψ′, compute

Ō′ − Ō =
〈Ψ′|O′|Ψ′〉
〈Ψ′|Ψ′〉

− 〈Ψ|O|Ψ〉
〈Ψ|Ψ〉

Do NOT perform independent runs → Use correlated sampling

To compute differences more accurately than separate quantities

Example: Map out potential energy surface ⇒ Compute ∆E

DFT/QC methods → Smoothly varying (systematic) error

Again problems in QMC with statistical fluctuations!



Interatomic forces and geometry optimization

Customary practice: Use DFT or QC geometries

One possible route → Compute forces by finite differences

Why problems with statistical fluctuations?

Example: Energy of a dimer versus bond length

Independent runs Correlated sampling

⇒ Forces cannot be computed from independent runs



Correlated sampling: The computation of potential energy surfaces

Primary geometry → H Ψ E

Secondary geometry → Hs Ψs Es

Es − E =
〈Ψs|Hs|Ψs〉
〈Ψs|Ψs〉

− 〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

No independent runs → MC configurations only from reference Ψ2

Es − E =
1

Nconf

Nconf∑
i=1

{
HsΨs(Ri )

Ψs(Ri )
wi −

HΨ(Ri )

Ψ(Ri )

}

wi = |Ψs(Ri )/Ψ(Ri )|2/
1

Nconf

Nconf∑
j=1

|Ψs(Rj)/Ψ(Rj)|2

Efficient if wi ≈ 1 and H and Hs closely related



Efficiency gain from correlated sampling

Example: B2, 1 determinant + simple Jastrow factor

E at experimental equilibrium bond length R0 = 3.005 a.u.

Es at stretched bond length by ∆R = −0.2, . . . , 0.2 a.u.

Compute Es − E from independent runs → ∆Eind

from correlated sampling→ ∆Ecorr

Efficiency gain =
σ2(∆Eind)

σ2(∆Ecorr)

-0.2 -0.1 0 0.1 0.2 0.3
∆R (a.u.)
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Note: We used space-warp coordinate transformation



A simple improvement: Space-warp coordinate transformation

We sample MC configurations from Ψ2 for primary geometry

H Ψ Rα R = (r1, . . . , rN)

Hs Ψs Rs
α R = (r1, . . . , rN)

Hs Ψs Rs
α Rs = (rs1, . . . , r

s
N)

↑ ↑
nuclei electrons

Electrons close to a nucleus move almost rigidly with the nucleus



Energy difference with space-warp transformation

Es − E =
1

Nconf

Nconf∑
i=1

{
HsΨs(Rs

i )

Ψs(Rs
i )

wi −
HΨ(Ri )

Ψ(Ri )

}

with wi =
|Ψs(Rs

i )/Ψ(Ri )|2 J(Ri)

1
Nconf

∑Nconf
j=1

∣∣∣Ψs(Rs
j )/Ψ(Rj)

∣∣∣2 J(Rj)

and J(R) Jacobian of transformation R −→ Rs

rms fluctuations of F =
∆E

∆R



Correlated sampling in DMC: A quick review of DMC

Drift-diffusion-branching short-time Green’s function is

V=∇Ψ/Ψ EL=HΨ/Ψ

↓ ↓

G̃ (R′,R, τ) ≈ N exp

[
−(R′ − R− V(R)τ)2

2τ

]
︸ ︷︷ ︸

T (R′,R,τ)

exp
[
−(EL(R) + EL(R′))

τ

2

]

A walker starts in R with weight w

◦ Drifts to R + V(R)τ

◦ Diffuses to R′

◦ Move accepted with p = min

{
1,
|Ψ(R′)|2 T (R,R′, τ)

|Ψ(R)|2 T (R′,R, τ)

}
◦ Growth/decay w ′ = w exp {− [(EL(R) + EL(R′))/2− ET] τ}



Correlated sampling in DMC

Primary walker R −→ R′ ⇐Drift-diffusion + accept/reject

←
−

←
−

Secondary walker Rs −→ Rs′ ⇐Warp transformation

PROBLEMS

. Dynamics of secondary walker is wrong

◦ R −→ R′ with T (R′,R, τ)

◦ R −→ Rs′ with warp transformation

⇒ Transition with T (R′,R, τ)/J(R) NOT Ts(Rs′,Rs, τ)

⇒ Secondary move accepted with probability p NOT ps

. Different nodes for primary and secondary walker



Correlated sampling in DMC: Approximate but accurate scheme

Observation : Correlated sampling in VMC is very efficient

⇒ Scheme similar to VMC but with results very close to DMC?

Filippi, Umrigar, Phys. Rev. B 61, R16291 (2000)



Correlated sampling in DMC: Approximate but accurate scheme

. Primary walker R −→ R′ ⇐ Drift-diffusion + accept/reject

←
−

←
−

Secondary walker Rs −→ Rs′ ⇐ Warp transformation

. Keep ratios W =

∣∣∣∣Ψs(Rs)

Ψ(R)

∣∣∣∣2 J(R) in averages as in VMC

If we stopped here ⇒ VMC and sample Ψ2 and Ψ2
s

. Growth/decay step

w = w exp
[
−(EL(R) + EL(R′)) τ/2

]
with EL =

HΨ

Ψ

ws = w

Nproj∏ exp [−(E s
L(Rs) + E s

L(Rs′)) τ/2]

exp [−(EL(R) + EL(R′)) τ/2]︸ ︷︷ ︸
product over last Nproj generations

with E s
L =
HsΨs

Ψs



Correlated sampling: Error in bond length of 1st-row dimers

VMC and DMC from the PES obtained by correlated sampling

RMS errors of bond length (a.u.)

RHF LDA GGA VMC DMC

∞ 0.054 0.036 0.049 0.014

DMC always improves upon VMC



Continuum Diffusion Monte Carlo

Grossman and Mitas, Phys. Rev. Lett. 94, 056403 (2005)

Efficient on-the-fly computation of DMC energies on AIMD path

w!R!!"; tMD # 1" # G$R!!" R!!% !!"; Ĥ!1"&
G$R!!" R!!% !!"; Ĥ!0"&

' "2
T$R!!"; Ĥ!1"&

"2
T$R!!"; Ĥ!0"&

e%!!!Eloc$Ĥ!1"&%Eloc$Ĥ!0"&"=2;

where Eloc is the local energy of the walker evaluated with
the given Hamiltonian and corresponding trial function
"T . The ratio of wave functions corrects for the dynamical
part of the Green’s function (see [7]) while the exponent
renormalizes the local energy weight term. For simplicity,
the weight is estimated using only a single DMC step
propagation history which is straightforward to calculate
with little overhead. This approach can be generalized by
taking a few more steps from the DMC history.

When adjusting the wave function to the new position of
ions, one needs to relax both the weights from local ener-
gies and from dynamical parts of the Green’s function. In
our tests across a range of systems, from a few to 256 elec-
trons, we found that three DMC propagation steps per MD
step eliminated any visible bias in the DMC energies, and
therefore we used three steps in all applications presented
below.

The accuracy of this continuous DMC (CDMC) ap-
proach is assessed by comparing the energies obtained
with those from separate, discretely sampled MD snap-
shots. Figure 1 shows this comparison of total energies
over a 50 fs time window for SiH4, Si5H12, and Si14H20

clusters at 1000 K. In each case, the cluster was heated and
allowed to equilibrate for several picoseconds before the
thermostat was turned off and data recorded. For simplic-
ity, the DMC correlation parameters, initially optimized for
each different cluster size, were kept intact during the dy-
namics since we found only marginal impacts on the DMC
energies. As seen in Fig. 1, the agreement between CDMC
and discretely sampled DMC energies is excellent for all
three cluster sizes. Furthermore, both the correct average
energy and a detailed description of the DMC energy path
are obtained within the CDMC approach in these cases, all
of which were run for 2 ps.

A comparison of efficiencies between the AIMD,
CDMC, and discretely sampled DMC methods for these
hot silicon clusters illustrates the efficiency of the CDMC
approach. As always, the DMC simulation time depends on
the desired or acceptable level of statistical noise; timing
comparisons are only meaningful once this criterion is de-
termined. For each cluster size, we chose a number of
DMC walkers such that the statistical fluctuations in the
CDMC energies are one-tenth the size of the variation in
total energy as a function of the MD time. This choice al-
lows one to observe the detailed changes in the energy
landscape throughout the dynamical simulation and leads
to a roughly similar amount of computational time for the
CDMC and the AIMD methods. The statistical resolution
is then independent of size since both the AIMD and the
CDMC methods scale as N3 with the number of electrons
in the system [8]; by fixing the computational time required
per MD step for the CDMC and the AIMD methods to be
the same for a given cluster size, we are in effect pinning
the statistical resolution across different cluster sizes as
well. For the AIMD part of the simulations, 12 electronic
iterations were found to be sufficient to converge the total
energy to within 10%6 a:u: at each MD iteration.

These results illustrate that with a modest computational
overhead beyond AIMD (i.e., a factor of 2 or less), a very
accurate description of the DMC energy landscape is ob-
tained using the CDMC approach. On the other hand, a full
DMC calculation performed on individual snapshots from
the MD simulation is substantially less efficient. For this
comparison, we have carried out a 3000-step DMC calcu-
lation every 100 MD steps using the same number of
walkers as in the CDMC runs. The resulting error bars
are roughly the size of the symbols in Fig. 1. Even with this
somewhat coarse sampling of MD snapshots, the discrete
sampling DMC approach is an order of magnitude less
efficient than the CDMC approach.

Energy differences may also be evaluated on the fly
within the CDMC approach. For example, the optical gap
can be computed by coupling two DMC electron popula-
tions to the AIMD simulation, one for the ground state and
one for a given excited state (this doubles the CDMC
computational requirements). The excited state population
evolves in the same manner as described above, and the
ground to excited state total energy difference can be
evaluated at each step. Figure 2 shows the DMC singlet
optical gap computed within the CDMC approach and the
discrete sampling DMC approach for the Si5H12 cluster in
a 100 fs time window. For better comparison, we have
doubled the number of discretely sampled DMC points.
Again, note the excellent agreement between CDMC and
the discretely sampled DMC energies throughout.

An improvement in the description of the optical gap
during dynamical simulations illustrates an ideal applica-
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FIG. 1 (color online). DMC total ground state energies vs time
for 5 fs time intervals of an AIMD simulation of SiH4, Si5H12,
and Si14H20 at 1000 K. The circles (lines) correspond to dis-
cretely sampled (continuous) DMC calculations. The error bars
of the discretely sampled data are smaller than the symbol size.
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tion of the CDMC approach since DFT gaps are notori-
ously inaccurate and other methods for improving the gap
are too costly to apply during dynamics. The lower panel of
Fig. 2 shows the energy difference between the DMC and
local density approximation (LDA) highest occupied mo-
lecular orbital (HOMO)–lowest unoccupied molecular or-
bital (LUMO) gaps as a function of MD time. Note that the
difference is not constant but rather fluctuates between 0.8
and 1.2 eV over time, indicating that the trends in LDA
gaps as a function of strain may be inaccurate. The finite
temperature affects both DFT and DMC average gaps
which are smaller by !1:0 eV when compared with
T " 0 calculations.

In electronic structure calculations with ionic motion,
one can encounter an occasional change in the occupation
and ordering of one-particle orbitals due to temperature
fluctuations. This is well known in simulations of metals, at
state crossings, and in systems with (near-)degenerate
orbitals as in high-symmetry clusters. The orbital swapping
can be detected by evaluating overlaps between the rele-
vant subsets of orbitals, e.g., orbitals close to the Fermi
energy. Fortunately, the DMC samples enable one to com-
pute these overlaps both rapidly and with sufficient accu-
racy. Such an event is usually infrequent and when it
occurs, as in our calculation of the Si5H12 excited state,
we reequilibrate the set of walkers since the change in
nodal surfaces alters the spatial distribution of walkers
very significantly. Over a 2 ps MD time window, swapping
occurred one (zero) times among excited (ground) state
orbitals for this case.

In order to test the ability of the CDMC approach to
describe a bond breaking process, we compute the O-H
bond dissociation energy in a water molecule. This reac-
tion has been studied extensively by numerous theoretical
methods [9], and the dissociation energy (125:9 kcal=mol)
is well known experimentally. We use constrained AIMD,
such that the O-H distance is stretched uniformly by 0.01 Å

at each step and the molecule is allowed to relax at each
given distance constraint.

Figure 3 shows the CDMC energies as a function of the
change in O-H bond length from its equilibrium value
(!R) compared to discretely sampled DMC energies.
Note that from the ground state molecule through the tran-
sition structure region (!R! 0:5 "A) to full dissociation
(!R> 1:0 "A) the CDMC approach accurately reproduces
the correct DMC energy pathway. The DMC results give a
dissociation energy of 127#2$ kcal=mol, in excellent agree-
ment with experiment. The total number of CDMC steps
taken to obtain the data shown in Fig. 3 (solid line) is over
30 times less than the number of discrete sampling DMC
steps (circles). To describe the bond breaking, we tested
both the spin unrestricted single- and restricted two-
configuration trial wave functions; the wave function
with the double excitation to an antibonding orbital im-
proves the variational energy; however, the DMC energies
are within the error bars of CDMC energies in Fig. 3.

In addition to high temperature molecular oscillations
and bond dissociation, we apply the CDMC approach to a
full liquid simulation of 32-water molecules. The MD
trajectory is taken from a simulation at ambient conditions
using the TIP4F [10] classical flexible water model, in
order to assure that the structure and diffusion are in
good agreement with experiment, and to avoid the issues
associated with DFT water at 300 K [11]. The system was
equilibrated for 100 ps at 300 K using classical MD and
subsequent data taken using a time step of 0.25 fs with a
weakly coupled Berendsen-type thermostat [12]. Trial
functions for CDMC energies were obtained from a DFT
[Perdew-Burke-Ernzerhof (PBE) [13] ] ground state wave
function calculation at the TIP4F geometries. The heat of
vaporization of water is computed in our simulation from
the liquid binding energy, i.e., the average CDMC energy
for the 32-water system minus 32 times the DMC energy of
a single water molecule, Uliq %Ugas.
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FIG. 3 (color online). DMC energies for the dissociation of a
single H2O molecule as a function of the change in O-H distance
(!R) with respect to the equilibrium value. The circles corre-
spond to discretely sampled DMC energies with error bars
approximately of the size of the symbols. The solid line corre-
sponds to CDMC energies.
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FIG. 2 (color online). DMC HOMO-LUMO gap (eV, top pan-
el) and difference between DMC and LDA gaps (eV, lower
panel) vs time for a 100 fs time interval of an AIMD simulation
of Si5H12 at 1000 K. For the DMC gaps, the circles (lines) cor-
respond to discretely sampled (continuous) DMC calculations.
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. At tMD = 0, H(0). Equilibrate DMC population {R,w}

. At tMD = 1, H(1). Start from previous {R} and adjust w as

w = w

∣∣∣∣Ψ(R;H(1))

Ψ(R;H(0))

∣∣∣∣2 exp [−EL(R;H(1))τ ]

exp [−EL(R;H(0))τ ]

. Few DMC steps (3!) sufficient to equilibrate population {R′,w ′}



What about Hellman-Feynman theorem?

Consider H(λ) with λ parameter (nuclear coordinates)

E (λ) =
〈Ψ(λ) |H(λ)|Ψ(λ)〉
〈Ψ(λ)|Ψ(λ)〉

and
dE (λ)

dλ
=

〈
Ψ(λ)

∣∣∣dH(λ)
dλ

∣∣∣ Ψ(λ)
〉

〈Ψ(λ)|Ψ(λ)〉

True if Ψ(λ) is an eigenstate or Ψα(λ) minimizes energy wrt α

Problems with Hellman-Feynman forces in QMC



Hellman-Feynman forces in QMC

. Large fluctuations → Infinite for all-electron calculations!

∂αE = 〈∂RαH〉Ψ2 = 〈Fα〉Ψ2 ≈ 〈
1

r2
〉Ψ2 = finite

σ2(Fα) = 〈F 2
α〉Ψ2 − 〈Fα〉2Ψ2 =∞

Solution: Reduced variance method by Assaraf-Caffarel

F̃α = Fα + ∆Fα with 〈∆F 2
α〉Ψ2 = 0 but σ2(F̃α) finite

. If Ψ does not minimize EVMC ⇒ Systematic error in VMC

Use energy-minimized wave functions

Application Ab-initio MD for high-pressure liquid Hydrogen

Sorella and Attaccalite, cond-mat/0703800

Computation of forces/MD: Active field of research in QMC



Human and computational cost of a typical QMC calculation

Task Human time Computer time

Choice of basis set, pseudo etc. 10% 5%

DFT/HF/CI runs for Ψ setup 65% 10%

Optimization of Ψ 20% 30%

DMC calculation 5% 55%
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