Multi-configurational density functional theory by decomposition of the electron-electron interaction into long-range and short-range contributions

Julien Toulouse\(^1\), François Colonna\(^2\), Andreas Savin\(^2\)

\(^1\) Cornell Theory Center, Cornell University, Ithaca, New York, USA.
\(^2\) Laboratoire de Chimie Théorique, Université Pierre et Marie Curie, Paris, France.

In electronic structure calculations of atomic and molecular systems using density functional theory applied within the Kohn-Sham scheme, the usual (semi-)local density functional approximations to the exchange-correlation energy (local density approximation, generalized gradient approximations) generally describe adequately the well-transferable interactions at short interelectronic distances but do not describe well the very specific interactions due to possible energetic near-degeneracies in the non-interacting Kohn-Sham system. Simple examples of systems in this latter situation include the Be atom where the 2s and 2p levels are near-degenerate and diatomic molecules at dissociation where the bonding and anti-bonding orbitals become degenerate.

In this context, we present a multi-configurational density functional theory based on a decomposition of the Coulomb electron-electron interaction into long-range and short-range contributions. The long-range part of the interaction is treated by a standard multi-determinantal wave function method like a multi-configurational self-consistent field (MCSCF) calculation, which properly takes into account the near-degeneracy correlation effects, while the short-range part of the interaction is treated by adequately-constructed (semi-)local density functional approximations.

We apply this multi-configurational density functional theory on simple electronic structure problems involving near-degeneracy correlation effects: ground-state energy of the Be atom, dissociation of the H\(_2\) and Li\(_2\) molecules, avoided crossing in the torsion of the ethylene molecule. In all these cases, the proposed method performs better than the standard Restricted Kohn-Sham scheme with the usual density functional approximations.


For more references, see \url{www.lct.jussieu.fr/toulouse/}