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Introduction. Framework

Electrical conductivity

Jn.e. = −σ∇V

Ab initio approach to charge transport in electronic insulators
(e.g. ionic liquids: NaCl, KCl, part. dissoc. water, etc.)
Linear Response (Green-Kubo) formalism: conductivity from
equilibrium molecular dynamics simulations

σ ∝
∫ ∞

0
〈J(t) · J(0)〉 dt
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Introduction. Framework

Charge flux defined as time derivative of polarization P ≡ µ/Ω

J(t) = 1
Ω µ̇(t) = 1

Ω

N∑
I=1

ZI(t) VI(t)

where
Zij,I(t) ≡ ∂µi

∂Rj,I

is the Born charge, and VI(t) = ṘI is the nuclear velocity
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Introduction. Framework

The Born tensors Z(t) are strongly fluctuating with time

Figure: Diagonal elements of Z(t) for one H and O in partially
dissociated water. After French, Hamel, and Redmer, PRL 107 (2011)
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Introduction. Framework

Figure: After French, Hamel, and Redmer, PRL 107 (2011)

J = 1
Ω
∑

I
ZI VI J′ = 1

Ω
∑

I
qIVI

“Interestingly, the use of predefined constant charges can yield the same
conductivity as is found with the fully time-dependent charge tensors”
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Conductivity. Gauge Invariance

Green-Kubo and Einstein formulations:

σ ∝
∫ ∞

0
〈J(t) · J(0)〉dt ∝ lim

τ→ +∞

〈
|∆µ(τ)|2

〉
2τ

where the dipole displaced in a time τ is

∆µ(τ) = Ω
∫ τ

0
J(t)dt

We have the following1,2

Theorem (Gauge invariance)
The addition of a bounded term to µ(τ) does not affect σ

1L. Ercole, A. Marcolongo, P. Umari, S. Baroni, J. Low Temp. Phys. (2016)
2A. Marcolongo, P. Umari, S. Baroni, Nature Phys. (2016)
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Proof of gauge invariance
Take an additional term b(t), and consider µ′(t) = µ(t) + b(t)

σµ′µ′ = σµµ + σbb + 2σbµ

where
σbb = lim

τ→∞
〈|b(τ)− b(0)|2〉

2τ
and the cross term is

σbµ ≡ lim
τ→∞

〈[b(τ)− b(0)] · [µ(τ)− µ(0)]〉
2τ .

The following Schwarz inequality holds

σbµ ≤
√
σbbσµµ

If b is bounded, then σbb = 0, hence σbµ = 0

σµ′µ′ = σµµ
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Conductivity. Gauge Invariance

A

B

Path in the PBC-closed 3N-dimensional nuclear configuration space
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Conductivity. Gauge Invariance

A

A’
B ∆µAB ≡

∫
AB

dµ

= ∆µAA′ + ∆µA′B

the point A′ is the replica (periodic image) of the initial point
A sharing with the point B the same cell of the nuclear
configuration space.

⇒ When we wrap the trajectory in PBCs, the path connecting A
and A′ is closed (loop).
the open path A′B entirely belongs to one cell.
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Conductivity. Gauge Invariance

∆µA′B is bounded.

Therefore to evaluate σ we only need to consider

∆µAA′ =
∫

AA′
dµ

due to the closed path from A to A′:

σ ∝ lim
τ→∞

〈|∆µAB(τ)|2〉
2τ = lim

τ→∞
〈|∆µAA′(τ)|2〉

2τ

What can we know about ∆µAA′?
⇒ Charge-transport quantization
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Some considerations on cell size and BCs

The system size has to be larger than the relevant
correlation/diffusion lengths

⇒ Equilibrium properties are independent of specific BCs
adopted in the simulation

PBCs chosen since they
minimize size effects

the τ →∞ limit of Einstein’s formula commutes with
thermodynamic limit (not true in open BCs)

⇒ We argue that our conclusions do not depend on the system
size, and hold in the thermodynamic limit.
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Charge-transport quantization

Suppose
parameter dependent electronic Hamiltonian

ĤR(t), R(t) ≡ (R1(t), . . . ,RN(t))

Ĥ is cyclic, i.e. ĤR(0) = ĤR(T ) for some T
the evolution satisfies the hypotheses of the adiabatic theorem
(slow, gapped, non degenerate ground state)
the system is periodic along some macroscopic direction, say
i , with spatial period `.
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the evolution satisfies the hypotheses of the adiabatic theorem
(slow, gapped, non degenerate ground state)

the system is periodic along some macroscopic direction, say
i , with spatial period `.

F. Grasselli Electrical conductivity of liquid insulators



Charge-transport quantization

Suppose
parameter dependent electronic Hamiltonian
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Charge-transport quantization

Theorem (Thouless (1983), King-Smith, Vanderbilt, Resta (’90s))
The total transported charge along i in a closed path AA′ in
nuclear configuration space with PBCs:

Qi ≡
1
`

∫
AA′

dµi = ∆µAA′i
`

is an integer number,
Qi ∈ Z.
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Q is an integer constant

Qi is a continuous functional of the path connecting A and A′

Qi is integer
⇒ Qi is an integer constant, for any two paths connecting A

and A′ which can be continuously deformed into one
another
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Equivalent paths and separability of Qi

PBC-closed nuclear config space isomorphic to Z3N : each path AA′

expressed uniquely via the 3N-integer tuple n, where (nI,i ) indicates
the number of cells spanned by atom I along direction i .

Figure: Decomposition in elementary paths for 1D, N = 2 nuclear
configuration space: n = (1, 1).
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Separability of Qi in atomic contributions
We assume that all trivial loops (A′ ≡ A) can be shrunk to a point
without closing the electronic gap.

Qi =
N∑

I=1

3∑
j=1

n(I,j)q
(I,j)
i

where
q(I,j)

i = Qi [n = (0, . . . , 1︸︷︷︸
atom I along j

, 0, . . . , 0)] ∈ Z

The hypothesis above also implies that the qs are scalars:

q(I,j)
i = qIδij

If we further assume that the exchange of atoms of same species S
can be performed without closing the electronic gap, then

qI = qS(I)

.
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Ab initio conductivity from integer (fixed) charges

∆µAA′ = `
N∑

I=1
qS(I)nI

∆µ′(τ) ≡ Ω
∫ τ

0
J′(t)dt, with J′ = 1

Ω
∑

I
qS(I)VI

Evidently, we have

∆µ′(τ) = ∆µAA′(τ) +
∑

I
qS(I)

∫ B

A′
dRI(t)︸ ︷︷ ︸

bounded

lim
τ→∞

〈|∆µ(τ)|2〉
2τ = lim

τ→∞
〈|∆µAA′(τ)|2〉

2τ = lim
τ→∞

〈|∆µ′(τ)|2〉
2τ
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Ab initio conductivity from integer (fixed) charges

The ab initio conductivity can be obtained by replacing, for each
atom, its time-dependent, real-valued, Born charge tensor with an
integer, time-independent number.3

The auto-correlation functions of the fluxes differ, but their asymptotic-
time integrals (i.e. the conductivities) coincide.

3FG and Stefano Baroni, arXiv:1902.07256 accepted by Nature Phys.
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Numerical experiments

Performed via Quantum Espresso
1. Take a snapshot of liquid KCl AIMD simulation
2. Generate a loop for one nucleus (say K), discretized as a set

of different images (neb.x)
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Numerical experiments

3. Compute Born charge tensors for each atom

Zij,I = ∂µi
∂Rj,I

∣∣∣∣∣
E=0

= ∂Fj,I
∂Ei

∣∣∣∣
fixed nuclei

at each image of the path.

DFPT (phcg.x) and Berry’s phase formulation of polarization
(via CG in cp.x) yield same results.

4. Integrate dµi =
∑

I,j Zij,IdR(I,j) due to the path of the moving
atom and divide by the cell side to get qI
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Numerical experiments
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path coordinate
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and

Qx = −0.000(6) Qy = 0.000(2) Qz = 1.00(18)

qK = +1, charge in transit, not a static charge4

4We recover the result in Jiang, Levchenko, Rappe, PRL (2012) on solids
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Numerical experiments

Additivity:
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Numerical experiments

Exchange of two K atoms:
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Qx = 0 Qy = 0 Qz = +2
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Numerical experiments

Figure: Mean square displacement of dipole vs time
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Conclusions and future work

In liquid insulators
gauge invariance of transport coefficient and
charge-transport quantization arguments can be directly
applied to study charge transport

ab initio σ can be obtained by substituting Born tensors with
integer charges, classically associated (oxidation states) to
ions
only good trajectories (velocities) of atoms are needed:
correct forces via AIMD or neural networks (Linfeng’s talk).

Current/next steps (with Paolo Pegolo)
◦ investigate systems where charge transport occurs without
ionic core (mass) transport
◦ investigate systems where atoms of the same species are
present in different oxidation states
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