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Realistic Computation — What can we do?

Computational tools for electronic structure / condensed matter / quantum chemistry
have been developed since the beginning of computers.

Density functional theory is the workhorse of electronic structure theory.

The following aspects typically work well / reliably:

- Ground state lattice structure, phonons

- Solids with light elements

- Fermi surfaces, band structures (occupied part) of simple solids

Numerous open source software packages are readily available and easy to use.

Calculations are straightforward (laptop). No deep theory/computation knowledge
needed.

_: The Nobel Prize in Chemistry 1998: Walter Kohn "for his

5 g development of the density-functional theory" and John A.

N\ /4 Pople "for his development of computational methods in
b 8 quantum chemistry"




Computation — What would we like to do?

Physics perspective: Need to connect to experiment & theory

Strong Electron Correlation (d- and f-electron materials)

Finite temperature phenomena

(Electronic) Phase transitions

Simulation of optics experiment (ARPES, Raman, RIXS, conductivities, SHG...)
Simulation of transport experiment

Simulation of time-dependence

e Theory insight

Applied Math Perspective: Need to be right for the right reason

e A priori and a posteriori error estimate
e Possibility for adaptive refinement

e Rigorous uncertainty estimate
e No free parameters

It therefore becomes desirable that approximate practical methods of
applying quantum mechanics should be developed, which can lead to an
explanation of the main features of complex atomic systems without too

much ComPUtatlon' Paul Dirac, Proc. R. Soc. A 123 (1929), 714
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Consider an ...propagating
through a
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. solid.
...when it encounters Q‘-’o

another electron, it
gets deflected
according to the
Coulomb law... & &

...and if there are few of
these interaction
processes, and they are
simple enough, we can
enumerate them one-by-
one and draw pictures.

...but much of the formalism
remains valid and directly
connects to experiment: the
‘propagators’ are measured in
ARPES experiment.

All of this is straightforward on paper! Diagrammatic perturbation theory of the 1960s...

...when there are many
electrons and complex
‘entangled’ processes,
these simple pictures are
not sufficient...



Diagrammatic theories

Variants of theories:

e Bare low-order expansions (MP2, etc)

e Partial summation methods (RPA/GW’, ladders): Additionally capture certain
fluctuations

e (Conserving (®-/W-derivable) expansions: Additionally satisfy certain conservation laws,
thermodynamic consistency, and starting-point independence through self-consistency

e Embedding formulations: Additionally add non-perturbative contributions: route to
strong correlations

Variants of formulation:

e Real-frequency formulation (typically zero-T)
e Matsubara formulation (nonzero-T)
¢ Real-time / Keldysh / Non-equilibrium formulation:

...and there is much more: Expansions in hopping, expansion in non-local interactions
and correlations, expansion in external perturbations, ...

Additional non-diagrammatic approximations: quasi-particles, ...
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Laying the foundations — weak coupling

Remarkably non-trivial for a realistic solid!

e Finite temperature formalism: Billions of Matsubara frequencies needed to
resolve bare energy scales and temperature

e Sijze of interaction tensor:
e 120 orbitals per unit cell,
minimal 4x4x4 grid would use Vi B3 or (r)pi(r)or(r)ou(r)
405 TB of storage. tjkl — I — 1

e Computational effort for even the simplest analytic
theories far beyond current capabilities >*<

e Remarkable behind-the-scenes technical / numerical developments over the last
years in basis functions, compression methods, adaptive methods to enable low-
order diagram calculations in solids without additional approximations.

Yeh, Iskakov, Zgid, Gull, arXiv:2206.07660



Supersizing weak coupling expansions

Express diagram contraction as a sequence of blocked dense matrix
multiplications

Major peculiarity: O(N3) operations, O(N2) data. Graphics cards (GPUs) are
Large arithmetic intensity, little sensitivity to extremely efficient at running
latency. dense matrix multiplications!

High-end CPU: Prev-gen GPU: Current-gen GPU:  Next-gen GPU:
~1 TFlops/s, ~4K$ ~6 TFlops/s ~20 TFlops/s ~100 TFlops/s, ~10K$

C-N Yeh, S. Iskakov, D. Zgid, E. Gull, to be submitted



Weak coupling on supercomputers

100 -8 Speedup 20 - e s e R— 60- —=— Time for single iteration
----- Ideal speedup o 50
o 80- go)
© ~ C
U o60- 8_ é 30-
8_ O 20 -
n 40 - t 20 -
10- —=— TFlops/node
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----- Theoretical peak performance
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Antiferromagnetic MnO (6x6x6) within [fully self-consistent] GW on summit at ORNL
Runs at ~75% theoretical peak FLOP sustained, 20 — "
scales to hundreds of GPUs. ol  GatekiMigda
Finite-temperature weak coupling simulations of solids ¢
with ‘kosher’ many-body diagrammatics are now G
possible! 2 ] — -0
Thermodynamic consistency (...of the electronic _of B
system) validated in practice for real materials, both for ¢ \ =
self-consistent second-order PT and self-consistent GW * Z | e

C-N Yeh, S. Iskakov, D. Zgid, E. Gull, (2022) Temperature (Ha™)



Obtaining spectral functions

Si, 6x6x6 lattice, self-consistent GW

X W ppystRev. Lett. 1282056402 (2021)



Obtaining spectral functions

e Well-known problem with finite-temperature field theories: analytic continuation to
the real axis to obtain spectral functions is ill conditioned.

Gliw,) = 1 / ImG(w)dw Gliwy) = K (iwp, w)G(w)

T 1wy — W !
Alw) = ;ImG(w) Glw) = [K (iwy, )] G (iwy)

e |ittle progress can be made where data is noisy. However, when data is accurate,
progress is possible...

-« Green’s functions satisfy mathematical (‘Nevanlinna’) properties

Im G,(z) <0 for z € C™T

- It is possible (and rather straightforward) to construct a numerical
method that satisfies these mathematical properties

 Doing so vastly constrains the solution space and yields much
better continuations.

Jiani Fel

Phys. Rev. Lett. 126, 056402 (2021)



Green’s functions & Lehmann Representation

Lehmann representation

1 [(m|c]|n)
G =22 E - F

m,n

| 2

(e_BEn _I_ e_BEm)

G coincides with Matsubara Green’s function on imaginary axis, with
retarded Green’s function just above real axis. Define

1
A= —\(m\cﬂn)\z(e_ﬁEb + e FEm) > 0
For ny 4
Z2=x+1
G _ 7/ A - Az + E, — E,, —iy)
- (z+E,—FE,)+iy (z+E,—E,,)?+y?

Ay
(x 4+ B, — Ep)? + y?

And therefore for any Green’s function, independent of the system:

Im G,(z) <0 for z € C™T

ImS =

Phys. Rev. Lett. 126, 056402 (2021)



Nevanlinna functions are functions with a positive imaginary part on the
upper half of the complex plane.

NG = -G Is a Nevanlinna function

The invertible Mobius transform h maps the upper half plane to
the unit disk

| o ., D={z:|z| <1};
z—1 0 _
h(z):z— i’;, D=A{z:]z|] <1}
/B

< —I— (7 ap W iy
1 0/ ¢

Nevanlinna functions can be mapped onto Schur functions: Schur
functions map the open unit disk D to the closed unit disk D
(‘contractive’ functions). Every Schur function has a continued fraction
expansion that can be recursively defined.

Combine mapping to contractive functions with Schur’s continued fraction expansion to
obtain an intrinsically causal expansion for Green’s functions

Phys. Rev. Lett. 126, 056402 (2021)



The Schur algorithm

Input data fvi)=¢G i=12...M Y; = iw, € C* and G; € C*
Qontractlve B8(Y) = A =h(C)=S"" i=12,.. .M
interpolant. Ci+i

Start the interpolation by constructing an interplant through Y1. Express
this contractive interpolant as a function that is zero at Y1, and a
constant A+:

Issai Schur

We want 8(Y)) =A || <1

J. Schur, Uber potenzreihen, die im innern des einheit-
4)( Z) + Aq z—Y skreises beschrinkt sind, Journal fiir die reine und angewandte

Functional form 6(z) = Aip(z) + 1 Where ¢(z) = 2= Y 61(z)  Mathematik 1918, 122 (1918).

Such that ¢ € Band ¢(Y1) =0

Note that 81(z) is now an arbitrary contractive function. Express it as a sum of a function that is
A2 at Y2 and an arbitrary contractive function. Express that one as the sum of a function that is
As at Y3 and an arbitrary contractive function, iterate and repeat for all interpolation points.

This will result in an expression for all possible interpolants in terms of a remaining arbitrary
Schur/Nevanlinna function. We will use this freedom later.

Phys. Rev. Lett. 126, 056402 (2021)



The Pick criterion: existence of interpolants

I g(z;) =y; (v; €D,y; € 5) e

Then a Schur interpolant to g can be found iff the
Pick matrix is positive semi-definite. It has a unique solution
If furthermore the Pick matrix is singular.

G. Pick, Uber die beschrinkungen analytischer funktionen,
welche durch vorgegebene funktionswerte bewirkt werden-
ber die beschrinkungen analytischer funktionen, welche durch
vorgegebene funktionswerte bewirkt werden, Math. Ann. 78,

1L —Y;Yy ] 70 o1, Georg A. Pick
1 >k iwy
1 — X,

J

-1

Pz’j:

Provides a straightforward check on any input data. Transform

the data to the unit circle, evaluate Pick matrix, check if it has
negative eigenvalues. If it does, there WILL NOT be a positive s
spectral function. Up  10/p 50/p

Interesting observation: Monte Carlo data never fulfills this criterion. GW data only if very
well converged and not too many interpolation points. Synthetic benchmark data shows
very high precision at high frequency needed to make it work. Sign of the very constrained
nature of Nevanlinna/Schur function space.

Phys. Rev. Lett. 126, 056402 (2021)



Old Technology vs Nevanlinna

Band structure is Both continuations
' visible, individual bands _operatlng on same
111 can be separated input data!

1
o Ll N w BN w (0)] ~

———

w G X W L G

Maxent, orbital- and k-resolved

Fully self-consistent GW of
Si, no quasiparticle or similar
approximations, analytic
continuation of fully
interacting Green’s function.

Analytic >
continuation

W G X W L G

Nevanlinna, orbital- and k-resolved
Phys. Rev. Lett. 126, 056402 (2021)



Matrix-valued Carathéodory generalization

The Carathéodory class of matrix-valued analytic functions in the unit disk
(or: upper half plane) is defined as

C={M(2): M(z)+M'(2) >0 V|z| <1}

Note that M(z) + MT(Z) >0 Re{xTM(Z)ZE >0}

l.e. the real part of M is positive semidefinite.

. < C. Carathéodory, Uber den variabilitdtsbereich der koeffizien- K(DVO-TGVT(VOQ,
—1 G (w ) | S C ar at h é Od o) ry : Kj[r; t ;:OZ ni(.)tgiz;zﬂ(ligbf)i-e gegebene werte nicht annehmen, K(] p a 9 €0 6 0} p n
< - e~ P i
G (w) = 2mi g 7 (n|c;|m){mlci|n)d(w — En + Ep)

mmn

Insert x, do the Math:

(] —iG=(W)lr) = 2w Y ——(m| > s} [n)[P3(w = En + Eum)

Phys. Rev. B 104, 165111(2021)




The Hubbard Dimer
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Figure 2.2: The Hubbard dimer model interpolation, 2 random non-zero entries [rows are real(1), imag-
inary(1), real(2), imaginary(2) part] of the 4 x 4 matrices, on the real axis. Using input data with 107
standard deviation Gaussian noise. Left are Green's functions, middle are self-energies, right are cumu-
lants. The exact data comes from analytic model formula. Fitted data comes from continuing matrices
from the imaginary axis, which we get from analytic formula and disturbed with noise.

Phys. Rev. B 104, 165111(2021)



The Hubbard Dimer
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0 - '
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Figure 2.2: The Hubbard dimer model interpolation, 2 random non-zero entries [rows are real(1), imag-
inary(1), real(2), imaginary(2) part] of the 4 x 4 matrices, on the real axis. Using input data with 107
standard deviation Gaussian noise. Left are Green's functions, middle are self-energies, right are cumu-
lants. The exact data comes from analytic model formula. Fitted data comes from continuing matrices
from the imaginary axis, which we get from analytic formula and disturbed with noise.

Phys. Rev. B 104, 165111(2021)



Dyson commutes with continuation

G from 2

G from M

X W

Band structure of crystalline Silicon (26 orbitals per unit cell), simulation in Gaussian
orbitals with fully self-consistent GW; matrix valued continuation followed by Dyson
equation.

Giw,) ey 3 (iw,) el M (iw,)

A=Al

G () Gt 5 (o) Gt M ()

Phys. Rev. B 104, 165111(2021)



Careful with approximations!

[(w+in+ul—FI7F (W +in+ ) —F = Sgiag(w)] ™

10 AN 7/ .-.. ’f/

Truncation of the dynamical part of the self-energy (just the Fock matrix of the fully
interacting system); or truncation of the self-energy to just diagonal parts.

‘Diagonal’ approximations to the self-energy have a huge effect on the band structure.

Careful, this is what is usually done in LDA+DMFT-type calculations... and compensated
for by an appropriate choice of U, double counting, and downfolding.

Phys. Rev. B 104, 165111(2021)



Adaptation to relativistics (SOC)

e Spin-orbit coupling emerges ab-initio from the solution of the Dirac, rather than the
Schrodinger equation. Electrons and Positrons!

e Recent development in quantum chemistry: exact two-component relativistic
approach. In the x2c1e approximation, the two-body integrals remain non-relativistic

e Neglects relativistic corrections to the two-body integrals

e Diagrammatic structure remains unchanged, interaction vertices remain
unchanged, bare propagators pick up relativistic contributions. (Identical impurity
solvers!)

P B2 Example: self-consistent GW
"V simulation of Agl in the x2c1e
approximation ol |

Parameter free ab-initio spin- 0
-4 orbit coupling splits bands

B X WK I L U II' | )I( VIVII< II' LIJVIV
Non-relativistic Relativistic x2c1e
C-N Yeh, A. Shee, Q. Sun, E. Gull, D. Zgid, Phys. Rev. B 106, 085121 (2022)
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Adding correlations — the fluctuation route

e |argest source of error: lack of correlation from higher-order diagrammatics.

e Add a vertex?
e Yes, but only in model systems. Generalized susceptibilities have 3 momenta

and 3 frequencies, much too large to compute / store!
e How far can one get with diagrammatic expressions dependent on a single

frequency?

e Infinite number of diagrams so we can have phase transitions! One frequency
implies one geometric series. Obvious candidates: density, magnetic, and
superconducting diagram series.

RPN DYl M = IO

e T-matrix (magnetic and

9* S % ’ % ! @ ’ @ T superconducting ladders)
D+ 0 B

e All together: Flex

Bickers, Scalapino & White, PRL 62, 961 (1989)



Application to 3d Hubbard

e Simplest model with fermionic phase transition where exact result is known (QMC)
How well do these methods work? U=6t (outside weak coupling)

Iskakov & Gull, Phys Rev B 105, 045109 (2022)
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Application to 3d Hubbard

e Simplest model with fermionic phase transition where exact result is known (QMC)
How well do these methods work? U=6t (outside weak coupling)

- GF2

oé-'----'----ll-- i S B B

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Iskakov & Gull, Phys Rev B 105, 045109 (2022)



Application to 3d Hubbard

e Simplest model with fermionic phase transition where exact result is known (QMC)
How well do these methods work? U=6t (outside weak coupling)

7_ ¥ GW
) = GF2

6L Ladder

5F

W af

3r

2 F

1F /

O:""""""l" VA T R B
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Iskakov & Gull, Phys Rev B 105, 045109 (2022)



Application to 3d Hubbard

e Simplest model with fermionic phase transition where exact result is known (QMC)
How well do these methods work? U=6t (outside weak coupling)

;  GW
F — GF2
6:_ Ladderph
: = Ladderpp
5F
I _—
e 4F
3 F
2
1F /
O:.I VT B B
0.1 0.5 0.6 0.7

Iskakov & Gull, Phys Rev B 105, 045109 (2022)



Application to 3d Hubbard

e Simplest model with fermionic phase transition where exact result is known (QMC)
How well do these methods work? U=6t (outside weak coupling)

: — GW
A = GF2
6 f_ Ladderph

g Ladder

5 i FLEX
w 4L

3 T | L Ll

Iskakov & Gull, Phys Rev B 105, 045109 (2022)



Theory

Quantum Embedding

e Self-energy embedding theory

Sp
So
So

o @

Weakly correlated environment:
Large system size; solved approximately
by self-consistent GW

Strongly correlated subsets:
small; solved exactly

it system into weakly coupled background and strongly coupled orbitals
ve background approximately within weak coupling method
ve correlated orbitals exactly with impurity construction

Use self-consistent diagrammatic theories for feedback between weakly coupled
space and strongly coupled spaces

For models with local interactions and mean field background solution simplifies
to weak coupling+dynamical mean field when the correlated subspace is local

Zgid & Gull, New J. Phys. 19, 023047 (2017)



Self-energy embedding theory

Non-perturbative solution of the correlated subspace: solution of a qguantum
impurity model. Fast and numerically exact QMC impurity solvers exist.

Coupling to the environment appears as retardation
effects (‘hybridization function’). Bare interactions

small; solved exactl

Methodology can be viewed as an approximation to the Luttinger-Ward
functional of the crystal, containing all diagrams with all indices in the
correlated subspace, as well as all diagrams of the weak coupling method

Approach the exact limit by:

e Ramping up the number of diagrams in the weak coupling background
e Enlarging the correlated subspace of the impurity orbitals

Fully ab-initio: only choice of basis and choice of correlated subspace

required as external input

Zgid & Gull, New J. Phys. 19, 023047 (2017)



Example: correlated insulator SrMnQOs3

Gap opening due to strong Local correlation from Mn ¢, causes
Incorrect Metallic state local correlation from Mn 7,, qualitative and quantitative changes
60 - (a) scGW I‘ — Mnty 60 - (b) SEET, Setup A — Mnty 60 (C) SEET, Setup B — Mnty
I —— Mn g, [‘ —— Mn g [‘ —— Mn g
50 - ! — 02p, — 02p, . i} — 02p,
/ — 02ps — 02ps — 02p,
__ 407 " ! N — 03p, — 03p, — 03p,
3 - ! — 03p, — 03p, — 03p,
< 307 ] \ e rest | <307 1 Ny rest | <3017 1 NS 0Ny e rest
—— PES —— PES
20 1 —= XAS —-— XAS
101 ,
0l -8 5 -2 = 0 3 4 6 & 1w 10 8 10

w (eV) w (eV)
charge transfer insulator
(@) Mn tyq (b) Mn g4 (c)O2p (d) Mn 3d + O 2p
Se—— = = D =
N ——/ N\ \S— / —————— \———— ;
—————— ?E ———\ o
e ——— ) =\ — T =
-8 -6 -4 &—)Z(ev) 0 2 4 -8 -6 -4 ;Z(ev) 0 2 4 -8 -6 -4 (:)Z(ev) 0 2 4 -8 -6 -4 &—)Z(ev) 0 2 4
Cubic paramagnetic perovskite. Nominal 3 Name Number of impurity Descriptions
I A 1 Mn t
electrons in Mn 3d " ; Ma tg.: Ma e,
C 4 Mn t24; Mn eg; O pr; O po

C.N. Yeh, S. Iskakov, D. Zgid and E. Gull, Phys. Rev. B 103, 195149 (2021)



Example: correlated metal SrVOs

StMnO,
90
— Setup A
80 " Setup B
70 Mn:t2g+0:pn . SetUpC
I. . M thg+01pn___ XAS

§50- Mn:eg+O:pU!. | /
< 40 A

30 A

~10 -8 -6 -4 -2
w (eV) w (eV)
Sum of Mn 3d + O 2p local DOS of Total local DOS of SrVO, from SEET
StMnO;from SEET
Name Number of impurity Descriptions Name Imp Description
A 1 Mn t2g A 1 \'% Iy
B 2 Mn tgg; Mn €g B 3 \% t2g; O Prs 0 Po
C 4 Mn ta4; Mn eg; O pr; O po C 4 V 135 Veg; O pr; O ps

Embedding formulated in terms of bare interaction, screening generated by embedding

C.N. Yeh, S. Iskakov, D. Zgid and E. Gull, Phys. Rev. B 103, 195149 (2021)



Hierarchy for strong correlations

e |dea/dream of a convergent hierarchy. Every additional step adds
complexity but gets closer to the exact results

e Numerical analysis concept: Solutions provide both an a priori and an a
posteriori error estimate.

e Paired with an adaptive refinement scheme, solutions can be tuned from
cheap-but-fast to expensive-but-accurate. Prime example: FEM

Angels climbing
Jacob’s ladder
Bath Abbey, UK
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Hierarchy for strong correlations
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e |dea/dream of a convergent hierarchy. Every additional step adds
complexity but gets closer to the exact results
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e Numerical analysis concept: Solutions provide both an a priori and an a
posteriori error estimate.

e Paired with an adaptive refinement scheme, solutions can be tuned from
cheap-but-fast to expensive-but-accurate. Prime example: FEM
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Where do we stand?

Solid foundation to perform many-body theory ab initio, without adjustable
parameters, reproducibly and accurately.

Leading error is the weak coupling approximation. All other approximations (finite
size, basis set, DFT/starting-point dependence ) eliminated or under control.

We can now do ab-initio relativity & excitations!

Increasing diagram order is not a way forward, even though it is technically
doable.

Embedding works very well, both in models and in realistic systems. Technically
expensive, toolkit improves rapidly. Provides non-perturbative component.

Experimental connections at our fingertips

Still a long way to go to routine parameter-free ab-initio calculations for strong
correlations!
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