Demonstrating temperature transferability of neural network models replacing modern density functional theory 35th Electronic Structure Workshop 14.06. // Lenz Fiedler, Attila Cangi

www.casus.science

SPEASORED IN TH

Federal Ministry of Education and Research

FÜR WISSENSCHAFT UND KUNST

• Large scale simulations at ambient conditions and towards the warm dense matter regime (temperatures of $10^4 - 10^8$ K)

イロト イヨト イヨト

- Large scale simulations at ambient conditions and towards the warm dense matter regime (temperatures of $10^4 10^8$ K)
- Problem: Finite-temperature DFT scaling properties (Number of particles N, temperature τ)

イロト イロト イモト イモト

- Large scale simulations at ambient conditions and towards the warm dense matter regime (temperatures of $10^4 10^8$ K)
- Problem: Finite-temperature DFT scaling properties (Number of particles N, temperature τ)

- Large scale simulations at ambient conditions and towards the warm dense matter regime (temperatures of $10^4 10^8$ K)
- Problem: Finite-temperature DFT scaling properties (Number of particles N, temperature τ)
- Possible solution: models that directly learn electronic structure

もって きょうやく ゆう よう

• Electronic structure for N_i ions at <u>**R**</u> and N_e electrons at <u>**r**</u> accessed via Finite-Temperature DFT

イロト イヨト イヨト

ъ.

- Electronic structure for N_i ions at \underline{R} and N_e electrons at \underline{r} accessed via Finite-Temperature DFT
- Electronic density *n*(*r*) as central quantity

イロト イヨト イヨト

-

- Electronic structure for N_i ions at <u>**R**</u> and N_e electrons at <u>**r**</u> accessed via Finite-Temperature DFT
- Electronic density *n*(*r*) as central quantity
- Determined via minimization of electronic total free energy F

イロト イヨト イヨト イヨト

-

- Electronic structure for N_i ions at <u>**R**</u> and N_e electrons at <u>**r**</u> accessed via Finite-Temperature DFT
- Electronic density *n*(*r*) as central quantity
- Determined via minimization of electronic total free energy F

 $F[n] = E[n] - k_{\mathsf{B}}\tau_{\mathsf{e}}S_{\mathsf{s}}[n]$

- Electronic structure for N_i ions at <u>**R**</u> and N_e electrons at <u>**r**</u> accessed via Finite-Temperature DFT
- Electronic density *n*(*r*) as central quantity
- Determined via minimization of electronic total free energy *F*

$$F[n] = E[n] - k_{\rm B} \tau_{\rm e} S_{\rm s}[n]$$
$$E[n] =$$

- Electronic structure for N_i ions at <u>**R**</u> and N_e electrons at <u>**r**</u> accessed via Finite-Temperature DFT
- Electronic density *n*(*r*) as central quantity
- Determined via minimization of electronic total free energy *F*

$$F[n] = E[n] - k_{\rm B}\tau_{\rm e}S_{\rm s}[n]$$
$$E[n] = T_{\rm s}[n]$$

イロト イヨト イヨト イヨト

-

- Electronic structure for N_i ions at <u>**R**</u> and N_e electrons at <u>**r**</u> accessed via Finite-Temperature DFT
- Electronic density *n*(*r*) as central quantity
- Determined via minimization of electronic total free energy F

$$F[n] = E[n] - k_{\rm B}\tau_{\rm e}S_{\rm s}[n]$$
$$E[n] = T_{\rm s}[n] + E_{\rm H}[n]$$

イロト イヨト イヨト イヨト

-

- Electronic structure for N_i ions at <u>**R**</u> and N_e electrons at <u>**r**</u> accessed via Finite-Temperature DFT
- Electronic density *n*(*r*) as central quantity
- Determined via minimization of electronic total free energy *F*

 $F[n] = E[n] - k_{\mathsf{B}}\tau_{\mathsf{e}}S_{\mathsf{s}}[n]$ $E[n] = T_{\mathsf{s}}[n] + E_{\mathsf{H}}[n] + E_{\mathsf{e}\mathsf{i}}[n](\underline{\mathbf{R}})$

- Electronic structure for N_i ions at <u>**R**</u> and N_e electrons at <u>**r**</u> accessed via Finite-Temperature DFT
- Electronic density *n*(*r*) as central quantity
- Determined via minimization of electronic total free energy F

$$F[n] = E[n] - k_{\mathsf{B}}\tau_{\mathsf{e}}S_{\mathsf{s}}[n]$$

$$E[n] = T_{\mathsf{s}}[n] + E_{\mathsf{H}}[n] + E_{\mathsf{e}\mathsf{i}}[n](\underline{\mathbf{R}}) + E_{\mathsf{xc}}[n]$$

イロト イヨト イヨト イヨト

-

- Electronic structure for N_i ions at <u>**R**</u> and N_e electrons at <u>**r**</u> accessed via Finite-Temperature DFT
- Electronic density *n*(*r*) as central quantity
- Determined via minimization of electronic total free energy F

$$F[n] = E[n] - k_{\rm B}\tau_{\rm e}S_{\rm s}[n]$$

$$E[n] = T_{\rm s}[n] + E_{\rm H}[n] + E_{\rm ei}[n](\underline{\mathbf{R}}) + E_{\rm xc}[n] + E_{\rm ii}(\underline{\mathbf{R}})$$

イロト イヨト イヨト イヨト

-

- Electronic structure for N_i ions at <u>**R**</u> and N_e electrons at <u>**r**</u> accessed via Finite-Temperature DFT
- Electronic density *n*(*r*) as central quantity
- Determined via minimization of electronic total free energy *F*

$$F[n] = E[n] - k_{\rm B}\tau_{\rm e}S_{\rm s}[n]$$

$$E[n] = T_{\rm s}[n] + E_{\rm H}[n] + E_{\rm ei}[n](\underline{\mathbf{R}}) + E_{\rm xc}[n] + E_{\rm ii}(\underline{\mathbf{R}})$$

• T_s and S_s are calculated via non-interacting auxiliary Kohn-Sham system

イロト イヨト イヨト

- Electronic structure for N_i ions at <u>**R**</u> and N_e electrons at <u>**r**</u> accessed via Finite-Temperature DFT
- Electronic density *n*(*r*) as central quantity
- Determined via minimization of electronic total free energy *F*

$$F[n] = E[n] - k_{\rm B}\tau_{\rm e}S_{\rm s}[n]$$

$$E[n] = T_{\rm s}[n] + E_{\rm H}[n] + E_{\rm ei}[n](\underline{\mathbf{R}}) + E_{\rm xc}[n] + E_{\rm ii}(\underline{\mathbf{R}})$$

• *T*_s and *S*_s are calculated via non-interacting auxiliary Kohn-Sham system

$$\left[-\frac{1}{2}\Delta + v_{\rm KS}(\boldsymbol{r})[\boldsymbol{R}]\right]\phi_j(\boldsymbol{r}) = \epsilon_j\phi_j(\boldsymbol{r})$$

イロト イヨト イヨト

- Electronic structure for N_i ions at <u>**R**</u> and N_e electrons at <u>**r**</u> accessed via Finite-Temperature DFT
- Electronic density *n*(*r*) as central quantity
- Determined via minimization of electronic total free energy *F*

$$F[n] = E[n] - k_{\rm B}\tau_{\rm e}S_{\rm s}[n]$$

$$E[n] = T_{\rm s}[n] + E_{\rm H}[n] + E_{\rm ei}[n](\underline{\mathbf{R}}) + E_{\rm xc}[n] + E_{\rm ii}(\underline{\mathbf{R}})$$

• T_s and S_s are calculated via non-interacting auxiliary Kohn-Sham system

$$\begin{bmatrix} -\frac{1}{2}\Delta + v_{\text{KS}}(\boldsymbol{r})[\boldsymbol{R}] \end{bmatrix} \phi_j(\boldsymbol{r}) = \epsilon_j \phi_j(\boldsymbol{r})$$
$$n(\boldsymbol{r}) = \sum_{j=1}^{N'_e} f^{\tau_e}(\epsilon_j) \phi_j(\boldsymbol{r})^* \phi_j(\boldsymbol{r})$$

・ロット 御マネ 前マネ 中マ

• Temperature enters framework differently for τ_i and τ_e

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆

- Temperature enters framework differently for τ_i and τ_e
- τ_1 governs **<u>R</u>** and thus electron-ion interaction

- Temperature enters framework differently for τ_i and τ_e
- τ_1 governs **<u>R</u>** and thus electron-ion interaction
- $\tau_{\rm e}$ governs occupation of KS orbitals and entropy

-

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆

- Temperature enters framework differently for $\tau_{\rm i}$ and $\tau_{\rm e}$
- τ_1 governs **<u>R</u>** and thus electron-ion interaction
- $\tau_{\rm e}$ governs occupation of KS orbitals and entropy

F[*n*] =

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆

- Temperature enters framework differently for $\tau_{\rm i}$ and $\tau_{\rm e}$
- τ_1 governs **<u>R</u>** and thus electron-ion interaction
- $\tau_{\rm e}$ governs occupation of KS orbitals and entropy

F[*n*] =

- Temperature enters framework differently for $\tau_{\rm i}$ and $\tau_{\rm e}$
- τ_1 governs **<u>R</u>** and thus electron-ion interaction
- $\tau_{\rm e}$ governs occupation of KS orbitals and entropy

 $F[n] = T_{s}[n[\underline{R}, \tau_{e}]]$

- Temperature enters framework differently for τ_i and τ_e
- τ_i governs **<u>R</u>** and thus electron-ion interaction
- $\tau_{\rm e}$ governs occupation of KS orbitals and entropy

 $F[n] = T_{\rm S}[n[\underline{R}, \tau_{\rm e}]] + E_{\rm H}[n[\underline{R}, \tau_{\rm e}]]$

- Temperature enters framework differently for $\tau_{\rm i}$ and $\tau_{\rm e}$
- τ_1 governs **<u>R</u>** and thus electron-ion interaction
- τ_e governs occupation of KS orbitals and entropy

 $F[n] = T_{\rm S}[n[\underline{R}, \tau_{\rm e}]] + E_{\rm H}[n[\underline{R}, \tau_{\rm e}]] + E_{\rm ei}[n[\underline{R}, \tau_{\rm e}]](\underline{R})$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆

- Temperature enters framework differently for $\tau_{\rm i}$ and $\tau_{\rm e}$
- τ_i governs **<u>R</u>** and thus electron-ion interaction
- τ_e governs occupation of KS orbitals and entropy

 $F[n] = T_{\rm S}[n[\underline{R}, \tau_{\rm e}]] + E_{\rm H}[n[\underline{R}, \tau_{\rm e}]] + E_{\rm ei}[n[\underline{R}, \tau_{\rm e}]](\underline{R}) + E_{\rm xc}[n[\underline{R}, \tau_{\rm e}]]$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆

- Temperature enters framework differently for $\tau_{\rm i}$ and $\tau_{\rm e}$
- τ_i governs **<u>R</u>** and thus electron-ion interaction
- τ_e governs occupation of KS orbitals and entropy

 $F[n] = T_{\rm S}[n[\underline{R}, \tau_{\rm e}]] + E_{\rm H}[n[\underline{R}, \tau_{\rm e}]] + E_{\rm ei}[n[\underline{R}, \tau_{\rm e}]](\underline{R}) + E_{\rm XC}[n[\underline{R}, \tau_{\rm e}]] + E_{\rm ii}(\underline{R})$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆

- Temperature enters framework differently for $\tau_{\rm i}$ and $\tau_{\rm e}$
- τ_i governs **<u>R</u>** and thus electron-ion interaction
- τ_e governs occupation of KS orbitals and entropy

 $F[n] = T_{s}[n[\underline{R}, \tau_{e}]] + E_{H}[n[\underline{R}, \tau_{e}]] + E_{ei}[n[\underline{R}, \tau_{e}]](\underline{R}) + E_{xc}[n[\underline{R}, \tau_{e}]] + E_{ii}(\underline{R}) - k_{B}\tau_{e}S_{s}[n[\underline{R}, \tau_{e}]]$

- Temperature enters framework differently for τ_i and τ_e
- τ_i governs **<u>R</u>** and thus electron-ion interaction
- τ_e governs occupation of KS orbitals and entropy

 $F[n] = T_{s}[n[\underline{R}, \tau_{e}]] + E_{H}[n[\underline{R}, \tau_{e}]] + E_{ei}[n[\underline{R}, \tau_{e}]](\underline{R}) + E_{xc}[n[\underline{R}, \tau_{e}]] + E_{ii}(\underline{R}) - k_{B}\tau_{e}S_{s}[n[\underline{R}, \tau_{e}]]$

• $\tau_{\rm e}$ further determines $\eta = {\it N}_{\rm e}' - {\it N}_{\rm e}$

- Temperature enters framework differently for $\tau_{\rm i}$ and $\tau_{\rm e}$
- τ_i governs **<u>R</u>** and thus electron-ion interaction
- τ_e governs occupation of KS orbitals and entropy

 $F[n] = T_{s}[n[\underline{R}, \tau_{e}]] + E_{H}[n[\underline{R}, \tau_{e}]] + E_{ei}[n[\underline{R}, \tau_{e}]](\underline{R}) + E_{xc}[n[\underline{R}, \tau_{e}]] + E_{ii}(\underline{R}) - k_{B}\tau_{e}S_{s}[n[\underline{R}, \tau_{e}]]$

• $\tau_{\rm e}$ further determines $\eta = {\it N}_{\rm e}' - {\it N}_{\rm e}$

$$n(\mathbf{r}) = \sum_{j=1}^{N_{\mathrm{e}}^{\prime - \mathrm{e}}} f^{\tau_{\mathrm{e}}}(\epsilon_j) \phi_j(\mathbf{r})^* \phi_j(\mathbf{r})$$

• Both $\tau_{\rm i}$ and $\tau_{\rm e}$ are included in DFT

イロト イヨト イヨト

- Both τ_i and τ_e are included in DFT
- Unfavorable scaling with temperature \rightarrow machine learning models for total free energy

イロト イヨト イヨト

-

• Models usually do not take τ_e into account

イロト イヨト イヨト

• Direct inclusion via prediction of local density of states $d(\epsilon, \mathbf{r})$ (LDOS)

(日)

• Direct inclusion via prediction of local density of states $d(\epsilon, \mathbf{r})$ (LDOS)

イロト イヨト イヨト

• Direct inclusion via prediction of local density of states $d(\epsilon, \mathbf{r})$ (LDOS)

イロト イヨト イヨト

Background: MALA models

J.A. Ellis et al., Phys. Rev. B (2021, 10.1103/PhysRevB.104.035120)

L. Fiedler *et al.*, Mach. Learn.: Sci. Technol. (2022, 10.1088/2632-2153/ac9956)

Investigations for solid aluminium up to the melting point

- Investigations for solid aluminium up to the melting point
- Constant $\tau_e = 100 K$

▲ロ▶▲御▶▲臣▶▲臣▶ 臣 のQで

• Constant $\tau_i = 100 K$

Demonstrating temperature transferability of neural network models replacing modern DFT Lenz Fiedler, Attila Cangi | 13

- Constant $\tau_i = 100 K$
- Regular ML models incapable of predicting energy dependence on temperature

- Constant $\tau_i = 100 K$
- Regular ML models incapable of predicting energy dependence on temperature
- LDOS based equations in principle achieve this

-

- Constant $\tau_i = 100 K$
- Regular ML models incapable of predicting energy dependence on temperature
- LDOS based equations in principle achieve this

• This is due to the DOS only slightly changing with $\tau_{\rm e}$

• This is due to the DOS only slightly changing with τ_e

< E

• Aluminium between 100K and 933K, 5 model initializations per attempt, training on one temperature

▲□▶▲□▶▲□▶▲□▶ □ のQの

• Aluminium between 100K and 933K, 5 model initializations per attempt, training on one temperature

- Aluminium between 100K and 933K, 5 model initializations per attempt, training on one temperature
- Models in principle capable of temperature transfer, but multiple data points necessary

• Aluminium between 100K and 933K, 5 model initializations per attempt, training on multiple temperatures

• Aluminium between 100K and 933K, 5 model initializations per attempt, training on multiple temperatures

< E

- Aluminium between 100K and 933K, 5 model initializations per attempt, training on multiple temperatures
- Region of higher errors around room temperature

• Aluminium between 100K and 933K, 5 model initializations per attempt, training on 4 temperatures

• • • • • • • • • •

▶ ∢ ⊒

э

• Extrapolation with models in the τ_e domain becomes possible

• Extrapolation with models in the τ_e domain becomes possible

イロト イヨト イヨト

- Extrapolation with models in the τ_e domain becomes possible
- E.g. for laser heated electrons

イロト イヨト イヨト

э

Check MALA out on GitHub: https://github.com/mala-project

Thank you for your attention!

Further Reading: L. Fiedler, N.A. Modine, K.D. Miller, A. Cangi: Machine learning the electronic structure of matter across temperatures, 10.48550/arXiv.2306.06032

-

Parameter	Aluminium
Number of atoms	256
PW cutoff	100 Ry
k -grid	$8 \times 8 \times 8$
XC functional	PBEsol
Pseudopotential	Scalar-relativistic, optimized norm-conserving Vanderbilt
Temperatures	100K, 200K, 298K, 400K, 500K, 600K, 700K, 800K, 933K

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 → ⊙へ⊙

Parameter	2 temperatures	3 temperatures	4 temperatures
Network size Learning rate Activation function Optimizer Training data set	91 × 4 4 × 100 <i>K</i> 4 × 933 <i>K</i>	$4000 \times 4000 \times 4000$ 0.00005 LeakyReLU Adam $4 \times 100K$ $4 \times 500K$ $4 \times 933K$	4 × 100 <i>K</i> 4 × 298 <i>K</i> 4 × 500 <i>K</i> 4 × 933 <i>K</i>

 Analysis via cosine similarity S_C reveals larger structural differences at smaller temperatures

イロト イヨト イヨト イヨト

э

www.casus.science

TECHNISCHE UNIVERSITAT

SPEASORE3 IN THE

Federal Ministry of Education and Research STAATSMINISTERIUM FÜR WISSENSCHAFT UND KUNST

