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Multiple Scattering Theory
The Kohn-Sham equation is formally solved by

Write Hamiltonian as                       
& free particle Green function:

Green function for H:  
Define transition matrix T: 

The T matrix for the full system can be written in terms of the 
single site scattering t matrix and the scattering path matrix 

H = H0 + V
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Korringa-Kohn-Rostocker Method
! Periodic solid

" Pure metal, intermetallic compound, …..
" Lattice Fourier transform
" Scattering path matrix

" Energy bands given by poles of Green function

¾ Poles of scattering path matrix

¾ Korringa-Kohn-Rostoker method
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The Dirac equation for single scatterer

• Dirac equation:

• Free space solutions (V(r)=0):

[�c↵+
1

2
�c2 + V (r)] (E, r) = W (E, r)

J⇤(E, r) =

✓
W/c2 +

1

2

◆1/2 ✓ jl(pr)�⇤(r̂)
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The Dirac equation for single scatterer
• Ansatz: Expand solution in free space solutions using a phase 

integral:

• This allows us to write coupled differential equations for the 
sine and cosine matrices (SΛ’Λ and CΛ’Λ)

 ⇤(E, r) =
X

⇤0

S⇤0⇤(E, r)N⇤0(E, r)� C⇤0⇤(E, r)J⇤0(E, r)

d

dr
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X

⇤00
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The Dirac equation for single scatterer

• For r outside the scattering potential:

• Requires only the regular solution with the initial value 
condition

• i.e.

t⇤⇤0(E) = �1

p

X

⇤00

S⇤⇤00(E)(C⇤00⇤0(E)� iS⇤00⇤0(E))�1

 ⇤(E, r)r!0 = J⇤(E, r)

S⇤0⇤(E, 0) = 0

C⇤0⇤(E, 0) = ��⇤0⇤
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Example: single site Cu 3d scattering
X Liu et al

6

energy of the d-resonance moves to negative, at that point, 
the resonance peak will become a delta function and this cor-
responds to a bound state of the system. The second one is 
that the resonance peak in the relativistic case tends to move 
toward lower energies compared to the non-relativistic one. 
Taken to the extreme it means a resonance state can become 
a bound state due to relativistic effects. This can be seen as a 
result of relativistic contraction: the electrons move closer to 
the nucleus, which effectively expands the size of the poten-
tial, therefore more bound states can be accommodated.

5. Single-site charge density

In addition to the density of states, the electron charge den-
sity distribution is another quantity that is essential for a self-
consistent electronic structure calculation. Again we focus 
our attention to single-site scattering and hence only show the 
single-site charge densities here. Also by ‘charge density’ we 
actually mean the valence electron charge density. Using equa-
tion (32), the single-site charge density can be found by inte-
grating the Green’s function over energy. It is convenient to 
expand the charge density in terms of the spherical harmonics

( ) ( ) ( )∑ ∑ρ ρ θ φ=
=

×
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l

l m l m
0
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max

 (49)

Because of the cubic symmetry in the elements we calcu-
lated, for × =l2 8max  the only non-vanishing components are 
ρ ρ ρ ρ ρ ρ ρ± ± ±, , , , , ,0,0 4,0 4, 4 6,0 6, 4 8,0 8, 4 and ρ ±8, 8. Moreover, not 

Figure 3. The partial Krein IDOS of d electrons of copper corresponding to non-relativistic muf"n-tin (NRMT), non-relativistic full 
potential (NRFP), relativistic muf"n-tin (RMT) and relativistic full potential (RFP) calculations. There are 10 d channels in total and the 
number of degeneracy is shown for each curve.

Figure 4. The partial IDOS of d electrons of silver and gold in 
relativistic full potential calculation. There are 10 d channels in total 
and the number of degeneracy is shown for each curve.
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Calculation of Densities
• When the Green’s function is known expectation 

values of operators can be calculated as traces

• I.e. the charge and magnetization densities are 
given by

• The calculation of the Green’s Function can be 
implemented as an order-N scaling method on 
parallel computers

n(r) = � 1

⇡
Im

Z EF

�1
TrG(r, r; ✏)d✏
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Relativistic Multiple Scattering Theory

• Multiple scattering Green’s function

• Z are the regular solutions and J the irregular solutions of the 
single site scattering equation and scattering path matrix

• As             , J diverges as            . This leads to numerical 
instability of the solver for the coupled ODEs for S and C.

G(E, r, r0) =
X

⇤⇤0

Z⇤(E, r)⌧⇤⇤0(E)Z+
⇤0(E, r0)� Z⇤(E, r)J +

⇤ (E, r0)�⇤⇤0

⌧ = (t�1 �G0)
�1

r ! 0 r�l�1
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Relativistic Multiple Scattering Theory
• Split the Green’s function into single scatterer and 

remaining multiple scattering part:

• For real E,                              is real, so it can be ignored 
for calculations of total Energy, charge density, DOS, 
etc

G(E, r, r0) =Gs(E, r, r0) +Gm(E, r, r0)

Gs(E, r, r0) =
X

⇤⇤0

Z⇤(E, r)t⇤⇤0(E)Z+
⇤0(E, r0)�

X

⇤

Z⇤(E, r)J +
⇤ (E, r0)

Gm(E, r, r0) =
X

⇤⇤0

Z⇤(E, r) (⌧⇤⇤0(E)� t⇤⇤0)Z+
⇤0(E, r0)

Z⇤(E, r)J +
⇤ (E, r0)

n(E) = � 1

⇡
Im Tr

Z

⌦
G(E, r, r)dr
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Instability of the irregular solution

• Integrate Gm along contour in complex plane
• Integrate Gs on real axis taking into account zeros of the KKR 

matrix. G(E)

E
!" !#

Shallow	bound	
states

Resonance	
states
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Lattice Constant of Au
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Example: Polonium crystal structure
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Disordered Systems

• Many systems are not perfectly periodic crystals.
• Disorder is important for understanding materials such as alloys.
– Steel, Bronze, Brass, etc.

• Approaches for dealing with disordered and complex systems:
– Coherent Potential Approximation: average probabilistic distribution of 

atoms
– Locally Self-Consistent Multiple Scattering: real space large simulation 

cell to represent the actual placement of atoms
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Coherent Potential Approximation

21

! Korringa-Kohn-Rostoker coherent-potential approximation (KKR-CPA)
" Effective “coherent potential” medium 
" Characterized by effective t-matrix
" Determine ‘best’ effective t-matrix

! KKR-CPA condition
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Locally Self-Consistent Multiple Scattering

• Nearsightedness of electronic 
matter - Prodan & Kohn, 
PNAS 102, 11635 (2005)
–Local electronic properties 
such as density depend on 
effective potential only at 
nearby points.

• Locally self-consistent 
multiple scattering method - 
Wang et al., PRL 75, 2867 
(1995)
–Solve Kohn-Sham equation 
on a cluster of a few atomic 
shells around atom for which 
density is computed

–Solve Poisson equation for 
entire system - long range of 
bare coulomb interaction
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Locally Self-Consistent Multiple Scattering

Y. Wang et. al., Phys. Rev. Lett. 75, 2867 (1995)

• An O[N] algorithm
• Massively parallel and scalable, achieves nearly perfect weak 

scaling
• Solve Kohn-Sham equation on a cluster of a few atomic shells 

around atom for which electron density, ρ(r), is computed
• Solve Poisson equation for entire system (long range coulomb 

interaction)

Atom i
input: Vi(r)
compute: ti 

Vi(r) : potential
ti : single site scattering matrix 
τ : scattering path matrix
ρi(r) : charge density

j

k

n

m
tm

tj

tn

tk

ti

ti

ti

ti

receive: tj, tk,tm,tn
construct: τ
result: ρi(r)
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• Runtime is 8.6X faster for the GPU code (14.5 
PFlop/s)

• Energy consumed Is 7.3X less
o GPU accelerated code consumed 3,500 kW-hr
o CPU only code consumed 25,700 kW-hr

Power consumption traces for identical WL-LSMS runs with 
1024 Fe atoms on 18,561 Titan nodes (99% of Titan)

WL-LSMS Power Efficiency on Titan

M. Eisenbach et al. CPC 212, 2 (2017)
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Scalability on Frontier
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• Left: Weak scaling for FePt with 64 atoms / node from 2 to 4096 Frontier 
nodes. Right: Strong scaling on Frontier from 1024 to 4096 nodes
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Example of LSMS calculations
Magnetic anisotropy in FePt nanoparticle

Nature 542, 75 (2017)
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By comparing the atomic positions to an ideal fcc lattice, we estimated 
an average 3D precision of 21.6 pm (Extended Data Fig. 7a), which 
agrees with the multislice result.

Next, we classified the 3D chemical order/disorder of the FePt  
nanoparticle by determining the short-range order parameter (SROP) 
of all phases present in the 3D structure (Methods). The nanoparticle 
consists of two large L12 FePt3 grains with interlocking concave shapes 
(Fig. 1). Seven smaller grains are located at the boundary between the 
two large L12 grains, including three L12 FePt3 grains, three L10 FePt 
grains and a Pt-rich A1 grain (Fig. 1b and Supplementary Video 2). 
This level of complexity of the 3D chemical order/disorder can only 
be fully revealed by AET1. To illustrate this point, we used multislice 
ADF-STEM simulations to calculate 2D images from the 3D atomic 
model along the [100], [010] and [001] directions (Fig. 1c). Several ‘L10 
grain’ signatures appearing in the 2D images (magenta in Fig. 1c) are 
actually deceptive structural information, derived from the overlapping 
of the two large L12 grains.

Figure 2a shows the 3D grain boundaries (black lines) of the nan-
oparticle. The grains are more ordered in their cores and become less 
ordered closer to their surfaces. Four representative cut-outs of the 
atomic model are shown in Fig. 2b–e. The most chemically ordered 
region of the nanoparticle is at the core of a large L12 grain with a SROP 
close to 1 (Fig. 2b). Figure 2c shows the grain boundary width varying 
between two large L12 grains. Anti-phase boundaries between the two 
L12 grains are also observed (Extended Data Fig. 7b). The largest L10 
grain is shown in Fig. 1b (third grain from the left) and Fig. 2d. This L10 
grain sits between the two large L12 FePt3 grains (Fig. 2a) with each of 
its two Fe sub-lattices matching the Fe sub-lattice of the neighbouring 
L12 grains (Extended Data Fig. 5), suggesting the shared Fe lattice with 
its neighbouring grains may have facilitated the nucleation of the L10 
phase. The central region of the nanoparticle has the highest degree of 

chemical disorder, including a Pt-rich A1-phase grain (Fig. 2e), with 
much lower SROP values than those in the two large L12 grains.

To probe the 3D chemical order/disorder at the single-atom level, 
we analysed individual anti-site point defects in the 3D reconstruc-
tion of the nanoparticle. Figure 3a, b and Extended Data Fig. 7b show 
3D atomic positions overlaid on the reconstructed intensity of several 
representative anti-site point defects (arrows) in the L12 grains, where 
an Fe atom occupies a Pt atom site or vice versa. The anti-site point 
defects in these figures are clearly visible by comparing their local peak 
intensity with that of the nearby Pt and Fe atoms. Furthermore, swap 
defects are also observed (Fig. 3c), where a pair of nearest-neighbour 
Fe and Pt atoms are swapped. Overall, the FePt nanoparticle contains a 
substantial number of anti-site defects and chemical disorder. Figure 3e   
and g shows the anti-site defect density of the two large L12 grains 
(inset) as a function of the distance from the grain surface. Far outside 
each grain, the anti-site defect density approaches ∼ 50%, because two 
of the four sub-lattices in the two large L12 grains share the same sites 
of Pt atoms, while the other two sub-lattices swap Fe for Pt atoms and 
vice versa (Extended Data Fig. 5). The anti-site defect density drops to 
below 40% at the surface of the two grains and reduces to ∼ 3% for sites 
deep inside each grain. Figure 3f and h shows the SROP of the two large 
L12 grains as a function of the distance from the grain surface.

The striking similarities between the two large L12 grains—each 
has a concave shape with a highly-ordered core, a similar  chemically 
disordered boundary and a consistent distribution of the anti-site 
defect density (Fig. 3e–h)—suggest a potential formation  pathway 
in the nucleation and growth process of the nanoparticle. We 
note that as-synthesized FePt nanoparticles show large chemical 
 disorder with a Pt-rich core30. Such a 3D Pt-rich core is observed 
in our  measurements (Fig. 2e). During the annealing  process, Pt 
atoms  diffused out from the core30 and the nucleation of the L12 

[100] [010] [001]

ca

b

L12 fcc
L10

[100][010]

[001]

FePt

L12

L10 A1 L10L10
L12L12L12

L12

Figure 1 | 3D determination of atomic coordinates, chemical species 
and grain structure of an FePt nanoparticle. a, Overview of the 3D 
positions of individual atomic species with Fe atoms in red and Pt atoms in 
blue. b, The nanoparticle consists of two large L12 grains, three small L12 
grains, three small L10 grains and a Pt-rich A1 grain. c, Multislice images 

obtained from the experimental 3D atomic model along the [100], [010] 
and [001] directions, where several ‘L10 grains’ (magenta) appearing in the 
2D images are deceptive structural information. Colour bars indicate the 
degree of ordering, from pure L12/L10 to chemically disordered fcc. Scale 
bar, 2 nm.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

J. Appl. Phys. 109, 07E159 (2011)
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Comparison of LSMS and CPA
• We compare Hf0.05Nb0.05Ta0.8Ti0.05Zr0.05 using
– CPA, CPA with Madelung potential correction, LSMS for SQS structures 

(40-160 atom supercells) and LSMS for a 1120 atom random supercell
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Changing local environments in alloys

Standard CPA assumes constant Madelung potential for all species

This is not true: A possible correction is charge screening by the average net charge per species
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Statistical Mechanics

• Describes the behavior of a large ensemble of constituent 
particles that gives rise to macroscopic observables: 
thermodynamics.

• A physical system is described by phase space 
coordinates          that describe the state of each 
constituent of the particles, e.g. position, momentum, 
atomic species, magnetic moment, etc.

• The dimension of 𝛺 is huge: for a system describing the 
position and velocities of N atoms 𝛺=ℝ6N.

• The behavior of the system is determined by its 
Hamiltonian        , or energy, that maps 𝛺⟶ℝ 
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Statistical Mechanics

• At finite, non zero, temperature T (or inverse temperature 
𝛽=1/kBT) a system is in state 𝜉 with a probability that is given 
by the Boltzmann distribution:

• Observables of a system are measured as the averages 
over this probability density:

• The evaluation of this integral is the original application of 
the Metropolis algorithm

p(⇠;�) =
e��H(⇠)

R
⌦ e��H(⇠0)d⇠0
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hAi� =

Z

⌦
A(⇠)p(⇠;�)d⇠
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Statistical Mechanics of Materials from First Principles

• Traditionally MC sampling had been applied to model systems 
where the energy is fast and easy to evaluate.

• We are combining the statistical mechanics with first principles 
density functional theory calculations, where the energy of the 
system is the smallest eigenvalue of a partial differential equation 
with constraints that are given by the state of the system.

• Thus, H(𝜉) requires multiple CPU-hours to evaluate a single energy.
• ⇒ any reduction in the number of energy evaluations will save 

significant computational resources.
• ⇒ Build a surrogate model from first principles
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Statistical Mechanics of Materials from First Principles
• Traditionally: perform first principles calculations and construct a 

model that fits well to describe the desired physics. E.g. 
Magnetism & lattice vibrations in Iron
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Order/Disorder Transitions – CuZn (bcc)

ordered disordered 

(a)$ (b)$

ordered disordered 

(a)$ (b)$
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Sampling of chemical order using Wang-
Landau
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Order/disorder transition in CuZn
• 250 site bcc lattice 

occupied by Cu and Zn 
atoms

• Monte-Carlo moves swap 
occupations of randomly 
selected pairs 

• fully self consistent energy 
calculation for each 
configuration

• Calculated phase transition: 
870K (exp. 750K)
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Example: First Principles Wang-Landau sampling of alloys

MC time evolution of walkers in a WL-
LSMS calculation of a binary alloy (CuZn)

Each dot is a 250-atom DFT calculation !! 
> 600,000 accepted, > 60% rejected moves

Monte Carlo-ab initio simulation of finite 
temperature statistical physics of magnets and 
alloys
Ultimately: Reliably calculate material 
properties at finite temperature

Specific heat of CuZn.
Phase transition occurs
at 850K experimentally

S. Khan and M. Eisenbach, Phys. Rev. B 93, 024203 (2016).
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Goal: Accelerate Monte Carlo Stochastic 
Sampling
Total computational cost:

• T1: Calculate the change in energy 

• T2: “Random walk” with probability

1. Generate a new configuration x* 
from xi with probability q(xi , x*)

2. Calculate the change in energy,
3. Accept with probability:

4. Calculate and accumulate
physical observables

5. Repeat steps 1-3 until a desired
number of steps

�E
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Minimize the number of expensive evaluations of model functions
 -  decrease the time-to-solution ratio for stochastic simulations 

Formulate a machine learning approach with two model levels:

Level 2 - Predict a classifier model based 
on acceptance probability A(xi, x*) to 
directly generate Monte Carlo moves

Level 1 - Predict a regression model for 
the probability density distribution p(x)

A(xi, x
⇤) = p(x⇤)q(x⇤, xi)/p(xi)q(xi, x

⇤)
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Supervised Learning

• Goal: predict the total energy associated with a lattice 
configuration for an alloy system (e.g. Cu-Au, Fe-Pt)

• Idea: 

• Challenges: 
• Risk of overfitting (low quality estimate for new incoming data)
• Training of a neural network is a global non-convex 

optimization problem (between multiple local and global 
minima, only physically admissible ones are of interest – naive 
training could result in models with non-physical behavior)

1. Generate multiple lattice configurations and estimate the 
related total energy with accurate DFT calculations

2. Use the generated lattice configurations and estimated total 
energy as training set and test set for a neural network 
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Local Atomic Energy

where ~� = (�0, �1, · · · , �NL�1) is a configuration of NL atoms in the local interaction region
(LIR), with �0 representing the local atom. After obtaining the local energies, the total
energy is simply given by summing them over all lattice sites, i.e.,

Et =
X

i

Ei. (3)

Figure 1: (Color online) A schematic to illustrate the dependence of the local energy Ei on the local chemical
environment. The grey circle demonstrates the local interaction region, with the local atom in the center. In
practice, the local interaction zone for each atom includes multiple neighboring shells. The di↵erent colors
of the atoms signify di↵erent chemical species. Pair interactions of the nearest neighbor and next nearest
neighbor are also shown.

2.1. Linear EPI

Di↵erent models of the e↵ective Hamiltonian are investigated in this work. We first start
with the linear e↵ective pair interaction (EPI) model, in which the local energy is given by
a summation of all the pair interactions within the local interaction region,

Ei =
X

f

V f⇧f (~�i) + V 0 + ✏, (4)

where V f are the EPI parameters and ⇧f are the number of pair interactions of type f . The
feature index f is actually made up of three parts (p, p0,m), representing the element of the
local atom, the element of the neighboring atoms, and the coordination shell, respectively.
It is obvious that the EPI parameters in Eq. 4 can be obtained with linear regression. The
number of data sets is N ⇥ Nc, where Nc is the number of configurations. In practice, the
data sets of an n-component system are divided into n parts according to the elements, with
one model fitted for each chemical component. To improve the representativeness of the
data, the training sets need to contain various order and disorder structures. One simple
approach is to carry out the DFT calculation using supercells of di↵erent sizes, as illustrated
in Fig. 2. Within each supercell, the atoms are still randomly distributed, but due to the

4

The previous presented results used the total energy of 
the system as calculated by DFT.

The total Energy is taken to be the sum of local site 
contributions:

With                        and                                 the vector of 
site occupations within the local interaction zone.

A common approach is cluster expansion:

The EPI model is a special case with

Where f is the combined feature index (species, shell) 
and Π is the count of sites with this feature.

where ~� = (�0, �1, · · · , �NL�1) is a configuration of NL atoms in the local interaction region
(LIR), with �0 representing the local atom. After obtaining the local energies, the total
energy is simply given by summing them over all lattice sites, i.e.,

Et =
X

i

Ei. (3)

Figure 1: (Color online) A schematic to illustrate the dependence of the local energy Ei on the local chemical
environment. The grey circle demonstrates the local interaction region, with the local atom in the center. In
practice, the local interaction zone for each atom includes multiple neighboring shells. The di↵erent colors
of the atoms signify di↵erent chemical species. Pair interactions of the nearest neighbor and next nearest
neighbor are also shown.

2.1. Linear EPI

Di↵erent models of the e↵ective Hamiltonian are investigated in this work. We first start
with the linear e↵ective pair interaction (EPI) model, in which the local energy is given by
a summation of all the pair interactions within the local interaction region,

Ei =
X

f

V f⇧f (~�i) + V 0 + ✏, (4)

where V f are the EPI parameters and ⇧f are the number of pair interactions of type f . The
feature index f is actually made up of three parts (p, p0,m), representing the element of the
local atom, the element of the neighboring atoms, and the coordination shell, respectively.
It is obvious that the EPI parameters in Eq. 4 can be obtained with linear regression. The
number of data sets is N ⇥ Nc, where Nc is the number of configurations. In practice, the
data sets of an n-component system are divided into n parts according to the elements, with
one model fitted for each chemical component. To improve the representativeness of the
data, the training sets need to contain various order and disorder structures. One simple
approach is to carry out the DFT calculation using supercells of di↵erent sizes, as illustrated
in Fig. 2. Within each supercell, the atoms are still randomly distributed, but due to the
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large data sets, and the capability to handle them, is one of the most important reasons
for the resurgence of deep neural networks (DNN) in the last 10 years [34]. However, as
previously mentioned, DFT methods are computationally expensive, and this is the exact
reason that we resort to the surrogate model instead of directly using DFT. At first sight, the
analysis seems to indicate a dilemma that huge amounts of DFT calculations are inevitable
even for the surrogate model approach.

In this work, we propose to solve the above problem by a combination of two ideas: linear-
scaling DFT [35] and atomic local energies. Linear-scaling DFT utilizes the nearsightedness
principle [36] to reduce the computational complexity of conventional DFT from O(N3)
to O(N), where N is the number of atoms in the supercell. Compared to conventional
DFT, the speed advantage of linear-scaling is particularly significant for large supercells.
Di↵erent linear-scaling DFT methods have been implemented. In this work, we focus on the
locally self-consistent multiple scattering (LSMS) method [37]. The LSMS method achieves
linear scaling by restricting the quantum scattering of electrons within the so called local
interaction zone, but it still evaluates the electrostatic interactions everywhere. In the LSMS
method, the concept of atomic local energy is actually very natural since it always divides
the space into Voronoi polyhedra corresponding to each atom. The atomic local energy can
thus be obtained by integrating the energy density within the polyhedron, at a negligible
computational cost. By using the local chemical environment as the input and atomic local
energy as the output, as illustrated in Fig. 1, a single DFT calculation with an N -atom
supercell generates N data sets. Therefore, the combination of linear-scaling DFT and
atomic local energies technically reduces the time scaling of generating one DFT data from
O(N3) to O(0), which renders the use of complex models with thousands of parameters
feasible.

2. Results and discussion

In general, the e↵ective Hamiltonian can be obtained from two di↵erent approaches. One
is to first project the local chemical environment to the space spanned by a series of physical
features, such as ECIs, then establish a mapping from the features to the atomic local energy.
Note that unlike the traditional cluster expansion, the mapping between ECIs and energy is
not necessarily linear. A more interesting approach is to seek a mapping directly from the
local environment to the atomic local energy. Without the intermediate dimension reduction,
this method is more accurate in principle, and can be easily generalized to other materials.
Of course, in both cases a cuto↵ has to be set on the interaction range, otherwise the feature
space will be of infinite dimension. In the first approach, the local energy of the i-th lattice
site can be written as

Ei = H(~⌃i) + ✏, (1)

where ✏ denotes the random error due to the approximations in the model, and ~⌃ =
(⌃1,⌃2, · · · ,⌃Nf ) are the Nf physical features calculated from the local chemical environ-
ment. In the second approach, the local energy is given by

Ei = H(~�i) + ✏, (2)
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where ~� = (�0, �1, · · · , �NL�1) is a configuration of NL atoms in the local interaction region
(LIR), with �0 representing the local atom. After obtaining the local energies, the total
energy is simply given by summing them over all lattice sites, i.e.,

Et =
X

i

Ei. (3)

Figure 1: (Color online) A schematic to illustrate the dependence of the local energy Ei on the local chemical
environment. The grey circle demonstrates the local interaction region, with the local atom in the center. In
practice, the local interaction zone for each atom includes multiple neighboring shells. The di↵erent colors
of the atoms signify di↵erent chemical species. Pair interactions of the nearest neighbor and next nearest
neighbor are also shown.

2.1. Linear EPI

Di↵erent models of the e↵ective Hamiltonian are investigated in this work. We first start
with the linear e↵ective pair interaction (EPI) model, in which the local energy is given by
a summation of all the pair interactions within the local interaction region,

Ei =
X

f

V f⇧f (~�i) + V 0 + ✏, (4)

where V f are the EPI parameters and ⇧f are the number of pair interactions of type f . The
feature index f is actually made up of three parts (p, p0,m), representing the element of the
local atom, the element of the neighboring atoms, and the coordination shell, respectively.
It is obvious that the EPI parameters in Eq. 4 can be obtained with linear regression. The
number of data sets is N ⇥ Nc, where Nc is the number of configurations. In practice, the
data sets of an n-component system are divided into n parts according to the elements, with
one model fitted for each chemical component. To improve the representativeness of the
data, the training sets need to contain various order and disorder structures. One simple
approach is to carry out the DFT calculation using supercells of di↵erent sizes, as illustrated
in Fig. 2. Within each supercell, the atoms are still randomly distributed, but due to the
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plot of the nearest-neighbor short range order (SRO) parameters in the MoNbTaW data sets, for di↵erent
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size N.
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The EPI model with the number of coordination shells mmax = 6 is applied to the
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The coordination shell cuto↵ mmax determines the size of the local interaction region. The
impact of di↵erent mmax on the root mean square errors (RMSEs) are shown in Fig. 5. It can
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It is obvious that the EPI parameters in Eq. 4 can be obtained with linear regression. The
number of data sets is N ⇥ Nc, where Nc is the number of configurations. In practice, the
data sets of an n-component system are divided into n parts according to the elements, with
one model fitted for each chemical component. To improve the representativeness of the
data, the training sets need to contain various order and disorder structures. One simple
approach is to carry out the DFT calculation using supercells of di↵erent sizes, as illustrated
in Fig. 2. Within each supercell, the atoms are still randomly distributed, but due to the
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Fig. 1. The supercells of FeCo. (a) ordered structure B2; (b) disordered structure A2.

researchers who believe the existence of B2 phase generally agree
that the transition temperature is close to and less than1000K [13].

First-principlesmethods are promising tools to study this prob-
lem. Theoretically, if we can identify a temperature of order-to-
disorder phase transition that is within the A2 region, we can
answer the two questions at the same time. In this article, we
will address these two questions using our WL-CE method and
demonstrate the error bar of this method is controllable.

2. Methodology

2.1. The cluster expansion method

In the framework of the CEmethod, parametrizedHamiltonians
are employed to calculate total energy of an arbitrary configuration
� , i.e.,

E(� ) = J0 +

X

i

Ji�i +

X

i,j

Jij�i�j +

X

i,j,k

Ji,j,k�i�j�k + . . . (1)

where �i (0 or 1) represents the occupations of atom species and Js
are the interaction of the clusters. The accuracy of total energies
can be improved systematically by adding more terms and thus
inclusion of more clusters [14]. The Hamiltonians are theoretically
exact when considering all sub-clusters. In practice, the accuracy
of a CE Hamiltonian is measured by the so-called Cross-Validation
(CV) score, which is defined by

CV =

vuut1
n

nX

i=1

(Ei � Êi)2. (2)

Basically it is a variance of two sets of total energies, i.e., the set
of predicted ones (Ei) and the set of DFT-calculated ones (Êi), and
n is the number of configurations used in the fitting. It is worth
mentioning a DFT-calculated energy is excluded from the fitting
in the prediction of itself. Generally, a Hamiltonian is considered
to be satisfactory if (i) all ground states are predicted correctly;
(ii) the magnitudes of the effective cluster interactions (ECIs) die
off with increasing diameters of clusters and fall into a reasonable
range; and (iii) CV score is small enough for the specific purpose.
In this work, we employed Alloy-Theoretic Automated Toolkit
(ATAT) [15] together with Vienna Ab-initio Simulation Package
(VASP) [16,17] to obtain the Hamiltonian.

2.2. The Wang–Landau Monte Carlo method

We can generate random configurations using Monte Carlo
methods and calculate the total energy of each of the configura-
tions using a CE Hamiltonian. Many such calculations yield the
density of state (DOS) g(E(� )). Among themanyMonte Carlometh-
ods, we choose Wang–Landau method [4,5] since it can efficiently
avoid the driver being trapped in energy bins of high DOS. The

detailed algorithm for the Wang–Landau and Cluster-Expansion
method is described in Table 1. Basically it is amodifiedWLMonte-
Carlo algorithm for small system-sizes. The modified part of the
WL algorithm is the criterion for the histogram flatness. For finite-
size systems, particular the small sizes (e.g., 48 atoms), there exist
empty bins that prevent the realization of flat histograms. We
modify this criterion by introducing the scenario of masked bins.
A bin will be treated as an empty bin if it is not visited after a
large number of MC steps (e.g., 1000). Such a bin is not included
in the calculation of the flatness criterion. However, some bins
may be mistaken as empty bins at the initial stage, which merit
further considerations. In practice, the judgment of an empty bin
is performed in every update of the modification factor � (i.e., for
each update of �  � /2). If a masked bin is visited at a later
update, it will be reconsidered since that moment. So in principle
only really empty bins are masked.

Once the DOS g(E) is obtained by our WL-CE method, the
calculations of thermodynamic properties are straightforward. For
example, the internal energy U can be calculated by

U = hEi =

Z
dEEe

ln(g(E))��E/Z, (3)

or practically in this study by

U = hEi =

X

i

Eie
ln(g(Ei))��Ei/Z . (4)

The relation between internal energy of a system and temperature
is determined by

T = dU/dS. (5)

The specific heatCv can beused to identify transition temperatures,
which is calculated by

Cv =
hE2i � hEi2

k
2
B
T 2

. (6)

A transition temperature of a phase transformation is determined
by the location of the sharp peak of the T � Cv curve.

Transition temperatures are size-dependent and thus different
when calculated using different system sizes. In order to evalu-
ate the transition temperatures in the thermodynamic limit, we
monitor the following quantity as proposed by Binder and his
coworkers [18],

VN = 1�
hE4iN

3hE2i2
N

(7)

The fourth-order cumulant of energy as a function of system sizeN
has different behavior for the first-order and second-order phase
transitions. For the first-order phase transitions VN maintains a
prominent minimum at the transition temperature even in the
thermodynamic limit, while for the second-order phase transi-
tions, the local minima disappear and the curves become a flat
line with VN = 2/3. In addition, the crossing points of the VN

curves also indicate the ranges for the transition temperatures at
the thermodynamic limits.

In the microcanonical ensemble, the specific heat is

C
m

V
= ��2

✓
d
2
S

dU2

◆�1
= ��2

k
�1
B

✓
d
2 ln(g(E))

dE2

◆�1
. (8)

The microcanonical transition temperature T
m

c
at the thermo-

dynamic limit is obtained when C
m

V
= +1 or equivalently

d
2 ln(g(E))

dE2
|Ec= 0. This relation eventually leads to T

m

c
= ( dS

dE
)�1|Ec .

Therefore the location of Ec dominates the transition temperature
in the microcanonical ensemble. A critical requirement for the
parameters � and �E is that both parameters guarantee convergent
Ec . A minimum requirement for these two parameters is that
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Neural Networks for local atomic energy
Table 2: Summary of the testing R2 score, root mean square error (RMSE), and maximum absolute deviation
(MAD) for the configuration space models of MoNbTaTiW. 1ST stands for the first-shell-triplet model and
NN stands for the neural network model.

Material Element 1ST-R2 NN-R2 1ST-RMSE NN-RMSE 1ST-MAD NN-MAD

MoNbTaTiW

Mo 0.99505 0.99306 0.00287 0.00340 0.01341 0.01706
Nb 0.99292 0.98823 0.00335 0.00432 0.02200 0.02547
Ta 0.99263 0.98977 0.00357 0.00420 0.01863 0.02237
Ti 0.98980 0.98703 0.00370 0.00417 0.02432 0.03418
W 0.99485 0.99305 0.00312 0.00363 0.01454 0.02421

Figure 6: A schematic of the neural networks used to model the e↵ective Hamiltonian. The input layer is
made up of dummy variables representing the local chemical environment.

it involves no “handcrafted” features and is exact in principle, according to the universal
approximation theorem [40]. A schematic of the neural network architecture employed in
this work is shown in Fig. 6, and applied to the MoNbTaTiW HEA. In practice, 20 neurons
are adopted for each of the 3 hidden layers, where the rectified linear (ReLU) activation
functions are used. The input layer is made up of 256 dummy variables (mmax = 6) and the
calculation details are described in the method section. The total number of epochs is 150,
and the convergence of RMSE with respect to the epoch number are shown in Fig. 7(a).
The R2 scores, RMSEs, and MADs are listed in Tab. 2 and the comparisons between the
predicted energy and the DFT data are shown in Fig. 7(b)-(f). Compared to the linear
EPI results, it is easy to note that the neural networks produce very high training scores,
which demonstrates the superior representation capability of DNN. The testing scores are
reasonably good, but generally worse than the other methods. This can also be seen from
Fig. 8, where a comparison of the RMSEs from the four di↵erent models are shown. The
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As the local energy training data set can be significantly larger than the total 
energy data sets, we can explore more complex models that can allow the 
local energies to be non-linear functions.

An example would be a quadratic pair interaction term:

configuration energies. The R2 score of MoNbTaTiW and AlMoNbTaW are a little lower
than MoNbTaW and MoNbTaVW, indicating that the addition of Ti and Al introduces
stronger high-order interactions into the system.

(a) (b)

(c) (d)

Figure 3: (Color online) Comparison of the local energy predicted by the linear EPI model with the ones
from DFT. The blue circles represent the training data and the filled red circles represent the testing data.
The EPI parameters are shown in the bar plots. (a) Mo, (b) Nb, (c) Ta, and (d) W.

2.2. Quadratic EPI

The linear EPI model can be improved by introducing interaction terms with quadratic
regression, where the local energy can be written as

Ei =
X

f

V f⇧f (~�i) +
X

f,f 0f

V ff 0
⇧f (~�i)⇧

f 0
(~�i) + V 0 + ✏. (5)

The addition of quadratic terms increases the dimension of the feature space from k =
(n � 1) ⇥mmax to k ⇥ (k + 3)/2. Using the MoNbTaTiW HEA as an example, the 6-shell
quadratic EPI model thus has a total of 324 feature parameters. To avoid overfitting, these
parameters are determined by ridge regression, with the L2 regularization parameter taken
as ↵ = 1.0. The impact of the data set size on the RMSE of MoNbTaTiW is shown in
Fig. 5, from which we can see that thousands of data sets are needed for the quadratic EPI
model to converge. The results for all the four refractory HEAs are also shown in Tab. 1.
It is easy to see that the quadratic models indeed demonstrate better performance than the
linear models.

6

The calculation of the Π takes into 
account the lattice symmetry. It is 
possible to write the local energy 
directly in configuration space, e.g.

This forms the basis of a neural network 
to predict the local energy.

The input layer represents the site 
occupation by a binary label.

Figure 5: (Color online) The dependence of the testing RMSE on the number of data sets for each element.
The results are from the quadratic EPI model of MoNbTaW. The data points correspond to 248, 744, 1240,
1736, 2232, 2728, 3224, 3720, and 4216 data sets, respectively.

from each lattice sites in the local interaction region, i.e.,

Ei =
X

j2LIR

V j�j
i + V 0 + ✏. (6)

Note that �j
i are categorical variables and an embedding procedure is needed to represent

them in real space. Since each lattice site has to be occupied by one of the n elements, we
choose to use n � 1 dummy variables to encode �j

i . For example, the representations of
Mo, Nb, Ta, Ti, W in the MoNbTaTiW HEA are (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0,
0, 1, 0), and (0, 0, 0, 1), respectively. As a result, for mmax = 6 (64 atoms within the LIR),
the number of features for one element increases from 24 in the linear EPI model to 256.
Due to lattice symmetry, V j of the same bonding type should have the same value, so this
configuration space linear model is essentially the same as the linear EPI model. However, the
benefits of the configuration space representation are that the complete information about
the local chemical environment is preserved, and the inclusion of higher order interactions
is straightforward. For example, adding quadratic interactions to the nearest neighbors, the
local energies can be written as

Ei =
X

j2LIR

V j�j
i +

X

j,k>j2LIR

V jk�j
i�

k
i + V 0 + ✏, (7)

which amounts to include all the triplet interactions within the first coordination shell.
Using MoNbTaTiW as an example, the calculation results of this model (1ST) are shown in
Tab. 2. Compared to the data in Tab. 1, it is easy to see that this model performs better
than the linear EPI model, but the improvement is very small, indicating that these triplet
interactions are not important for the MoNbTaTiW HEA.

2.4. Neural Network Model
Deep neural networks (DNNs) provide a general solution to the problem of constructing

e↵ective Hamiltonian in the configuration space. This is a very attractive approach because

8
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Supervised Learning: Neural Networks (cont. 1)
Approach: introduce physical constraints in the 
optimization process to train the neural network

8
<

:
argmax

w
kEtrue � Epredicted(w)k

s.t. ctrue = cpredicted(w)
<latexit sha1_base64="KG4e2g3MygFVPdgSaTF5nTxkcpA="></latexit>

Possible quantities for the physical constraint are charge density 
or magnetization vectors
The constrained optimization problem can be recast as a global 
optimization problem by interpreting the constraint as a 
Lagrangian term in the objective function 

Objective function 

Physical constraint

Joint training or multitasking: train a neural network to 
simultaneously predict multiple targets associated with the same 
input
argmax

w
kEtrue � Epredicted(w)k+ �kctrue � cpredicted(w)k

<latexit sha1_base64="sF2RVENVN4ZT2wxkY5sFUK3xNiY="></latexit>
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HydraGNN
• Graph convolutional neural network:
• atoms are interpreted as nodes and interatomic bonds are 

interpreted as edges, and outputs total (graph-level) and atomic 
(node-level) physical propertiesJ. Phys.: Condens. Matter 33 (2021) 084005 M Lupo Pasini et al

Figure 1. Architectures of NN models for single-task learning of total energy, charge density and magnetic moment independently, taking
the same inputs (the three NN’s on the left), and the architecture of an NN model for multitask learning (MTL) of all three quantities
simultaneously taking the same inputs (rightmost).

constrained optimization problem in (2) can be reformulated
so that the constraint is incorporated in the de!nition of the
objective function itself as follows:

argmin
w

{
‖ypredicted(w) − y‖2

2 + λ‖c(w) − g‖2
2

}
, (3)

which is a global optimization problem. The objective function
to be minimized in (3) interprets the constraint as a penaliza-
tion term through the penalization multiplier λ. This is a weak
formulation of the constraint added to the original objective
function.

For the multitasking NN in this work, each predicted quan-
tity is associated with a loss function. Therefore, the global
objective function to be minimized by the training of the NN
is a linear mixing of the individual loss functions. We can view
the constraints c(w) and g to be some other physical proper-
ties to be predicted. In particular, we choose y to be the total
energy of the system, g as the charge density and/or the mag-
netic moment, all of them are computed via DFT calculations.
Then ypredicted(w) and c(w) represent their predictions com-
puted via the NN model.

Formally, let T be the total number of physical quantities,
or tasks, we want to predict. A single task identi!ed by index
i focuses on reconstructing a function f i : Ra → Rbi is de!ned
as

yi = f i(x), i = 1, . . . , T, (4)

where x ∈ Ra, yi ∈ Rbi . The multitask learning makes use of
the correlation between the quantities yi’s, so that the functions
f i’s in (4) could be replaced by a single function f̂ : Ra →
R

∑T
i bi that can model all the relations between inputs and

outputs as follows:



y1
...

yT



 = f̂ (x). (5)

The global loss function "MTL : RNMTL → R+ to be mini-
mized in MTL is a linear combination of the loss functions

for the single tasks:

"MTL(wMTL) =
T∑

i=1

αi‖ypredict,i(wMTL) − yi‖2
2, (6)

where ypredict,i is the vector of predictions for the ith quantity of
interest andαi (for i = 1, . . . , T) are the mixing weights for the
loss functions associated with each single quantity. The value
of theαi’s in equation (6) are hyperparameters of the surrogate
model and thus can be tuned. In our examples, we assigned
an equal weight to each property being predicted, because the
data on which the model was trained was properly standard-
ized. However, the joint training and the de!nition of the loss
function enable one to accordingly account for this by ade-
quately modifying the value of the αi’s if it is known that one
property dominates over the others.

As we mentioned earlier, the multiple quantities in MTL
can be interpreted as a mutual inductive bias because the MSE
of a single quantity acts as a regularizer with respect to the loss
functions of other quantities. For a fair comparison, we do not
use regularizers for the individual single-task training in this
work, so as to examine the bene!t of using other tasks as a
mutual regularizer.

2.4. Neural network architectures and hyperparameters for
this study

In our CuAu test case, the single-tasking NN models identi!ed
by the hyperparameter search has two hidden layers and each
hidden layer contains 200 nodes. The multitasking NN model
identi!ed by the hyperparameter search is made of three hid-
den layers instead; the !rst two hidden layers have 200 nodes
that are shared across all the tasks, whereas the last hidden
layer is task-speci!c (see !gure 1). The total number of nodes
in the task-speci!c hidden layer is still 200, but they are equally
split across the two tasks to predict the total energy and charge
density. The recti!ed linear unit ‘relu’ is used at each hidden
layer as the activation function, whereas the output layer has
no activation function as recommended by standard practices
in DL when NN models are used for regression problems.
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Figure 1. Architectures of NN models for single-task learning of total energy, charge density and magnetic moment independently, taking
the same inputs (the three NN’s on the left), and the architecture of an NN model for multitask learning (MTL) of all three quantities
simultaneously taking the same inputs (rightmost).
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2 + λ‖c(w) − g‖2
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, (3)

which is a global optimization problem. The objective function
to be minimized in (3) interprets the constraint as a penaliza-
tion term through the penalization multiplier λ. This is a weak
formulation of the constraint added to the original objective
function.

For the multitasking NN in this work, each predicted quan-
tity is associated with a loss function. Therefore, the global
objective function to be minimized by the training of the NN
is a linear mixing of the individual loss functions. We can view
the constraints c(w) and g to be some other physical proper-
ties to be predicted. In particular, we choose y to be the total
energy of the system, g as the charge density and/or the mag-
netic moment, all of them are computed via DFT calculations.
Then ypredicted(w) and c(w) represent their predictions com-
puted via the NN model.

Formally, let T be the total number of physical quantities,
or tasks, we want to predict. A single task identi!ed by index
i focuses on reconstructing a function f i : Ra → Rbi is de!ned
as

yi = f i(x), i = 1, . . . , T, (4)

where x ∈ Ra, yi ∈ Rbi . The multitask learning makes use of
the correlation between the quantities yi’s, so that the functions
f i’s in (4) could be replaced by a single function f̂ : Ra →
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i bi that can model all the relations between inputs and

outputs as follows:
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The global loss function "MTL : RNMTL → R+ to be mini-
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2, (6)

where ypredict,i is the vector of predictions for the ith quantity of
interest andαi (for i = 1, . . . , T) are the mixing weights for the
loss functions associated with each single quantity. The value
of theαi’s in equation (6) are hyperparameters of the surrogate
model and thus can be tuned. In our examples, we assigned
an equal weight to each property being predicted, because the
data on which the model was trained was properly standard-
ized. However, the joint training and the de!nition of the loss
function enable one to accordingly account for this by ade-
quately modifying the value of the αi’s if it is known that one
property dominates over the others.

As we mentioned earlier, the multiple quantities in MTL
can be interpreted as a mutual inductive bias because the MSE
of a single quantity acts as a regularizer with respect to the loss
functions of other quantities. For a fair comparison, we do not
use regularizers for the individual single-task training in this
work, so as to examine the bene!t of using other tasks as a
mutual regularizer.

2.4. Neural network architectures and hyperparameters for
this study

In our CuAu test case, the single-tasking NN models identi!ed
by the hyperparameter search has two hidden layers and each
hidden layer contains 200 nodes. The multitasking NN model
identi!ed by the hyperparameter search is made of three hid-
den layers instead; the !rst two hidden layers have 200 nodes
that are shared across all the tasks, whereas the last hidden
layer is task-speci!c (see !gure 1). The total number of nodes
in the task-speci!c hidden layer is still 200, but they are equally
split across the two tasks to predict the total energy and charge
density. The recti!ed linear unit ‘relu’ is used at each hidden
layer as the activation function, whereas the output layer has
no activation function as recommended by standard practices
in DL when NN models are used for regression problems.
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• The model takes the atomic number for each position and 
generates the enthalpy as well as vectors of the charge and 
magnetic moments at each site

HydraGNN
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Iron-Platinum
• FePt is of interest for hard 

magnetic materials
• The magnetic properties depend 

significantly on the chemical order

Magnetic anisotropy in FePt 
nanoparticle

Nature 542, 75 (2017)
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By comparing the atomic positions to an ideal fcc lattice, we estimated 
an average 3D precision of 21.6 pm (Extended Data Fig. 7a), which 
agrees with the multislice result.

Next, we classified the 3D chemical order/disorder of the FePt  
nanoparticle by determining the short-range order parameter (SROP) 
of all phases present in the 3D structure (Methods). The nanoparticle 
consists of two large L12 FePt3 grains with interlocking concave shapes 
(Fig. 1). Seven smaller grains are located at the boundary between the 
two large L12 grains, including three L12 FePt3 grains, three L10 FePt 
grains and a Pt-rich A1 grain (Fig. 1b and Supplementary Video 2). 
This level of complexity of the 3D chemical order/disorder can only 
be fully revealed by AET1. To illustrate this point, we used multislice 
ADF-STEM simulations to calculate 2D images from the 3D atomic 
model along the [100], [010] and [001] directions (Fig. 1c). Several ‘L10 
grain’ signatures appearing in the 2D images (magenta in Fig. 1c) are 
actually deceptive structural information, derived from the overlapping 
of the two large L12 grains.

Figure 2a shows the 3D grain boundaries (black lines) of the nan-
oparticle. The grains are more ordered in their cores and become less 
ordered closer to their surfaces. Four representative cut-outs of the 
atomic model are shown in Fig. 2b–e. The most chemically ordered 
region of the nanoparticle is at the core of a large L12 grain with a SROP 
close to 1 (Fig. 2b). Figure 2c shows the grain boundary width varying 
between two large L12 grains. Anti-phase boundaries between the two 
L12 grains are also observed (Extended Data Fig. 7b). The largest L10 
grain is shown in Fig. 1b (third grain from the left) and Fig. 2d. This L10 
grain sits between the two large L12 FePt3 grains (Fig. 2a) with each of 
its two Fe sub-lattices matching the Fe sub-lattice of the neighbouring 
L12 grains (Extended Data Fig. 5), suggesting the shared Fe lattice with 
its neighbouring grains may have facilitated the nucleation of the L10 
phase. The central region of the nanoparticle has the highest degree of 

chemical disorder, including a Pt-rich A1-phase grain (Fig. 2e), with 
much lower SROP values than those in the two large L12 grains.

To probe the 3D chemical order/disorder at the single-atom level, 
we analysed individual anti-site point defects in the 3D reconstruc-
tion of the nanoparticle. Figure 3a, b and Extended Data Fig. 7b show 
3D atomic positions overlaid on the reconstructed intensity of several 
representative anti-site point defects (arrows) in the L12 grains, where 
an Fe atom occupies a Pt atom site or vice versa. The anti-site point 
defects in these figures are clearly visible by comparing their local peak 
intensity with that of the nearby Pt and Fe atoms. Furthermore, swap 
defects are also observed (Fig. 3c), where a pair of nearest-neighbour 
Fe and Pt atoms are swapped. Overall, the FePt nanoparticle contains a 
substantial number of anti-site defects and chemical disorder. Figure 3e   
and g shows the anti-site defect density of the two large L12 grains 
(inset) as a function of the distance from the grain surface. Far outside 
each grain, the anti-site defect density approaches ∼ 50%, because two 
of the four sub-lattices in the two large L12 grains share the same sites 
of Pt atoms, while the other two sub-lattices swap Fe for Pt atoms and 
vice versa (Extended Data Fig. 5). The anti-site defect density drops to 
below 40% at the surface of the two grains and reduces to ∼ 3% for sites 
deep inside each grain. Figure 3f and h shows the SROP of the two large 
L12 grains as a function of the distance from the grain surface.

The striking similarities between the two large L12 grains—each 
has a concave shape with a highly-ordered core, a similar  chemically 
disordered boundary and a consistent distribution of the anti-site 
defect density (Fig. 3e–h)—suggest a potential formation  pathway 
in the nucleation and growth process of the nanoparticle. We 
note that as-synthesized FePt nanoparticles show large chemical 
 disorder with a Pt-rich core30. Such a 3D Pt-rich core is observed 
in our  measurements (Fig. 2e). During the annealing  process, Pt 
atoms  diffused out from the core30 and the nucleation of the L12 
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ca

b

L12 fcc
L10

[100][010]

[001]

FePt

L12

L10 A1 L10L10
L12L12L12

L12

Figure 1 | 3D determination of atomic coordinates, chemical species 
and grain structure of an FePt nanoparticle. a, Overview of the 3D 
positions of individual atomic species with Fe atoms in red and Pt atoms in 
blue. b, The nanoparticle consists of two large L12 grains, three small L12 
grains, three small L10 grains and a Pt-rich A1 grain. c, Multislice images 

obtained from the experimental 3D atomic model along the [100], [010] 
and [001] directions, where several ‘L10 grains’ (magenta) appearing in the 
2D images are deceptive structural information. Colour bars indicate the 
degree of ordering, from pure L12/L10 to chemically disordered fcc. Scale 
bar, 2 nm.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Numerical Result - Enthalpy

Linear Model HydraGNN
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Numerical Result - Enthalpy

Linear Model

• The EPI model fails to capture the non-
linear behavior of the mixing enthalpy

• The model shows clustering of its 
behavior for different concentrations

• A good model could be obtained for 
a fixed concentration, but not across 
all concentration

• This indicated the non-linear 
contribution arising from magnetism in 
the FePt system 
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Numerical Result - Enthalpy

HydraGNN

• HydraGNN accurately predicts the mixing 
enthalpy for different compositions and 
atomic configurations associated with each 
composition

• It is an effective non-linear predictive model

• It accurately captures the dependence of 
the mixing enthalpy as a function of a binary 
ferromagnetic solid solution alloy
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Interpretation

• Pure Fe is magnetic, and Pt is non-
magnetic

• Formation of magnetic moments 
in alloys is driven by the collective 
behavior of electrons in the alloy

• in the FePt, the magnetic moment 
associated with the Pt sites 
depend on their environment and 
the Fe concentration

• This behavior can be captured by 
the HydraGNN model, while the 
EPI model fails to account for this 
concentration dependent 
behavior. 
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Modeling High Entropy Alloys

only the smallest supercell is used. The results underscore the fact
that the configuration space in a random system is not well covered
by training data only drawn from small supercells. The perfor-
mance in supercell of system 32 (40) and 64 (80) are better than
that those for 16 (20)-atom supercells, showing that more degrees

of short-range and long-range order are captured by these training
data. The ensemble sampling strategy (red bars) demonstrates a
minimal RMSE mean (<1meV) and standard deviation which
outperforms the other three cases in terms of the accuracy and
stability. This robust strategy plays a substantial role in the data-
driven modeling of the configurational energy such that the sub-
sequentMonte Carlo simulation based on this efficient Hamiltonian
can safely explore the whole region of configuration space.

3.2. Uncertainty in effective pair interaction bonds

The coordination shells, as the physical features, have a pivotal
influence on the EPI model and their impact can be analyzed from
the EPI parameters, as shown in Fig. 6 - Fig. 8. For all the three
refractory HEAs, the first two shells, involving the nearest and
next-nearest neighbor interactions are dominant, while the 3rd to
6th shells present a less essential role. A comparison between
NbMoTaW and the other two HEAs, NbMoTaWV and NbMoTaWTi
shows that the EPIs of NbMoTaW, as shown in Fig. 6 (c), are
relatively stable and short-ranged due to small magnitude asso-
ciated with the long-ranged shells, while the NbMoTaWV and
NbMoTaWTi, as shown in Fig. 7 (c) and Fig. 8 (c) are more frus-
trated and long-ranged, with significant contributions from up to
the 6th shell.

Moreover, three different dataset sizes, nd ¼ 100;400 and 800
are shown here to investigate the effect of data on the EPI pa-
rameters (chemical bonds). The ensemble sampling strategy is
used herein such that we collect 25, 100 and 200 configurations
from each of the four supercell sizes, i.e. 16, 32, 64 and 128 for
NbMoTaW and 20, 40, 80 and 160 for NbMoTaWV and NbMo-
TaWTi. Given a small dataset size, for example, nd ¼ 100, the
trend of EPI parameters is consistent - the first two shells are
dominant, but the values still have a discrepancy from larger
dataset size, for example, nd ¼ 800. In other words, the un-
certainties associated with the EPI parameters are primarily

Fig. 3. Bcc supercells of refractory HEAs. (a) NbMoTaW with 128 atoms, (b) NbMoTaWV with 160 atoms and (c) NbMoTaWTi with 160 atoms.

Fig. 4. Comparison of DFT calculated energy with predicted energy using Bayesian regularized regression for (a) NbMoTaW, (b) NbMoTaWV and (c) NbMoTaWTi.

Table 1
Training and testing RMSE accuracy of configurational energy for three HEAs.

HEA NbMoTaW NbMoTaWV NbMoTaWTi

Training εR (meV) 0.335 0.710 1.400
Testing εR (meV) 0.632 0.647 0.665

Fig. 5. Testing performance comparison between ensemble sampling strategy and
sampling drawn from only single supercell. Blue, orange and green bars: testing results
using 150 configurations only from one specific supercell (16, 32, 64 for NbMoTaW and
20, 40, 80 for NbMoTaWV and NbMoTaWTi respectively). Red bar: testing results using
an ensemble of 150 configurations that consists of three 50 data drawn from each
supercell.

J. Zhang et al. / Materials & Design 185 (2020) 108247 7

High Entropy Alloys (concentrated solid solution alloys) consist of four or 
more principal alloying element. They exhibit a wide range of interesting 
properties. The chemical order is important to understand these.

Due to the large design space, modeling is essential in guiding  and 
understanding the experimental work and for gaining insight into the 
stability of these alloys.

Traditional cluster expansion approaches of force fields become 
challenging for these multicomponent alloys.
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Modeling High Entropy Alloys

Pi
m ¼ PXjYm ðsiÞ; i¼1;…;Ns (10)

where Ns is the number of training data (configurations). It is
necessary to note that there are Nm ¼ nðn$1Þ=2 column vectors for
each shell and P is therefore a Ns % Nm matrix. E is a column vector
in which the ith element is the physical quantity Ei (for example,
total energy) of the configuration si and J is a column vector in
which m-th shell is Jm which also includes Nm ¼ nðn$1Þ= 2 ele-
ments. Determining the EPIs by solving the linear system given by
Eq. (10) is equivalent to finding the parameter vector J, which
minimizes the residual sum of squared errors (RSS) jjJP $ Ejj22 using
an ordinary least squares (OLS) method. Typically, the OLS method
often has low bias but larger variance. A solution determined by
OLS method usually performs well in an overdetermined system.
Due to the large computational cost in DFT calculations, the linear
system in Eq. (10) is, however, often underdetermined and there-
fore leads to an ill-posed problem. Another drawback associated
with the OLSmethod is its susceptibility to possible overfitting [30],
which refers to an EPI whose values are over-tuned to predict
physical quantity in training dataset but are losing the predict-
ability for the new configurations that have not been considered
before. Meanwhile, the nearsightedness of physical interactions in
CE suggests a sparsity property for J [24].

Regularization is an effective way to counteract overfitting and
achieve sparse solutions by adding a regularization term in the
form of [1 or [2 norm. For [1 regularization, the optimal EPI values bJ
can be obtained by

bJ ¼ argmin
J

JP$E2
2 þ l1jjJjj1 (11)

where l1 is a penalty parameter that determines the amount of
regularization. The primary benefit of [1 regularization is its pro-
motion of sparsity, which is achieved by feature selectionwith a set
of EPI values set to zero. However, in principle, this shrinkage
sometimes incorrectly forces the EPI parameters to zero, conse-
quently leads to an unstable prediction, specifically under the case
of a sparse training dataset. Instead, this study uses the [2 penalty
for both fitting and penalization of the EPI coefficients. Thus, the
solution becomes

bJ ¼ argmin
J

JP $ E2
2 þ l2J

2
2 (12)

which is the most popular technique for improving prediction ac-
curacy by penalizing large regression coefficients to reduce over-
fitting. Unlike [1 regularization, [2 regularization tends to contain
all physical interaction information by only shrinking the size of EPI

coefficients rather than setting most of them to zero. It therefore
gives rise to challenges in optimally determining the [2 regulari-
zation parameter and physically identifying the important features.
Moreover, it is critical to quantify the uncertainties associated with
the prediction and EPI coefficients, particularly given the small size
of the training dataset.

In this paper, we propose a Bayesian view of regression with
feature selection to address these challenges. Bayesian regression
assumes the parameters J and s2 in Eq. (9) to be random variables,
therefore the likelihood function can be written as:

p
!
E
"""J;P; s2

#
f
!
s2

#$n=2
exp

$
$ 1
2s2

ðE $ JPÞT ðE$ JPÞ
%

(13)

Bayesian regression can be also used to take [2 regularization
into consideration in the estimation procedure. Instead of identi-
fying the optimal l2 in a hard sense, Bayesian regression treats the
regularization parameter l2 as a random variable that can be esti-
mated from the training data. This can be achieved by introducing a
hierarchical model for the hyper-parameters of the model. In the
Bayesian setting, the target total energy E is assumed to be a
Gaussian distribution, which is given by:

pðEjJ;P; l2Þ¼N ðEjJP; l2Þ (14)

and the prior for the EPI coefficient J is given by a Gaussian
distribution

p
!
JjxÞ¼N

!
Jj0; x$1Ip

#
(15)

Consequently, the [2 regularization in Eq. (12) is equivalent to
finding a maximum a posterior (MAP) estimation [62] given a
Gaussian prior over J with precision x$1. Typically, a MAP estima-
tion of the posterior distribution is obtained by Markov Chain
Monte Carlo (MCMC) algorithm, which is often computationally
intensive and difficult to converge for high dimensional problem. In
this work, we consider a conjugate prior for which the posterior
distribution can be derived analytically. To this end, the priors over
l2 and x are selected to be a gamma distribution

l2 'G ða1;a2Þ; x ' G ðb1; b2Þ (16)

where a1;a2; b1 and b2 are the hyperparameters of the gamma
priors over l2 and x. Here we select a1 ¼ a2 ¼ b1 ¼ b2 ¼ 10$8 to be
non-informative priors. All three random variables J, l2 and x are
estimated jointly using a maximum likelihood estimate during the
fit of the regression model. Note that Bayesian regularized regres-
sion performs more robust for ill-posed problems in training.

Fig. 1. Square lattice with effective pair interaction highlighted. (a) The nearest-neighbor pair is marked in blue, while the next nearest-neighbor pair is marked in yellow; (b) the
pair marked in green, pink and red correspond to the 3rd, 4th and 5th neighbor respectively. Equivalent interacted pairs (same distance) are marked in the same color.

J. Zhang et al. / Materials & Design 185 (2020) 1082474

Ansatz: consider only pair interactions

X,Y: chemical species
m: coordination shell

Use the Bayesian information criterion 
(BIS) to select the optimal number of 
shells. (m)

FðsÞ¼NV0 þ
X

b

V ðnÞ
b FðnÞ

b ðsÞ (1)

where the expansion coefficients V ðnÞ
b are called the effective cluster

interactions (ECIs) which are independent of the configurations
and determined by the crystal structure and chemistry of the bi-
nary alloy, V0 is a constant that represents the empty cluster and
FðnÞ
b ðsÞ is the n-site cluster function, defined as the product of basis

function Qbk
ðskÞ, which is given by:

FðnÞ
b ðsÞ¼

Y
Qbk

ðskÞ (2)

Note that the cluster functions in Eq. (2) form a complete
orthonormal basis on the configuration space s. When all possible
cluster functions are considered in the CE model, Eq. (1) is an exact
expression. However, a more practical way for CE is a truncated
summation over a finite number of cluster functions considering
negligible long range interactions. Typically, the energy is primarily
determined by short-range interactions, it is therefore natural to
represent the energy as a summation of interactions whose
strength diminishes with increasing range, which is given by:

EðsÞ¼
X

i

ViFiðsiÞþ
X

ij

VijFij
!
si;sj

"
þ
X

ijk

VijkFijk
!
si; sj; sk

"
þ/

(3)

where the Vi, Vij and Vijk represent the interaction strength of point
clusters, pair clusters and triplet clusters, and can be determined by
the DFT calculated total energies of different configurations in a
variety of supercells. One can therefore utilize CE as an efficient
Hamiltonian in Monte Carlo simulations to reveal order-disorder
phase transitions.

However, it is often a challenging task to fit the ECIs of CE in
multicomponent crystalline solids because of the number of terms
scales as NM for anM-body terms for N species [13]. The series need
many terms and the number of terms grows rapidly with the
diameter of the cluster. As additional terms are added, the series
coefficients may converge poorly given limited number of
configurations.

2.2. Effective pair interaction model

Conventional CE method is generally difficult when applied to
HEAs, we thus propose to use an Ising-like model with only effec-
tive pair interactions (EPIs) without considering high-order in-
teractions [53]. Fig.1 shows a prototype square latticewith effective
pair interactions. We define a series of short-range pair interactions
in terms of the pair distance, for example, the nearest-neighbor, the
next nearest-neighbor and so on. The local energy of site i is made
up of all the pair interactions involving i. Therefore, the effective
Hamiltonian at lattice site i can be expressed as:

HðiÞ¼ J0 þ
X

jsi

JXðiÞYðjÞm cj (4)

where JX;Ym is the interatomic pair potential between element X and
Y, XðiÞ is referred to as element X at site i, m is the number of co-
ordination shellsseparating between i and j, cj is the occupation
parameter of site j, and J0 is the concentration dependent part,
which can be discarded for a given composition. Summing up the
Hamiltonian over all atomic sites yields the total energy, which is
given by:

~EðsÞ¼NJ0 þ N
X

X;Y ;m
JX;Ym sX;Ym (5)

where sX;Ym is the percentage of XY bonds in the m-th coordination
shells. Considering an n-component alloy system, the total number
of different chemical bonds in m-th shell is nðnþ1Þ=2 but there are
n constraints from the concentration of each element for a fixed
chemical composition. As a result, the number of independent
variables in an n-component alloy system is

Nm¼
nðnþ 1Þ

2
%n¼

nðn% 1Þ
2

(6)

which consists of the short-range order (SRO) parameters that exist
at m-th shell for an n-component alloy. The Warren-Cowley SRO
parameters is defined as

aX;Ym ¼1% PXjYm
cA

(7)

where cA is the concentration of element X, and PXjYm is the proba-
bility of finding element X at the m-th neighbor shell of element Y.
aXYm is a crucial parameter to characterize the different chemical
configurations. aXYm >0 signifies the preference to form XY bonds at
the m-th shell, aXYm <0 indicates the opposite and aXYm ¼ 0 for each
m suggests to a completely random system. In fact, there is an
effective pair interaction (EPI) corresponding to each SRO param-
eter. Consequently, Eq. (5) can be written as

E¼N
X

XsY ;m
JX;Ym PXjYm (8)

where PXjYm is closely related to the SRO parameter in Eq. (7). For
example, for the four-component NbeMoeTaeW refractory HEAs,
there are a total of ten different bonds for each coordination shell
but only six independent bonds, namely NbeMo, NbeTa, NbeW,
MoeTa, MoeW and TaeW. Given a specific configuration of
multicomponent HEAs NbeMoeTaeW, it is not difficult to calculate
the PNbjMo

m , PNbjTam , PNbjWm , PMojTa
m , PMojW

m and PTajWm at the m-th
neighbor shell. The corresponding interatomic pair coefficients
VNbjMo
m , VNbjTa

m , VNbjW
m , VMojTa

m , VMojW
m and VTajW

m at them-th neighbor
shell in Eq. (8) can be determined by linear regression using PXjYm as
the features [53]. The cost of building an EPI model comes primarily
from the cost of generating the training dataset from DFT calcula-
tions. This therefore gives rise to two important questions: 1) how
to conduct an accurate and robust prediction that minimizes the
error of energy for a given training dataset and 2) how to determine
the number of physical feature m when data are sparse. This leads
to a cluster selection problem of finding the optimal set of clusters
in a robust way.

2.3. Bayesian regularized regression

To obtain an EPI for a specific HEA one must determine the
interatomic pair potential JX;Ym in Eq. (8), which can be cast into a
matrix form,

E¼ JP þ ε (9)

where ε ¼ ðε1; ε2;…; εnÞT are independent and identically distrib-
uted (i.i.d.) variables that follow ε & Nð0; s2Þ. P is a matrix con-
taining the probability quantities of the training data where each
element in row i at the m-th shell is defined as
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calculated by evaluating the standard deviation of the energy. The 

Warren-Cowley short-range order parameter [67,68] αpp′
m is defined as 

αpp′
m = 1−Pp|p′

m
cp

, (7)  

where cp is the concentration of element p, and Pp|p′
m is the probability of 

finding element p at the m-th neighbor shell for a given element p′ , and is 
calculated by averaging over the Monte Carlo samples. 

2.4. DFT calculation 

In the data generating process, larger supercells are needed to 
simulate the complex chemical environment, and a big number of 
chemical configurations are required to generate enough data. Both the 
two requirements substantially increase the computational cost, making 
DFT calculation the bottleneck of the calculation speed, therefore an 
efficient implementation of DFT is highly desirable. As mentioned in the 
introduction, the speed improvement is accomplished by the linear- 
scaling LSMS method. The LSMS method is a real space implementa-
tion of the Korringa-Kohn-Rostoker (KKR) method [69,70]. Its linear- 
scaling behavior is achieved by restricting the quantum scattering of 
the electrons within the so-called local interaction zone (LIZ). Note that 
all the electrostatic interactions are still explicitly calculated, therefore 
LSMS can reliably predict the small energy difference between different 
chemical configurations. 

In practice, the dataset is initially made up of configurations gener-
ated randomly using supercells of different sizes. This is a simple 
approach to include various degrees of order and disorder in the 
configuration sample, because small supercells naturally give rise to 
ordered structures due to periodic boundary conditions, while large 
supercell configurations will be close to the random state. After deter-
mining the DFT energies of the configurations with LSMS, the data are 
split into training and test datasets. For all the three refractory HEAs, the 
lattice constants are chosen as 6.2 Bohr, the angular momentum cutoff is 
3, the Barth-Hedin local-density approximation is used as the exchange- 
correlation functional, and the size of the LIZ is 59 atoms. To properly 
treat the heavier elements in the system, the scalar-relativistic equation 
is solved rather than the conventional Schrödinger equation. In our 
experience, LSMS takes about 1 h to calculate the energy of a 1000-atom 
system using 200 CPU cores (≈ 5 nodes) in the Summit supercomputer, 
which means the calculation can also be accomplished with regular 
computing clusters. If needed, the excellent linear-scaling behavior of 
LSMS can be utilized to investigate systems of more than 105 atoms. 

2.5. Improve data representativeness 

An additional benefit of the LSMS method is that it allows the use of 
the same supercell during data generation and Monte Carlo simulation, 
in contrast to the conventional practice of using different supercells in 
DFT and MC simulation. As a result, the configuration obtained from 
Monte Carlo simulation can be directly fed into LSMS to calculate the 
DFT energy. This allows the evaluation of the model for configurations 
unable to be described with small supercells, such as nano-precipitates. 
Moreover, by unifying the data generation and simulation process, the 
initial dataset can be improved through choosing a small set of MC 
configurations to be calculated with DFT. Depending on the goal of the 
simulation, different schemes can be devised to choose the MC config-
urations. For example, if one only wants to find the ground state, then a 
weighted sampling favoring low energy states can be adopted. In our 
case, since we are mainly interested in the temperature dependence of 
the observables, we adopt a simple scheme of mixing the configurations 
from a range of different temperatures up to Tmax. The value of Tmax is set 
to be a little higher than the order-disorder transition temperature so 
that the ordered states not well represented in the initial random dataset 

can be incorporated. 

2.6. Methodology workflow 

The workflow of our method is shown in Fig. 2 and summarized as 
follows:  

• Step 1: Initial dataset: Generate random configurations with different 
size supercells and calculate their energies with LSMS, using the 
same calculation parameters. Combine these DFT data of different 
supercells to include both ordered and disordered states. We denote 
the initial (current) dataset as D.  

• Step 2: Effective Hamiltonian: Split the data D into training dataset 
Dt and validation dataset Dv. Determine the EPI model parameters 
with Bayesian ridge regression. A model selection process is also 
carried out to optimize the hyper-parameters [59]. For the EPI 
model, this corresponds to determine the coordination shell cutoff m.  

• Step 3: Monte Carlo simulation: Carry out MC simulation using the 
learned data-driven energy model. Replica exchange is utilized to 
speed up the calculation. In this work, we use 10 × 10 × 10 supercell 
for demonstration.  

• Step 4: New data points: Select a set of new configurations from the 
Monte Carlo samples to improve the data representativeness and 
increase the model accuracy. Calculate the DFT energies Ê of these 
new data points Dn with LSMS, and compare them with E calculated 

Fig. 2. A diagram of the workflow of our method..  

X. Liu et al.                                                                                                                                                                                                                                      



5656 Open slide master to edit

Results
Linear EPI:

configuration energies. The R2 score of MoNbTaTiW and AlMoNbTaW are a little lower
than MoNbTaW and MoNbTaVW, indicating that the addition of Ti and Al introduces
stronger high-order interactions into the system.

(a) (b)

(c) (d)

Figure 3: (Color online) Comparison of the local energy predicted by the linear EPI model with the ones
from DFT. The blue circles represent the training data and the filled red circles represent the testing data.
The EPI parameters are shown in the bar plots. (a) Mo, (b) Nb, (c) Ta, and (d) W.

2.2. Quadratic EPI

The linear EPI model can be improved by introducing interaction terms with quadratic
regression, where the local energy can be written as

Ei =
X

f

V f⇧f (~�i) +
X

f,f 0f

V ff 0
⇧f (~�i)⇧

f 0
(~�i) + V 0 + ✏. (5)

The addition of quadratic terms increases the dimension of the feature space from k =
(n � 1) ⇥mmax to k ⇥ (k + 3)/2. Using the MoNbTaTiW HEA as an example, the 6-shell
quadratic EPI model thus has a total of 324 feature parameters. To avoid overfitting, these
parameters are determined by ridge regression, with the L2 regularization parameter taken
as ↵ = 1.0. The impact of the data set size on the RMSE of MoNbTaTiW is shown in
Fig. 5, from which we can see that thousands of data sets are needed for the quadratic EPI
model to converge. The results for all the four refractory HEAs are also shown in Tab. 1.
It is easy to see that the quadratic models indeed demonstrate better performance than the
linear models.

6

Neural Network:

relatively large di↵erence between the training and testing errors of the neural network model
indicates that the results can be improved by adding more data sets, giving prediction errors
closer to the other models.

Figure 7: (Color online) (a) Convergence of MoNbTaTiW RMSE with respect to the number of epochs.
(b)-(f) Comparison of the local energy predicted by the neural network model with the ones from DFT. The
blue circles represent the training data and the filled red circles represent the testing data. (b) Mo, (c) Nb,
(d) Ta, (e) Ti, and (f) W.

Finally, we would like to point out that, while the neural network model did not show
better prediction accuracy for the materials studied, the results are still very encouraging
because they demonstrated that with su�ciently large data sets, a direct mapping from
the local chemical environment to the atomic local energy is feasible. The versatile DNN
models are of great potential to describe materials where non-linear atomic interactions
are important. These interactions are di�cult to include in the traditional methods, but
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models are of great potential to describe materials where non-linear atomic interactions
are important. These interactions are di�cult to include in the traditional methods, but

10
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Results (a) (b)

(c) (d)

(e)

Figure 8: (Color online) Comparison of the training (blue) and testing (orange) RMSEs from di↵erent
models. LR stands for the linear EPI model. EPI QR stands for the quadratic EPI model. 1ST represents
the first shell triplet model and NN denotes the neural network model.

straightforward for neural networks since they work in the configuration space and uses
nonlinear activation functions.

In conclusion, we developed an approach to obtain large amounts of DFT data sets by
employing the O(N) LSMS method to calculate the atomic local energies. Such a method
reduces the time scaling of generating a single data point to O(0), which not only substan-
tially speeds up the construction of e↵ective Hamiltonian, but also allows for the use of
complex models to describe non-linear atomic interactions. Using the large DFT data sets, a
range of refractory HEAs were studied with four di↵erent models, among them the quadratic
EPI model demonstrated the best overall performance. Neural networks were successfully
applied to establish a mapping directly from the local chemical environment to the atomic
local energy, which provides a promising tool for the future study of complex alloys.
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Training (blue) vs testing (orange) for the various models with the 
same training data set. (38,400 data points)

It can be seen that compared to the linear model (LR), non 
linear contributions (EPI_QR) are more important than triplet 
interactions (1ST).

From the training results, the NN model demonstrates the 
capability to represent the data noticeably better than the other 
models, but due to the significantly larger number of parameters 
the training set size is not large enough to avoid some overfitting 
as indicated by the testing results.
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Conclusion

• Using HPC to generate sufficient amount training 
data from first principles with high accuracy 
using scalable code (LSMS)

• Training of Surrogate Model

• Statistical Mechanics Monte-Carlo simulation

• Active refinement of the model with new HPC 
generated data driven by the simulation

• ⇒ Experimentally verifiable prediction of material 
specific finite temperature behavior of complex 
materials

• Enabled by tight coupling of HPC & ML & MC 
workflow

Computational Materials Science 187 (2021) 110135

4

calculated by evaluating the standard deviation of the energy. The 

Warren-Cowley short-range order parameter [67,68] αpp′
m is defined as 

αpp′
m = 1−Pp|p′

m
cp

, (7)  

where cp is the concentration of element p, and Pp|p′
m is the probability of 

finding element p at the m-th neighbor shell for a given element p′ , and is 
calculated by averaging over the Monte Carlo samples. 

2.4. DFT calculation 

In the data generating process, larger supercells are needed to 
simulate the complex chemical environment, and a big number of 
chemical configurations are required to generate enough data. Both the 
two requirements substantially increase the computational cost, making 
DFT calculation the bottleneck of the calculation speed, therefore an 
efficient implementation of DFT is highly desirable. As mentioned in the 
introduction, the speed improvement is accomplished by the linear- 
scaling LSMS method. The LSMS method is a real space implementa-
tion of the Korringa-Kohn-Rostoker (KKR) method [69,70]. Its linear- 
scaling behavior is achieved by restricting the quantum scattering of 
the electrons within the so-called local interaction zone (LIZ). Note that 
all the electrostatic interactions are still explicitly calculated, therefore 
LSMS can reliably predict the small energy difference between different 
chemical configurations. 

In practice, the dataset is initially made up of configurations gener-
ated randomly using supercells of different sizes. This is a simple 
approach to include various degrees of order and disorder in the 
configuration sample, because small supercells naturally give rise to 
ordered structures due to periodic boundary conditions, while large 
supercell configurations will be close to the random state. After deter-
mining the DFT energies of the configurations with LSMS, the data are 
split into training and test datasets. For all the three refractory HEAs, the 
lattice constants are chosen as 6.2 Bohr, the angular momentum cutoff is 
3, the Barth-Hedin local-density approximation is used as the exchange- 
correlation functional, and the size of the LIZ is 59 atoms. To properly 
treat the heavier elements in the system, the scalar-relativistic equation 
is solved rather than the conventional Schrödinger equation. In our 
experience, LSMS takes about 1 h to calculate the energy of a 1000-atom 
system using 200 CPU cores (≈ 5 nodes) in the Summit supercomputer, 
which means the calculation can also be accomplished with regular 
computing clusters. If needed, the excellent linear-scaling behavior of 
LSMS can be utilized to investigate systems of more than 105 atoms. 

2.5. Improve data representativeness 

An additional benefit of the LSMS method is that it allows the use of 
the same supercell during data generation and Monte Carlo simulation, 
in contrast to the conventional practice of using different supercells in 
DFT and MC simulation. As a result, the configuration obtained from 
Monte Carlo simulation can be directly fed into LSMS to calculate the 
DFT energy. This allows the evaluation of the model for configurations 
unable to be described with small supercells, such as nano-precipitates. 
Moreover, by unifying the data generation and simulation process, the 
initial dataset can be improved through choosing a small set of MC 
configurations to be calculated with DFT. Depending on the goal of the 
simulation, different schemes can be devised to choose the MC config-
urations. For example, if one only wants to find the ground state, then a 
weighted sampling favoring low energy states can be adopted. In our 
case, since we are mainly interested in the temperature dependence of 
the observables, we adopt a simple scheme of mixing the configurations 
from a range of different temperatures up to Tmax. The value of Tmax is set 
to be a little higher than the order-disorder transition temperature so 
that the ordered states not well represented in the initial random dataset 

can be incorporated. 

2.6. Methodology workflow 

The workflow of our method is shown in Fig. 2 and summarized as 
follows:  

• Step 1: Initial dataset: Generate random configurations with different 
size supercells and calculate their energies with LSMS, using the 
same calculation parameters. Combine these DFT data of different 
supercells to include both ordered and disordered states. We denote 
the initial (current) dataset as D.  

• Step 2: Effective Hamiltonian: Split the data D into training dataset 
Dt and validation dataset Dv. Determine the EPI model parameters 
with Bayesian ridge regression. A model selection process is also 
carried out to optimize the hyper-parameters [59]. For the EPI 
model, this corresponds to determine the coordination shell cutoff m.  

• Step 3: Monte Carlo simulation: Carry out MC simulation using the 
learned data-driven energy model. Replica exchange is utilized to 
speed up the calculation. In this work, we use 10 × 10 × 10 supercell 
for demonstration.  

• Step 4: New data points: Select a set of new configurations from the 
Monte Carlo samples to improve the data representativeness and 
increase the model accuracy. Calculate the DFT energies Ê of these 
new data points Dn with LSMS, and compare them with E calculated 

Fig. 2. A diagram of the workflow of our method..  

X. Liu et al.                                                                                                                                                                                                                                      
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