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Multiple Scattering Theory

The Kohn-Sham equation is formally solved by G(e) = (e — H)™*

Write Hamiltonian as H = Hy + V
& free particle Green function: G (e) = (e — Hy) ™"

Green functionforH: G = Gg + GV
Define transition matrix I G = Gy + GoT' Gy

The T matrix for the full system can be written in terms of the
single site scattering t matrix and the sco’r’rering po’rh matrix 7
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Korringa-Kohn-Rostocker Method

. Periodic solid ‘
Pure metal, intermetallic compound, .....
Lattice Fourier transform ‘
Scattering path matrix ’
(£) =l | m-Gie) e ak |
BZ B7 Unit cel

‘R

ik
G(k:¢)= % S G(R, )8

nxn'

m=t"!
Energy bands given by poles of Green function

G(r,r;e)=LZL][ZZ(rn;E)TZZ,(E)ZZ(I‘;E)—ZZ(r>;8)J 1(x;8)0,,]
— Poles of scattering path matrix
Detlm—-G(k;¢)|=0

— Korringa-Kohn-Rostoker method
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The Dirac equation for single scatterer

« Dirac equation:
[—eat 3B+ V(R)b(E,r) = W1

Vi) ( v(r) +00-B(1') o) _Oa.B(r) )

* Free space solutions 4V(r)=0):

i = (we5) " (e )
e = (wie 1) (_pame®
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The Dirac equation for single scatterer

« Ansatz: Expand solution in free space solutions using a phase
integral:

Ya(E,1) =Y  Sya(E,r)Na(E,1) — Cpa(E,r)Jn (E,1)
A/

« This allows us to write coupled differential equations for the
sine and cosine matrices (Sy, and Cyiyp)

d
_SA’A Z CLA//A/ SA//A ) CL}{(/]/A(T)CA//A(T)
A

d

—CA’A ZQA”A’ SA/’A ) —CL%}JA(T‘)CA//A(?“)
A//

arin (B, r) = /pr{, (E,r)V(r)Yar(E, r)dt
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The Dirac equation for single scatterer

« For r outside the scafttering potential:

tan (E) = —— Z San (E)(Carnr (E) — iSampr (E)) ™
A//
« Requires only ’rhe regular solution with the initial value
condifion

wA(Ea r)r—)O — JA(Ea I')

Saa(E,0) =0
CA/A(E,O) — —5A’A
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Example: single site Cu 3d scattering

Krein IDOS Components

Krein IDOS Components
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Calculation of Densities

« When the Green's function is known expectation
values of operators can be calculated as traces

* |.e. the charge and magnetization densities are
given by

1 b
n(r) = —;Im/ TrG(r,r;€)de

1 b
m(r) = —;Im/ TrG(r,r;€)dde

 The calculation of the Green’s Function can be
implemented as an order-N scaling method on
parallel computers
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Relativistic Multiple Scattering Theory

« Multiple scattering Green'’s function

G(E,’I", T,) — Z ZA<E9 T)TAA’ (E)Z/—{—/<E7 T/) - ZA(Ear’R)jI(Ea T/)éAA’
AN
« / are the regular solutions and J the irregular solutions of the
single site scattering equation and scattering path matrix

T — (t_l — Go)_l

« As r— 0, Jdiverges as »—'=1 . This leads to numericall
instability of the solver for the coupled ODEs for S and C.
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Relativistic Multiple Scattering Theory

« Split the Green’s function into single scatterer and
remaining multiple scattering part:

G(E,r,r") =G4 (E,r,v") + G (E,r,7")
Go(E,r,1') =) ZA(E,r)ian (BE)Z5(E,r') =Y ZN(E, r) TS (E,r)

AN/ A
Gm(E,r,7") =Y  ZA(E,7) (tan/(E) — tan’) Z3,(E,r')
AN

e« Forreal E, Z\(E,n)Jy(E,r") isreal, so it can be ignored
for calculations of total Energy, charge density, DOS,

etc
1
n(F)=——Im Tr/ G(E,r,r)dr
@ Q
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Instability of the irregular solution

« Integrate G,,, along contour in complex plane

« Integrate G, on real axis taking into account zeros of the KKR
mafrix. o)

Shallow bound
states

E
X X
Ep "~ Resonance Ep

states
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Lattice Constant of Au

0.007 |
0.006
0.005

0.004 |

AE (Ry/atom)

0.003 |
0.002 |

0.001 [

L N N . ]
0.000 e AN, it et JEN T
74 7.6 7.8 8.0 82 84

Lattice Constant (a.u.)

__________|Non-Rel _|RelCore |FullRel. _[Exp.

Lattice Const.  8.03A 8.17A 7.60A 7.71A
Bulk Modulus 112 GPa 124 GPa 208 GPa 180 GPa
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Disordered Systems

« Many systems are not perfectly periodic crystals.

 Disorder is important for understanding materials such as alloys.
- Steel, Bronze, Brass, etc.

« Approaches for dealing with disordered and complex systems:

- Coherent Potential Approximation: average probabilistic distribution of
atoms

- Locally Self-Consistent Multiple Scattering: real space large simulation
cell to represent the actual placement of atoms
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Coherent Potential Approximation

» Korringa-Kohn-Rostoker coherent-potential approximation (KKR-CPA)

Effective “coherent potential” medium
Characterized by effective t-matrix
Determine ‘best’ effective t-matrix

= KKR-CPA condition

anz-a,nn (8) — Z-C,nn (g)
a

rg" =[1+ 7" (Mg —m )] "

(Grwse)) =Go(erse) =S I Z1 ()T ()25 (W05e) =20 (0 M (13803, )

EEEEEEEEEE
%OAK RIDGE |53
National Laboratory | FACILITY
21



Locally Selt-Consistent Multiple Scattering

~ « Nearsightedness of electronic
matter - Prodan & Kohn,

PNAS 102, 11635 (2005)

C —Local electronic properties
such as density depend on

C effective potential only at

nearby points.

* Locally self-consistent
multiple scattering method -
Wang et al., PRL 75, 2867
(1995)

—Solve Kohn-Sham equation

on a cluster of a few atomic
shells around atom for which
density is computed

—Solve Poisson equation for
entire system - long range of
bare coulomb interaction
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%
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Locally Selt-Consistent Multiple Scattering

* An O[N] algorithm
« Massively parallel and scalable, achieves nearly perfect weak

scaling

« Solve Kohn-Sham equation on a cluster of a few atomic shells
around atom for which electron density, p(r), is computed

« Solve Poisson equation for entire system (long range coulomb
interaction)

EEEEEEEEE
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input: Vi(r)
compute: t;
receive: ¢; t; t, 1,
construct: ¢
result: p(r)

VEVe(r) = ny(r) + ny(r)

Vi(r) . potential
t; . single site scattering matrix
T . scattering path matrix

pr) : charge density

Y. Wang et. al., Phys. Rev. Lett. 75, 2867 (1995)



WL-LSMS Power Efficiency on Titan

° Power consumption traces for identical WL-LSMS runs with

7 {1024 Fe afoms on 18,561 Titan nodes (99% of Titan)

6 WVWM /WMWW Mﬁ“ﬂ"] f Mﬂm‘] rﬂm m w‘m ‘g’WWﬂ ’W’W MWW\ IW“M W’MV] My Mw ;Mw'w W
\

T
J“i\_‘V\H‘lH’* |

e L

Power (MW)
B

3 « Runtime is 8.6X faster for the GPU code (14.5
5 CPU Only PFlop/s)
« Energy consumed Is 7.3X less
1 GPU Enabled o GPU accelerated code consumed 3,500 kW-hr
o CPU only code consumed 25,700 kW-hr

0
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M. Eisenbach et al. CPC 212, 2 (2017)
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Scalability on Frontier

| "o Frontior 300 | —e— 65536 atoms |

00 | Summit |1 —m— 131072 atoms
P 250 |
a

0ol 1S 200/
13,
T 150
=
-

001 1 100)

8 - o o
| | | |
| 1,000 2,000 3,000 4,000

| | | |
0 1,000 2,000 3,000 4,000
Nodes

o Left: Weak scoWi%dge;Sfor FePt with 64 atoms / node from 2 to 4096 Frontier
nodes. Right: Strong scaling on Frontier from 1024 to 4096 nodes
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Example of LSMS calculations

Screw Dislocation in bcc Fe with LSMS

Magnetic anisotropy in FePt nanoparticle

O
a

= Full Supercell calculation
® Sliding local volume calculation
= Model fitting

MAE (mgV/ atom)
o

0 ¢ " Y
0 500 1000 150(
Number of Atoms
[+
15
%
N
107
l\
5 {
| — |
I
15
=
N
101
51
1 Dx ( A)1 5
MAE (meV /atom) 0.1 0.5 0.9 MAE (meV / atom) @ Fe
L1, order parameter 57 05 0.9 0.0 0.4 0s OFPt
difference : :

Nature 542, 75 (2017)
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Ground state local
magnetic moments in a
2048-atom super-cell
model of the High
Entropy Alloy
Cro.25F€0.25C00 25Nig 25



Comparison of LSMS and CPA

i We Compdl’e HfO.OSNbO.O5TOO.8TiO.OSZrO.O5 USIHQ

- CPA, CPA with Madelung potential correction, LSMS for SQS structures
(40-160 atom supercells) and LSMS for a 1120 atom random supercell

-25918.784
SQS —i— 1.85 P — T T T T I
LSCr\éI)S _— N LSMS +
. + CPA x
-25918.784 | Corrected CPA ] 1.8 |- Corrected CPA
SQS
175 + Average LSMS =
-25918.785 |
1.7 +
—_ X
g . \
X 25918785 | g 1651 A +
B > %
uT
16 L * .,
-25918.786 | ”4—?
155 | »*
-25918.786 15+ %‘
.\.\.\. T 1.45 I I ! ) ) |
-25918.787 s s . . : 03 -02 -01 0 0.1 02 03 04
40 60 80 100 120 140 160
Number of atoms Charge Transfer

- IO
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Changing local environments in alloys

9
| | " LSMS —— 1.85 | LsMs '+
8 L _ CPA o CPA x
Al h Corrected CPA % 1.8 |- Corrected CPA % |
7L i Average LSMS & | SQS
| SQS 1.75 + Average LSMS m -
6 L | L i
1.7 - x —
5+ | ] 3
g 165+ + —
4 - i . >
16 + .
3 . . i,
2 | | 1.55 I~ ?* .
(1 °
1} b I? Ti - 1.5 + i
- A
0 a: ail 1 ! L offTl .WﬂTm_ 1.45 1 1 1 L I I L
-03 02 -0.1 0 0.1 02 03 04 0.5 -03 -02 0.1 0 0.1 02 03 04 05
Charge Transfer Charge Transfer

Standard CPA assumes constant Madelung potential for all species

This is not frue: A possible correction is charge screening by the average net charge per species

AVCS:_ 2 o
e € R, )
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Statistical Mechanics

« Describes the behavior of a large ensemble of constituent
particles that gives rise to macroscopic observables:
thermodynamics.

« A physical system is described by phase space
coordinates ¢ ¢ o that describe the state of each
constituent of the particles, e.g. position, momentum,
atomic species, magnetic moment, etc.

« The dimension of 2 is huge: for a system describing the
position and velocities of N atfoms 2=R®N,

« The behavior of the system is determined by its
Hamiltonian H(¢), or energy, that maps N—R

EEEEEEEEEE
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Statistical Mechanics

« At finite, non zero, tfemperature T (or inverse temperature
B=1/kgT) a system is in state & with a probability that is given
by the Boltzmann distribution:

o—BH(E)
p(&;8) = fQ e—BH(E) gg!

« Observables of a system are measured as the averages
over this probability density:

(A = /Q A(E)p(&; B)de

« The evaluation of this integral is the original application of
the Metropolis algorithm

EEEEEEEEEE
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Statistical Mechanics of Materials from First Principles

 Traditionally MC sampling had been applied to model systems
where the energy is fast and easy to evaluate.

« We are combining the stafistical mechanics with first principles
density functional theory calculations, where the energy of the
system is the smallest eigenvalue of a partial differential equation
with constraints that are given by the state of the system.

« Thus, H(&) requires multiple CPU-hours to evaluate a single energy.

e = any reduction in the number of energy evaluations will save
significant computational resources.

« = Build a surrogate model from first principles

EEEEEEEEEE
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Statistical Mechanics of Materials from First Principles

 Traditionally: perform first principles calculations and construct @
model that fits well to describe the desired physics. E.Q.
Magnetism & lattice vibrations in Iron

...........
0.08 T T T T T T T T

8| i
%’ BCC = experiment
W B i o latt + spin ( <J > )
( S0
¢ ')“\) o LSMS 6| v latt + spin (J(r,0,p,F )) SN
004}  LEAEF JrO.p,p,) 1 R
[ a AR ¥ ol (X v
Y ' e n = RSG5
s Y y W K
S omf byl : Lt LR
- o ® W 8800~
T Y % oom@a” :
bl o 59 W ae | iy spin-latt
ey 2k )
,Q f(', ?, -qnw ’-
y | ]
002} i:f - =
A A A A 0 1 1 1 L 1
20 25 30 35 40 45 80 85 0 200 400 600 800 1000 1200
T(K
A (K)

Jii (r,0,p, pm) = (—7.2036956E-4p + 8.2453018E-3py, — 4.9133771E-3¢f,
+ 9.7308351E-4p%, — 1.0581546E-3r;; + 2.2441192E-3
— 7.5827276E-4pp ) (6.0 1;;)°0(6.0- ;)
+ (- 1.7559806E + 1r;; + 5.4676556E+0r’ — 5.3687858E-1r
+ 2.8872662E+ 0p + 1.4496825E+ 1p,, — 4.3811389E+ 0¢?,
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Order/Disorder Transitions — CuZn (bcc)

[Cu] / % k.B.

100 80 60 40 20 0
1200 1 | 1 |

1085°C

1000 -

o
~
~

800 +

ordered

600 +

400 A

200

0 20 40 60 80 100
[Zn] / % K.B.

disordered
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Sampling of chemical order using Wang-

Landau
DFT Supercell Energies Wang-Landau DoS

i & - - n > -
:.‘O—) AE=-045mRyd —>»

€=
c
o]
Q

—> AE=-0.22mRyd —> .

Config.

—> AE=-034mRyd —>

Config. #3

EEEEEEEEEE
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Order/disorder transition in CuZn

250 site bcc lattice
occupied by Cu and Zn
atoms

Monte-Carlo moves swap
occupations of randomly
selected pairs

fully self consistent energy
calculation for each
configuration

120

80
60
40
20

0

Microcanonical Entropy

Calculated phase transition:

870K (exp. 750K)

100 ¢

spline fit -
monte carlo run —s—

1
1000 (b)
~ ~
3 800 } g 0.5
2 8
£ 600 } o
()] o
I =}
o 400 | ] s
E 2
g 200 1 8 -0.5
2 — a
0 N
750 1000 1250 -1
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Example: First Principles Wang-Landau sampling of alloys

Monte Carlo-ab initio simulation of finite
temperature statistical physics of magnets and
alloys

Ultimately: Reliably calculate material
properties at finite temperature

Each dot is a 250-atom DFT calculation !
> 600 OOO occep’red > 60% reJecTed moves

*MC time evolution of Wolkers |n o WL—

S. Khan and M. Eisenbach, Phys. Rev. B 93, 024203 (2016).
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__LSMS calculation of a binary alloy (CuZn)

DFT Supercell

000

Config.

Y
J

00

/ ™

Config. #3 Config. #2
QQ ®C
@O

00

£

Energies

‘000 = ME=-045mRYd >
—) AE=-0.22mRyd —> .

=> AE=-034mRyd =>

Wang-Landau DoS

Specific heat of CuZn.
Phase transition occurs|
at 850K experimentally
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Goal: Accelerate Monte Carlo Stochastic

S am p||n g 1. Generate a new configuration x*

Total computational cost: from x; with probability ?(xi ,X7)
2. Calculate the change in energy, AE

« T,: Calculate the change in energy | 3. Accept with probability:

p(xz) p(E — E+ AE) :min{l,e—AE/kBT}
« T,: "Random walk” with probability | 4. Calculate and accumulate
A(:C,I;, :I:*) physical observables
5. Repeat steps 1-3 until a desired
min T = ¢(T1,T>) number of steps

Minimize the number of expensive evaluations of model functions
- decrease the time-to-solution ratio for stochastic simulations

Formulate a machine learning approach with two model levels:
A(wfé, T¥) = p(w*)CJ(fv*,xi)/p(ﬂg)q(wi,x*)

Level 2 - Predict a classifier model based Level 1 - Predict a regression model for
on acceptance probability A(x; x*) to the probability density distribution p(x)
directly generate Monte Carlo moves

OAK RIDGE | &t
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Supervised Learning

« Goal: predict the total energy associated with a laftice
configuration for an alloy system (e.g. Cu-Au, Fe-Pt)

e ldeaq:;

1. Generate mulfiple laftice configurations and estimate the
related total energy with accurate DFT calculations

2. Use the generated lattice configurations and estimated total
energy as training set and test set for a neural network

* Challenges:

« Risk of overfitting (low quality estimate for new incoming dataq)

« Training of a neural network is a global non-convex
optimization problem (between multiple local and global
minima, only physically admissible ones are of interest — naive
training could result in models with non-physical behavior)

OAK RIDGE | pesste
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Local Atomic Energy

The previous presented results used the total energy of
the system as calculated by DFT.

The total Energy is taken to be the sum of local site
confributions:  E, = Z E;.

With E; = H(5;) + ¢ and & = (0% 0',--- oV~ the vector of
site occupations within the local interaction zone.

A common approach is cluster expansion:

E(o) =Jo + Z]lal + Z]l]o'zo'] + Z.]l] kOi0jo) + .

i,j,k
The EPI model is a speC|oI case with

E; = vanf )+ V0 +e

Where f is the combined feature index (species, shell)
and I1is the count of sites with this feature.

OAK RIDGE
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Neural Networks for local atomic energy

As the local energy training data set can be significantly larger than the total
energy data sets, we can explore more complex models that can allow the
local energies to be non-linear functions.

An example would be a quadratic pair interaction term:

E =) V(&) + Y VI (@) (5,)+ V' +e
f LI'<f

Local Chemical
Environment

The calculation of the I takes into
account the lattice symmetry. It is
possible to write the local energy
directly in configuration space, e.g.

Ei= Y Viel+ > Vi*oloF+V'+e Atom 2 -

JELIR j,k>jELIR

Hidden Hidden Hidden
Layer 1 Layer 2

Atomic
Local

nergy

This forms the basis of a neural network
to predict the local energy.

The input layer represents the site /.
occupation by a binary label. Aom N, 7 4

OAK RIDGE
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Supervised Learning: Neural Networks (cont. 1)

Approach: introduce physical constraints in the
optimization process to train the neural network

w

{argmaxEtrue — Byredictea(w)||  Obiective function

s.t.  Cirue = Cpredicted (W) Physical constraint

Possible quantities for the physical constraint are charge density
or magnetization vectors
The constrained optimization problem can be recast as a global

optimization problem by interpreting the constraint as a
Lagrangian term in the objective function

Joint training or multitasking: train a neural network to
simultaneously predict multiple targets associated with the same
input

argmax|| Eirue — Epredicted (W) || + A||Cirue — Cpredicted (W) ]|

OAKIILQ}’DGE t%ﬁ%;:f.ﬁé?



HydraGNN

« Graph convolutional neural network:
« atoms are interpreted as nodes and interatomic bonds are
interpreted as edges, and outputs total (graph-level) and atomic
(node-level) physical properties

ENERGY CHARGE DENSITY MAGNETIC MOMENT

ENERGY CHARGE DENSITY MAGNETIC MOMENT

LATTICE STRUCTURE LATTICE STRUCTURE LATTICE STRUCTURE
INPUT INPUT INPUT
LATTICE STRUCTURE
INPUT
O AK RIDGE EEEEEE SHIP
COMPUTIN G
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HydraGNN

« The model takes the atomic number for each position and
generates the enthalpy as well as vectors of the charge and
magnetic moments at each site

HydraGNN architecture N
GLOBALPOOLING | Fylly Connected Layer | MiXing
LAYER enthalpy
o
=
g b
z
3 g Atomic
Graph input =—p Z |—> Ny — Fully Connected Layer — charge
= < transfer
S =
pes | o
o o
> z
S 5
© =
& Atomic
Fully Connected Layer - magnetic

\ moment /
\\ /
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Iron-Platinum

e FePt is of interest for hard

magnetic materials

« The magnetic properties depend
significantly on the chemical order

1800

1600 |

1400

1200

Temperature (°C)

1000
912°C o
Magnetic transformation!

1!

X 770°C /,’,_'12\ M

vl

800 1

! (FegPt) ||| (Fe, PY)

(FePt,)
(a'l: 1 L ! 1 1 1 ¢

600

0 10 20 30 40 50 60
Fe Atomic percent platinum

OAK RIDGE &8558 phil. Mag. 88, 2725 (2008)
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Magnetic anisotropy in FePt

a b

1 1 0.8
3 = Full Supercell calculation 'g
% © Sliding local volume calculation | @ 0.4
= — Model fit S
3 lodel fitting %
205 1E
E =00
w
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e /
| 1015 &
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difference | : .

Nature 542, 75 (2017)



Numerical Result - Enthalpy

Mixing Enthalpy

o 60
Mixing Enthalpy
50 A - ,,.;‘. 50
40 e _ 40"
—_~ >
> o 2
< 30 5 301
.g X |.|.|EL
Wy 20 20

=
o
[
o

’¢
0_|' | T T | T 0.
0 10 20E (_;o ) 40 50 5 ~ 20 %
test 1Y Etest (RY)
Linear Model HydraGNN
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Numerical Result - Enthalpy

« The EPI model fails to capture the non-
linear behavior of the mixing enthalpy

« The model shows clustering of its
behavior for different concentrations

« A good model could be obtained for
a fixed concentration, but not across
all concentration

« This indicated the non-linear
conftribution arising from magnetism in
the FePt system

OAK RIDGE | pesste
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Numerical Result - Enthalpy

 HydraGNN accurately predicts the mixing

Mixing Enthalpy

enthalpy for different compositions and &0,
atomic configurations associated with each
composition 50
« Itis an effective non-linear predictive model - 40
[a'd
* It accurately captures the dependence of 3]
the mixing enthalpy as a function of a binary * |
ferromagnetic solid solution alloy
101
01
0 20 40 60
Etest (RY)
HydraGNN
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Interpretation
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Pure Fe is magnetic, and Pt is non-
magnetic

Formation of magnetic moments
in alloys is driven by the collective
behavior of electrons in the alloy
in the FePt, the magnetic moment
associated with the Pt sites
depend on their environment and
the Fe concentration

This behavior can be captured by
the HydraGNN model, while the
EPI model fails to account for this
concentration dependent
behavior.
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Modeling High Entropy Alloys

see:

Ti

NbMoTaW NbMoTaWV NbMoTaWTi

High Entropy Alloys (concentrated solid solution alloys) consist of four or
more principal alloying element. They exhibit a wide range of interesting
properties. The chemical order is important to understand these.

Due to the large design space, modeling is essential in guiding and
understanding the experimental work and for gaining insight into the
stability of these alloys.

Traditional cluster expansion approaches of force fields become
challenging for these multicomponent alloys.
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Modeling High Enfropy Alloys

Ansatz: consider only pair interactions

Initial configurations ’

DFT (LSMS)

E(e)=Nlo +N>_ Jx om" ;
X,Y,m [ Datasets (training, validation) }7

X,Y: Chem|CO| SpeCIeS Bayesian ridfe regression
m: coordination shell
o o @ 1) Effective Hamiltonian (EPI Model)

v

Monte Carlo simulation (replica exchange)

Select new configurations

v
Improved datasets (calculate
new configuration with DFT)
O O O O Accurate?
Use the Bayesian information criterion No
(BIS) to select the optimal number of Yz—s
She”S (m) E Final effective Hamiltonian (calculate }
physical observables with MC data)
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Results

Linear EPI;
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Results

Ta

w
0.003 -
o 0.002 -
e 0.001 -
0.000 - 0.000 -

LR EPI_QR 1ST NN LR EPI_QR 1ST NN

RMSE (Ry)
o
o
o
w
RMSE (Ry)

o
o
o
N

Training (blue) vs testing (orange) for the various models with the
same training data set. (38,400 data points)

It can be seen that compared to the linear model (LR), non
linear contributions (EPI_QR) are more important than triplet
interactions (1ST).

From the fraining results, the NN model demonstrates the
capability to represent the data noticeably better than the other
models, but due to the significantly larger number of parameters
the training set size is not large enough to avoid some overfitting
as indicated by the testing results.

OAK RIDGE

LEADERSHIP
- COMPUTING
National Laboratory

FACILITY




Statistical mechanics with HPC & ML
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Conclusion

[ Initial configurations }

- Using HPC to generate sufficient amount training DFT (LSMS)
data from first principles with high accuracy v
Using SCO'Gble COde (LSMS) [ Datasets (traln‘lng, validation) }47
. . Bayesian ridge regression
- Training of Surrogate Model .
Effective Hamiltonian (EPI Model)
- Statistical Mechanics Monte-Carlo simulation !
Monte Carlo simulation (replica exchange)
- Active refinement of the model with new HPC e T
generated data driven by the simulation e e e e
Improved data‘sets (f:alculate
. = Experimentally verifiable prediction of material - e |
specific finite temperature behavior of complex @
materials .
Yes
. . v
(] Endbled by tlght COUpllng Of HPC & MI- & MC [ FinaI_efFective Hamiltor?ian (calcula';e J
workﬂow physical observables with MC data
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https://github.com/mstsuite/lsms

Resources
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