A first-principles approach to orbital accumulation and orbital transport

Peter Oppeneer

Department of Physics and Astronomy Uppsala University, S-751 20 Uppsala, Sweden

UPPSALA UNIVERSITET

Electronic Structure Workshop, June 14, 2023

<u>Aim:</u> Develop electronic structure theory to compute and predict unusual spin and orbital effects

- Motivation: Spin-orbit torques
- Electronic structure methodology
- Results: Orbital Hall effect & orbital Nernst effect in 40 elements
- Magnetic spin Hall effect and magnetic orbital Hall effect in FMs & bilayers
- Detection of orbital accumulation in thin layers

Thanks to:

Leandro Salemi

Marco Berritta

Sanaz Alikhah

Motivation - Spin-orbit torques

Miron et al, Nature 476, 189 (2011)

Liu et al, Science 336, 555 (2012)

Review: Manchon et al, Rev.Mod.Phys. **91**, 035004 (2019)

Staggered SOTs in special AFMs

Zelezny et al, PRL **113**, 157201 (2014) Wadley et al, Science **351**, 587 (2016) Zelezny et al, PRB **95**, 014403 (2017)

From a device view point

market-ready product after ~20 years

Technology being developed for market

Observation SHE Pt: Stamm et al, 2017 Current fundamental research topic

Large orbital effects predicted

Electronic structure theory predictions

Orbital inverse Faraday effect – not due to SOC Berritta, Mondal, Carva, Oppeneer, PRL **117**, 137203 (2016)

Orbital Rashba-Edelstein effect – large, not due to SOC Salemi, Beritta, Nandy, Oppeneer, Nat. Commun. **10**, 5381 (2019)

Orbital Hall insul. phase in TMDCs Canonico, Cysne, Molina, Muniz & Rappoport, PRB **101**, 161409R (2020)

Many new papers in last years:

Go, Freimuth, Hanke, Xue et al, Phys.Rev.Res. **2**, 033401 (2020) Go, Jo, Lee, Kläui & Mokrousov, EPL **135**, 37001 (2021) Lee, Go, Park, Jeong et al, Nat. Commun. **12**, 6710 (2021) Choi et al, arXiv 2109.14847

Phenomena: Charge-to-spin conversion – SHE & SREE

Methodology – Electronic structure calculations

Ab initio calculations

Spin Hall effect $J^{S_k} = \sigma^{S_k} E$ Orbital Hall effect $J^{L_k} = \sigma^{L_k} E$

 $A = \hat{J}^{S_k} = \frac{\{\hat{S}_k, \hat{p}\}}{2m_e V}$

Spin/orbital current operator

Include scattering effects in an average through lifetimes $\tau_{intra}, \tau_{inter}$ (no explicit extrinsic effects such as side step or skew scattering)

> <u>SHE:</u> Guo et al, PRL **100**, 096401 (2008) <u>OHE</u>: Tanaka et al, PRB **77**, 165117 (2008) Jo, Go, and Lee, PRB **98**, 214405 (2018)

Spin and orbital Nernst effects

$$\Lambda_{ij}^{S_k(L_k)} = \frac{\pi^2 k_B^2 T}{-3e} \left(\frac{d}{dE} \sigma_{ij}^{S_k(L_k)}(E)\right)_{E=E_F}$$

 $J_i^{S_k} = \sigma_{ij}^{S_k} E_j - \Lambda_{ij}^{S_k} \frac{dT}{dr_j}$

Thermal gradient

Spin Nernst effect: Meyer et al, Nat. Phys. 16, 977 (2017)

Size of OHE for 40 elements

- Large effects for light 3d metals
- Good agreement with Jo et al (2018)
- Factor 2 & different trend from Tanaka et al (2008)
- Cheap, light metals for future orbitronics?

Salemi and Oppeneer, Phys.Rev.Mat. 6, 095001 (2022)

Tanaka et al, PRB **77**, 165117 (2008)

Recently predicted new effects

Tanaka et al, PRB **77**, 165117 (2008) Sinova et al, Rev. Mod. Phys. **87**, 1213 (2015) Kimata et al, Nature **565**, 627 (2019) Salemi et al, Nat. Commun. **10**, 5381 (2019)

Edelstein, Solid State Comm. **73**, 233 (1990) Meyer et al, Nat. Phys. **16**, 977 (2017) Salemi and Oppeneer, PRB **106**, 024410 (2022)

Unusual spin and orbital currents

Conventional SHE $\vec{J}^S \perp \vec{E} \perp \vec{S}$ Time-reversal and *M* even Fermi sea or interband

Spin Berry curvature $\sigma_{OH(SH)} = \frac{e}{\hbar} \sum_{n \neq m} \int \frac{d^3k}{(2\pi)^3} (f_{m\mathbf{k}} - f_{n\mathbf{k}}) \Omega_{nm\mathbf{k}}^{X_z},$ $\Omega_{nm\mathbf{k}}^{X_z} = \hbar^2 \text{Im}\left(\frac{\langle u_{n\mathbf{k}} | j_y^{X_z} | u_{m\mathbf{k}} \rangle \langle u_{m\mathbf{k}} | v_x | u_{n\mathbf{k}} \rangle}{(E_{n\mathbf{k}} - E_{m\mathbf{k}} + i\eta)^2}\right)$

Anomalous component $\vec{J}^S \perp \vec{E} \mid \mid \vec{S}$

> Time-reversal and *M* odd

Fermi surface or intraband n = m

Calculations show: Always present for *magnetic* materials (MSHE and MOHE)

Salemi, Berritta, Oppeneer, PRMat. **5**, 074407 (2021)

Spin anomalous Hall effect (SAHE) in ferromagnets

(Fermi sea or interband term)

Л / П - -

Symmetry analysis

 $J_{i}^{S_{k}} = \underbrace{\sigma_{ij}^{S_{k}}}_{\epsilon_{ijk} \sigma_{SH}} E_{j}$ $\sigma_{xy}^{S_{z}} = \sigma_{yz}^{S_{x}} = \sigma_{zx}^{S_{y}}$ (Pt)

Ferromagnet

 $\sigma_{xy}^{SAHE}(\vec{m})$ "

Amin, Li, Stiles, Haney, PRB **99**, 220405R (2019) Miura & Masuda, PRMat. **5**, L101402 (2021)

$$\boldsymbol{\sigma}^{S_x} = \begin{pmatrix} 0 & 0 & \sigma_{xz}^{S_x} \\ 0 & 0 & \sigma_{yz}^{S_x} \\ \sigma_{zx}^{S_x} & \sigma_{zy}^{S_x} & 0 \end{pmatrix} \quad \boldsymbol{\sigma}^{S_y} = \begin{pmatrix} 0 & 0 & \sigma_{xz}^{S_y} \\ 0 & 0 & \sigma_{yz}^{S_y} \\ \sigma_{zx}^{S_y} & \sigma_{zy}^{S_y} & 0 \end{pmatrix} \quad \boldsymbol{\sigma}^{S_y} = \begin{pmatrix} 0 & 0 & \sigma_{xz}^{S_y} \\ \sigma_{zx}^{S_y} & \sigma_{zy}^{S_y} \\ \sigma_{zx}^{S_y} & \sigma_{zy}^{S_y} & 0 \end{pmatrix} \quad \boldsymbol{\sigma}^{S_{y-1}} \quad \boldsymbol{\sigma}^{S_{y-1$$

Seemann, Ködderitzsch, Wimmer & Ebert, PRB **92**, 155138 (2015) Wang, Commun.Phys. **4**, 55 (2021) 14

Calculated results Fe, Co, Ni

	<i>T</i> -even						7-odd				
	SHE			OHE			MSHE		MOHE		$\frac{\hbar}{e}(\Omega \mathrm{cm})^{-1}$
	$\sigma_{yz}^{S_x}$	$\sigma^{S_y}_{zx}$	$\sigma_{xy}^{S_z}$	$\sigma_{yz}^{L_x}$	$\sigma^{L_y}_{zx}$	$\sigma_{xy}^{L_z}$	$\sigma_{xz}^{S_x}$	$\sigma^{S_x}_{zx}$	$\sigma^{L_x}_{xz}$	$\sigma^{L_x}_{zx}$	$\hbar \tau^{-1} = 40 \text{ meV}$
Fe	441	456	92	4697	4698	4707	-593	739	1343	848	
Co	839	8	-44	5103	4718	4737	614	1074	-358	1356	
Ni	1606	1543	824	3306	3297	3149	394	-290	-66	1033	

SAHE

OHE >> SHE

SHE components strongly *M*-anisotropic (SAHE) MSHE ~ SHE => must be taken into account

MOHE (new) exists, but smaller than OHE

OHE present without SOC, all others require SOC

MSHE and MOHE (*intraband*) larger for pure samples

Salemi and Oppeneer, PRB 106, 024410 (2022)

Lifetime dependence

MSHE and MOHE (*intraband*) much larger for pure samples 16

SOTs at symmetry-broken interface Pt/3d FM

Early work:

Haney, Lee, Lee, Manchon, Stiles, PRB **88**, 214417 (2013) Freimuth, Blügel, Mokrousov, PRB **90**, 174423 (2014)

Layer-resolved induced spin polarization

Results Pt/3d-bilayers – orbital polarization & current

- δL_y
- Huge OHE
- Orb. accumulation profile different from spin
- Enlarged at the interface
- ✤ M, T-even effect

δL_x

- Local response at interface, along E_x
- Only exists for magn. material (*M*, *T*-odd)
- Smaller than *E*-transv.

OHE and *E*-transv. orbital polarization not due to SOC

Magnetization direction dependence

UPPSALA UNIVERSITET

- Accurate angle dependence from *ab initio* calculations
- > Identify even in M and odd in M components => analytical expressions
- Next step: full switching dynamics in the time domain

Many predicted effects – direct observations?

Tanaka et al, PRB **77**, 165117 (2008) Sinova et al, Rev. Mod. Phys. **87**, 1213 (2015) Kimata et al, Nature **565**, 627 (2019) Salemi et al, Nat. Commun. **10**, 5381 (2019)

UPPSALA UNIVERSITET

> Stamm et al., PRL 119, 087203 (2017) Meyer et al, Nat. Phys. **16**, 977 (2017) Salemi and Oppeneer, PRB **106**, 024410 (2022)

Experimental detection of orbital accumulation

See also: Choi, Jo et al., Nature, in press (2023)

Determination of orbital diffusion length in Cr

Choi, Jo et al., Nature, in press (2023): Orbital diffusion length $l_o \sim 60 - 70$ nm Ti But had to scale σ^{OH} by a factor of 1/100

Electronic structure calculations very powerful, predictive tool for development of spin-orbitronics and orbitronics

Ferromagnetic Fe, Co, Ni:

- Large magnetic spin Hall effect and MOHE coefficients (7-odd) predicted
- Expected to be present in other magnetic materials
- Leads to (novel) magnetic SNE and magnetic ONE (MSNE and MONE)

Pt/3d bilayers

Presence of 7-even and 7-odd spin and orbital accumulations => diff. torques

Elements

- Large OHE in light 3d metals predicted
- First evidence of very large OHE in Cr

Magneto-optical detection of OHE in Ti

L-MOKE

Orbital diffusion length $l_o \sim 60 - 70$ nm But had to scale σ^{OH} by a factor of 1/100

Choi, Jo et al., Nature, in press (2023)

Ab initio calculated results Fe, Co, Ni

Salemi and PMO, PRB 106, 024410 (2022)

Magnetic spin and orbital Nernst effects

Sizes of torques & Influence of SOC

Spin accum.

Magn. SHE

Influence of SOC

T-even orb. accumulation and OHE not due to SOC, all others SOC induced

Magneto-optical detection of SHE

Stamm, Murer, Berritta, Feng, Gabureac, Oppeneer & Gambardella, PRL **119**, 087203 (2017) Excellent agreement with experiment!

Estimated I_s =11.4±2 nm for pure Pt

- > Accurate *ab initio* predictions of spin Hall effect possible
- Direct MOKE measurement of SH conductivity in heavy metals feasible

Orbital Nernst effect

Large for nonmagnetic Ni, Pd & Pt

Layer-resolved comparison of spin accumulation

LIPPSALA

Induced orbital polarization – *M* direction dependence

> Orbital χ_{xy} is *nonrelativistic* and antisymmetric $\chi_{xy}^L \approx -\chi_{yx}^L$

All other components due to SOC

UPPSALA

Spin-charge angle tensor θ $\boldsymbol{J}^{S_k} = \boldsymbol{\sigma}^{S_k} \boldsymbol{\sigma}^{-1} \boldsymbol{J} = \boldsymbol{\sigma}^{S_k} \boldsymbol{\rho} \boldsymbol{J} = \frac{\hbar}{2e} \boldsymbol{\theta}^{S_k} \boldsymbol{J} \qquad \boldsymbol{\rho} = \begin{pmatrix} \rho_1 & \rho_A & 0\\ -\rho_A & \rho_1 & 0\\ 0 & 0 & \rho_2 \end{pmatrix}$ $\mathbf{M} \parallel \mathbf{u}_z$ $\boldsymbol{\theta}^{S_x} = \frac{2e}{\hbar} \begin{pmatrix} 0 & 0 & \sigma_{xz}^{S_x} \rho_2 \\ 0 & 0 & \sigma_{yz}^{S_x} \rho_2 \\ \sigma_{zx}^{S_x} \rho_1 - \sigma_{zy}^{S_x} \rho_A & \sigma_{zx}^{S_x} \rho_A + \sigma_{zy}^{S_x} \rho_1 & 0 \end{pmatrix}$ Mixing of $\boldsymbol{\theta}^{Sy} = \frac{2e}{\hbar} \begin{pmatrix} 0 & 0 & \sigma_{xz}^{Sy} \rho_2 \\ 0 & 0 & \sigma_{yz}^{Sy} \rho_2 \\ \sigma_{zx}^{Sy} \rho_1 - \sigma_{zy}^{Sy} \rho_A & \sigma_{zx}^{Sy} \rho_A + \sigma_{zy}^{Sy} \rho_1 & 0 \end{pmatrix}$ effects Spinfiltering on AHE $\boldsymbol{\theta}^{S_{z}} = \frac{2e}{\hbar} \begin{pmatrix} \sigma_{xx}^{S_{z}} \rho_{1} - \sigma_{xy}^{S_{z}} \rho_{A} & \sigma_{xx}^{S_{z}} \rho_{A} + \sigma_{xy}^{S_{z}} \rho_{1} & 0\\ \sigma_{yx}^{S_{z}} \rho_{1} - \sigma_{yy}^{S_{z}} \rho_{A} & \sigma_{yx}^{S_{z}} \rho_{A} + \sigma_{yy}^{S_{z}} \rho_{1} & 0\\ 0 & 0 & \sigma_{yx}^{S_{z}} \rho_{2} \end{pmatrix}$