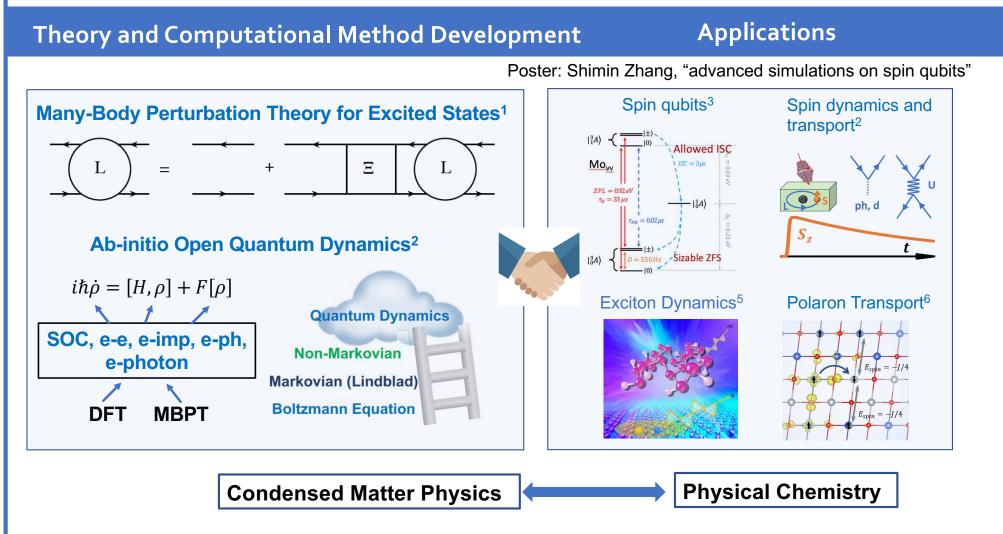
Spin Relaxation, Dephasing, and Diffusion in Solids from ab-initio Density-Matrix Dynamics

> Yuan Ping University of California, Santa Cruz University of Wisconsin, Madison


> > Electronic Structure Workshop UC Merced, June 14, 2023

GORDON AND BETTY

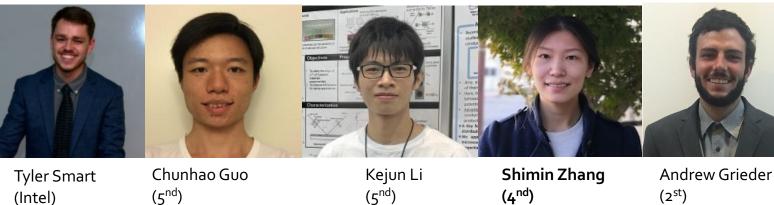
1. Y. Ping et al, *Chem. Soc. Rev.*, 2013. 2. J. Xu, ...Y.P., *Nat. Commun.* 2020. J. Xu, ...Y.P., PRB, 2021. Editor's Suggestions and Highlight: "A universal model of spin relaxation". 3. Y. Ping, T. Smart, *Nat. Comput. Sci.* 2021. 4. J. Xu, ...Y.P., *Nano Lett.* 2021; B. Zhao et al, *Nature*, 2021. 5. F. Wu, D. Rocca, Y.P., JMCC, 2019. 6. T. Smart.. Y.P., *npj Comp. Mater.* 2018.

Ping Group

Moving to UW-Madison July 1st 2023 Postdoc and PhD positions are available! Key theory collaborators:

Postdocs:

Feng Wu (Alibaba QC)


Junqing Xu (current. Prof. in China)

Rafi Ullah **f. in China)**

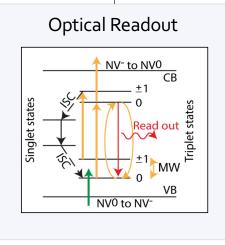
Dario Rocca (France, U. Lorraine, now QC Ware) Ravishankar Sundararaman (RPI)

Graduate students:

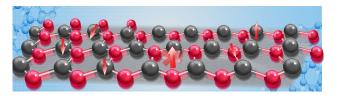
http://yuanping.chemistry.ucsc.edu

Outline

- Introduction of spin-based information science
- Theoretical framework for ab-initio density-matrix dynamics in solids
- Spin relaxation and transport in 2D materials
- Spin relaxation and dephasing in halide perovskites
- Conclusion and outlook

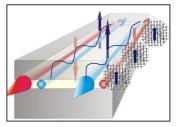

Outline

Introduction of spin-based information science


- Theoretical framework for ab-initio density-matrix dynamics in solids
- Spin relaxation and transport in 2D materials
- Spin relaxation and dephasing in halide perovskites
- Conclusion and outlook

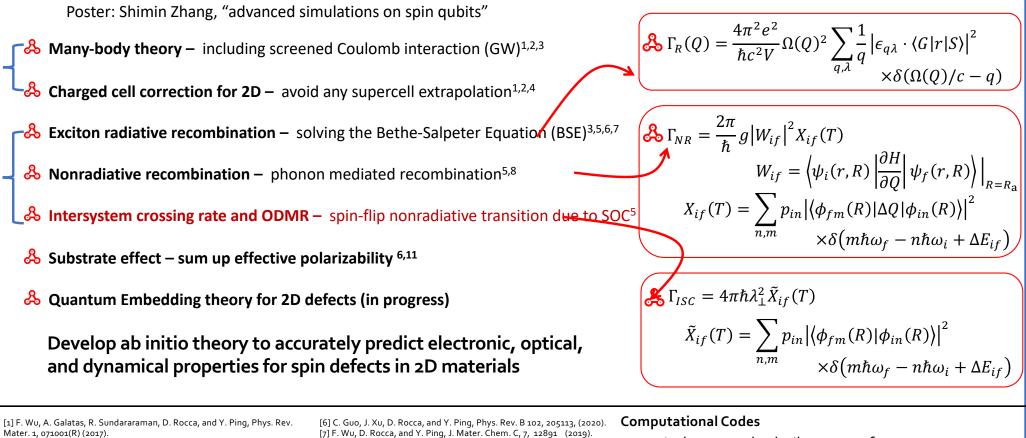
Materials for Quantum Information Science

Critical processes for spin-based quantum information technologies



Spin Relaxation and Coherence

 $(T_1 \text{ and } T_2, \text{ how long the } quantum state can survive?})$


Quantum Information Transduction

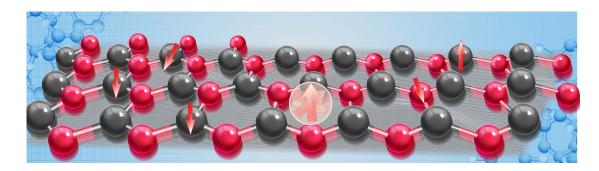
None of the current spin qubit candidates is considered "ideal" for scalable quantum applications

Design new materials for spin qubits in quantum sensing and quantum computing - Long quantum coherence, efficient readout, quantum transduction

Developed Methodologies for 2D Quantum Defects

[2] T. J. Smart, F. Wu, M. Govoni, and Y. Ping, Phys. Rev. Mat. 2, 124002 (2018). [8] F. Wu, T. J. Smart, and Y. Ping, Phys. Rev. B, 100, 081407(R) (2019). [9] Y. Ping and T. J. Smart, Nat. Comput. Sci., 1, 646, (2021) [3] Y. Ping, D. Rocca, and G. Galli, Chem. Soc. Rev. 42, 2437 (2013). [4] R. Sundararaman, and Y. Ping, J. Chem. Phys., 146, 104109 (2017).

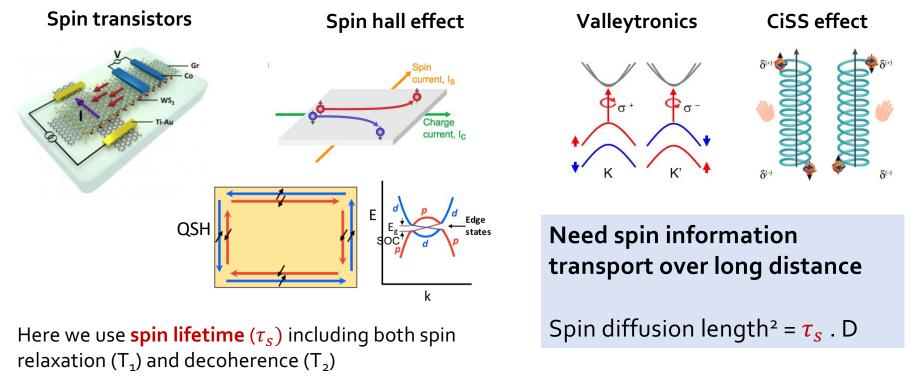
[5] T. J. Smart, K. Li, J. Xu, Y. Ping, NPJ Comput. Mater. 7, 59, (2021).


[10] K. Li, T. J. Smart, Y. Ping, Phys. Rev. Mater (Letter), 6, L042201, (2022) [11] S. Zhang, K. Li, C. Guo, and Y. Ping, 2D Materials, in press, (2023) arxiv.org/abs/2304.05612

In-house codes built on top of QuantumESPRESSO and Yambo-code

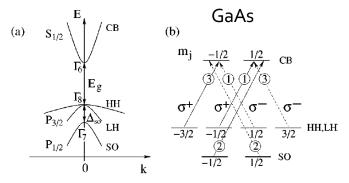
Quantum Coherence of Spin Qubit

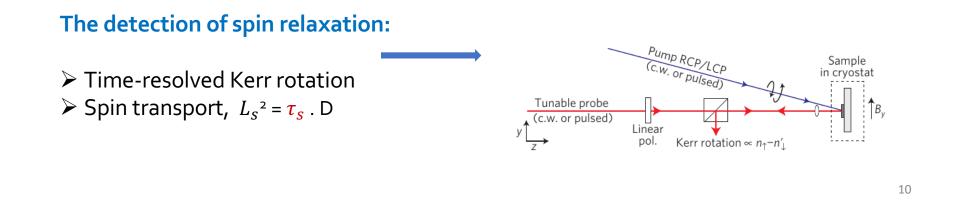
Major Challenges of Quantum Computation:


- **Decoherence** of encoded information loss of information
- Building large scale fault-tolerant quantum computer

How long the quantum state can survive? (Localized) spin relaxation T_1 and decoherence T_2

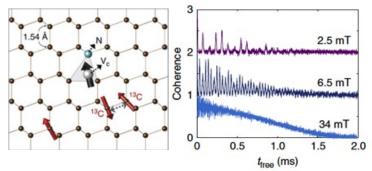
Spin-Based Information Processing


Low-power electronics based on spin manipulation? (Delocalized spin)

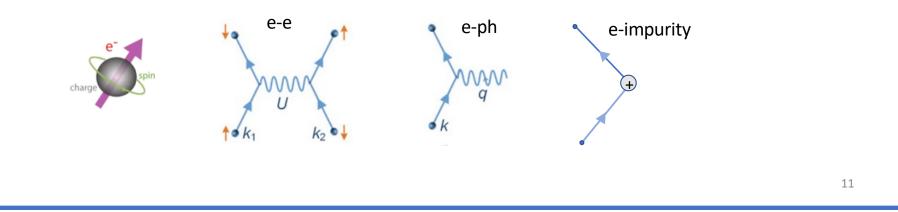

Spin Imbalance Generation and Detection in Solids

The generation of spin imbalance:

- Optical excitation with circularly polarized light
- Injection of spin polarization from ferromagnets

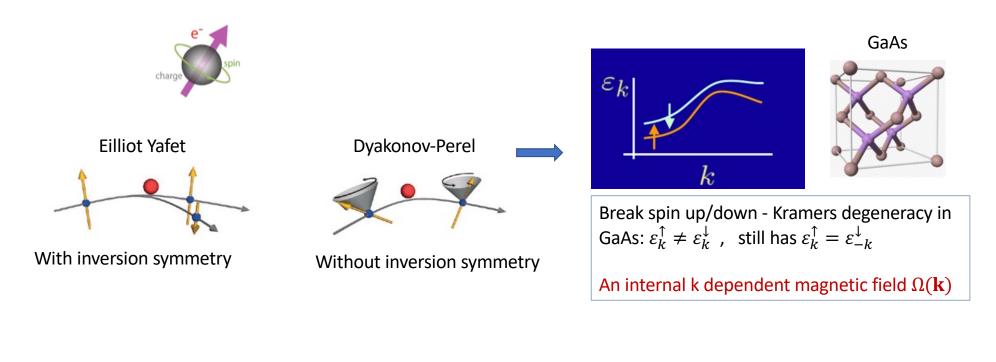


Photon spin (helicity +/-) selectively excites electrons with certain m_j that gives spin polarization Zutic et al, *Rev. Mod. Phys.* 76, 2, (2004)

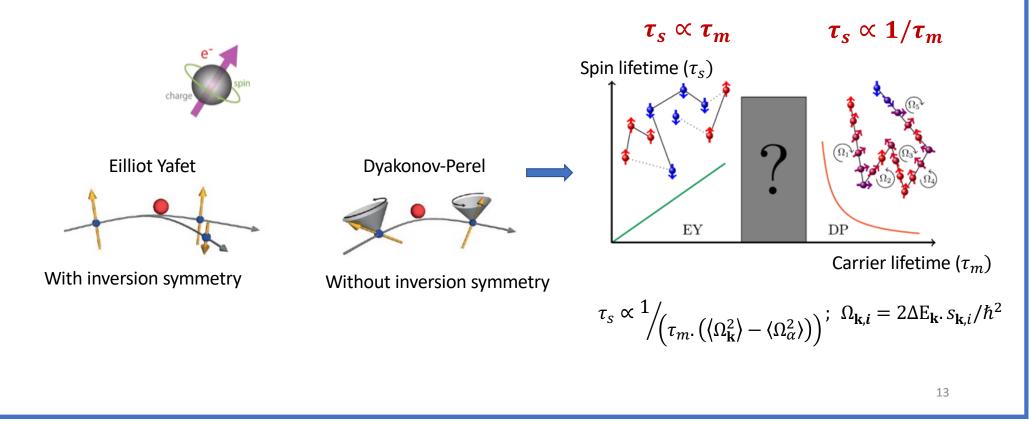


Spin Decoherence and Relaxation Mechanism

- At very low temperature and large B field, decoherence mainly from fluctuated magnetic field by nuclear spin flip-flop transition
- At finite temperature, other effects can be dominant such as phonons, impurities, electronelectron interactions through spin-orbit couplings.



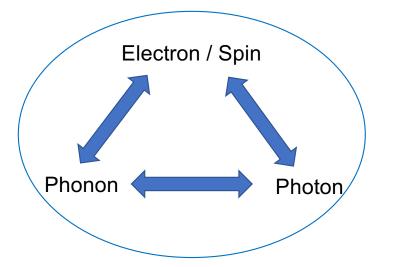
At 20K, NV in diamond spin decoherence time T₂ is ~ms, H. Seo et al *Nat. Commun.* (2016) SiC divacancy T₂ 360 μ_s at 20K and 50 μ_s at 300K


Spin Relaxation and Decoherence Mediated by SOC

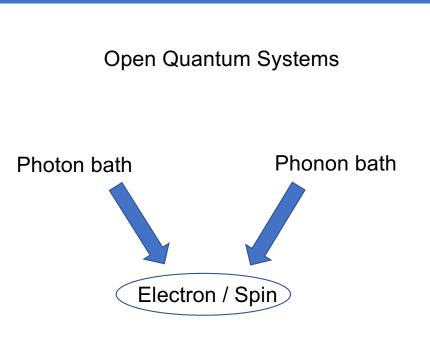
Spin-orbit interaction couples spin with phonons, impurities and electrons

Spin Relaxation and Decoherence Mediated by SOC

Spin-orbit interaction couples spin with phonons, impurities and electrons

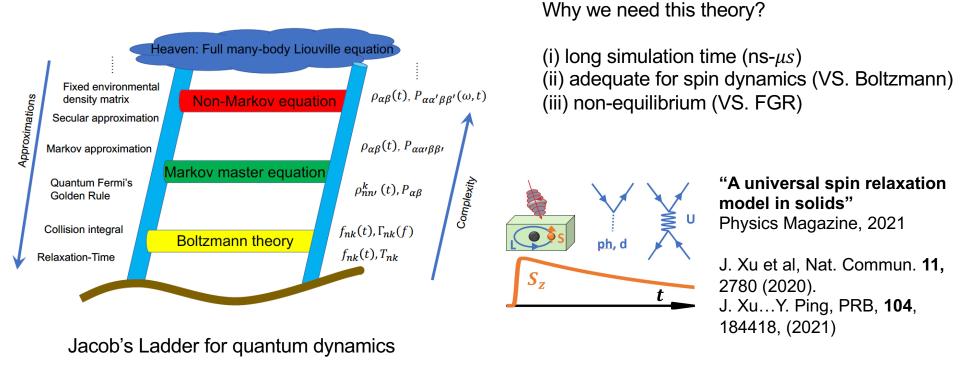


Outline


- Introduction of spin-based QIS
- Theoretical framework for ab-initio spin dynamics in solids
- Spin relaxation and transport in 2D materials
- Spin relaxation and dephasing in halide perovskites
- Conclusion and outlook

Open Quantum Dynamics

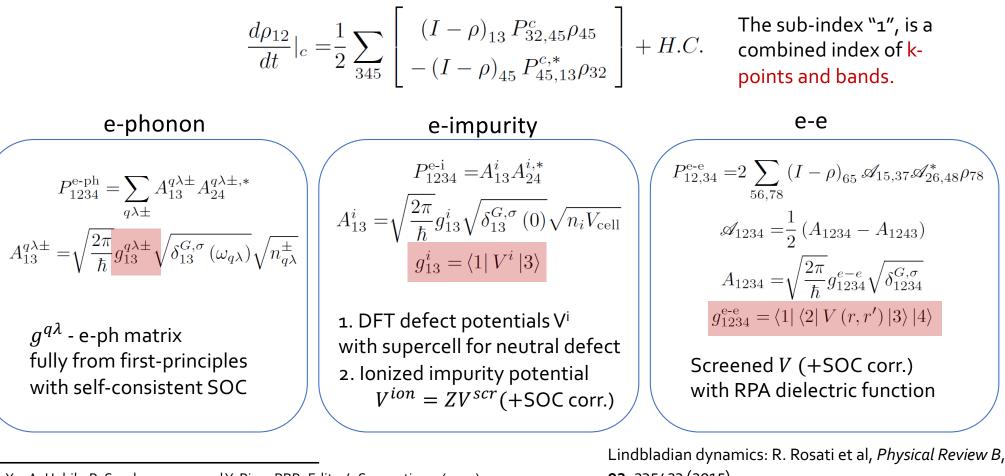
Closed Quantum Systems


Photon, phonon, electron treated at the equal footing, self-consistently

The bath may or may not have memory effects depending on the chosen theory

First-Principles Open Quantum Dynamics in Solids

Developed first-principles open quantum dynamics with all decoherence pathways for coupled spin and carrier dynamics for solids



Density Matrix Dynamics with Coupled Electron, Phonon and Photon

$$\begin{split} \hat{H} &= \hat{H}_{0} + \hat{H}_{ext}^{1} + \hat{H}_{scatt}^{1} \\ \hat{H}_{0} &= \hat{H}_{o}^{c} + \hat{H}_{o}^{b} (\text{DFT/MBPT}) \\ \hat{H}_{ext}^{1} &= \Delta \sum_{xc}(t) + U(t) \\ U(t): \text{ pump or applied field} \\ \hat{H}_{scatt}^{1}: \text{ scatterings} \end{split}$$

$$\begin{split} \hat{u} &= \frac{\partial \tilde{\rho}(t)}{\partial t} = \left[\tilde{H}^{1}(t), \tilde{\rho}(t) \right] \\ \frac{\partial \tilde{\rho}(t)}{\partial t} &= \left[\tilde{H}^{1}(t), \tilde{\rho}(t) \right] \\ \frac{\partial \tilde{\rho}(t)}{\partial t} = \frac{\partial \tilde{\rho}(t)}{\partial t} |_{coh} + \frac{\partial \tilde{\rho}(t)}{\partial t} |_{scatt}, \\ \frac{\partial \tilde{\rho}(t)}{\partial t} |_{coh} &= -i [\Delta \sum_{xc}(t) + U(t), \tilde{\rho}(t)] \\ \frac{\partial \tilde{\rho}(t)}{\partial t} |_{scatt} &= \frac{\partial \tilde{\rho}(t)}{\partial t} |_{e-e} + \frac{\partial \tilde{\rho}(t)}{\partial t} |_{e-ph} + \frac{\partial \tilde{\rho}(t)}{\partial t} |_{e-imp} \\ \hat{P}(t) = e^{iH_{0}t/h} \hat{H}^{1}e^{-iH_{0}t/h} \\ \frac{\partial \tilde{\rho}(t)}{\partial t} |_{scatt} &= \frac{\partial \tilde{\rho}(t)}{\partial t} |_{e-e} + \frac{\partial \tilde{\rho}(t)}{\partial t} |_{e-imp} \\ \hat{P}(t) = e^{iH_{0}t/h} \hat{H}^{1}e^{-iH_{0}t/h} \\ \hat{P}(t) = e^{iH_{0}t/h} \hat{H}^{1}e^{-iH_{0}t/h} \\ \hat{P}(t) = e^{iH_{0}t/h} \hat{H}^{1}e^{-iH_{0}t/h} \\ \frac{\partial \tilde{\rho}(t)}{\partial t} |_{scatt} &= \frac{\partial \tilde{\rho}(t)}{\partial t} |_{e-e} + \frac{\partial \tilde{\rho}(t)}{\partial t} |_{e-imp} \\ \hat{P}(t) = e^{iH_{0}t/h} \hat{H}^{1}e^{-iH_{0}t/h} \\ \hat{P}(t) = e^{iH_{0}t/h} \hat{H}^{1}e^{-iH_{0}t/h}$$

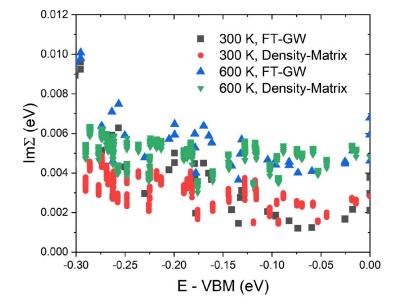
Scattering Terms in Lindblad Dynamics

J. Xu, A. Habib, R. Sundararaman and Y. Ping, PRB, Editor's Suggestions, (2021). J. Xu, A. Habib, S. Kumar, F. Wu, R. Sundararaman and Y. Ping, Nat. Commun. 11, 2780 (2020). **92**, 235423 (2015) 18

Verification of the Implementation of the Electron-Electron Scattering

□ "FT-GW": the finite-temperature GW* method; compared to $Im\Sigma_{ee}$ based on our used densitymatrix dynamics

 $\langle n, \mathbf{k} | \operatorname{Im} \Sigma(\mathbf{r}, \mathbf{r}'; E) | n', \mathbf{k} \rangle$


GW at finite T:

 $= \sum_{n_1} \sum_{\mathbf{q}, \mathbf{G}, \mathbf{G}'} M_{n, n_1}^{\mathbf{G}}(\mathbf{k}, \mathbf{q}) [M_{n', n_1}^{\mathbf{G}'}(\mathbf{k}, \mathbf{q})]^* v(\mathbf{q} + \mathbf{G}')$ $\times \operatorname{Im} \epsilon_{\mathbf{G}, \mathbf{G}'}^{-1}(\mathbf{q}, E - E_{n_1, \mathbf{k} - \mathbf{q}})$ $\times [1 + n_B(E - E_{n_1, \mathbf{k} - \mathbf{q}}) - n_F(E_{n_1, \mathbf{k} - \mathbf{q}})].$

Density matrix dynamics at the semiclassical limit:

$$\frac{1}{\tau_{p,1}^c} = \sum_{2\neq 1} \left[P_{11,22}^c f_2 + (1 - f_2) P_{22,11}^c \right]$$
$$\operatorname{Im}\Sigma_1^c = \hbar / \left(2\tau_{p,1}^c \right)$$

*Lorin X. Benedict et al, PRB, 66, 085116 (2002)

D Two implementations agree well around the Fermi level

J. Xu...Y. Ping, Phys. Rev. B, (2021) Editor's Suggestions

19

Computational Scheme for Open Quantum Dynamics

DFT simulations with spin-orbit coupling

Eigenstates, phonons, e-phonon matrix with SOC on **coarse** k and q meshes, e.g., 24*24*24

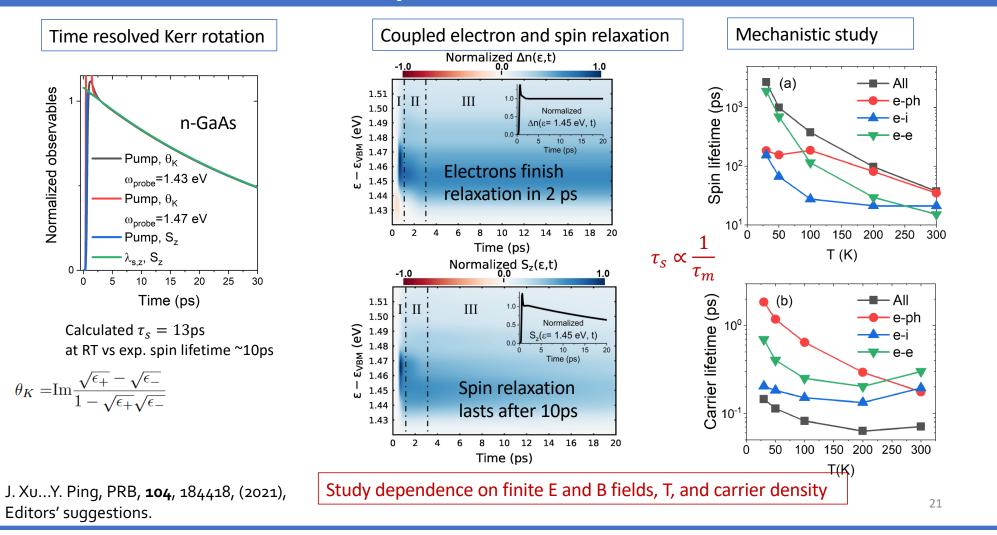
JDFTx / QuantumEspresso(EPW) \rightarrow JDFTx Wannier fitting $|\psi_k\rangle \rightarrow |w_R\rangle$

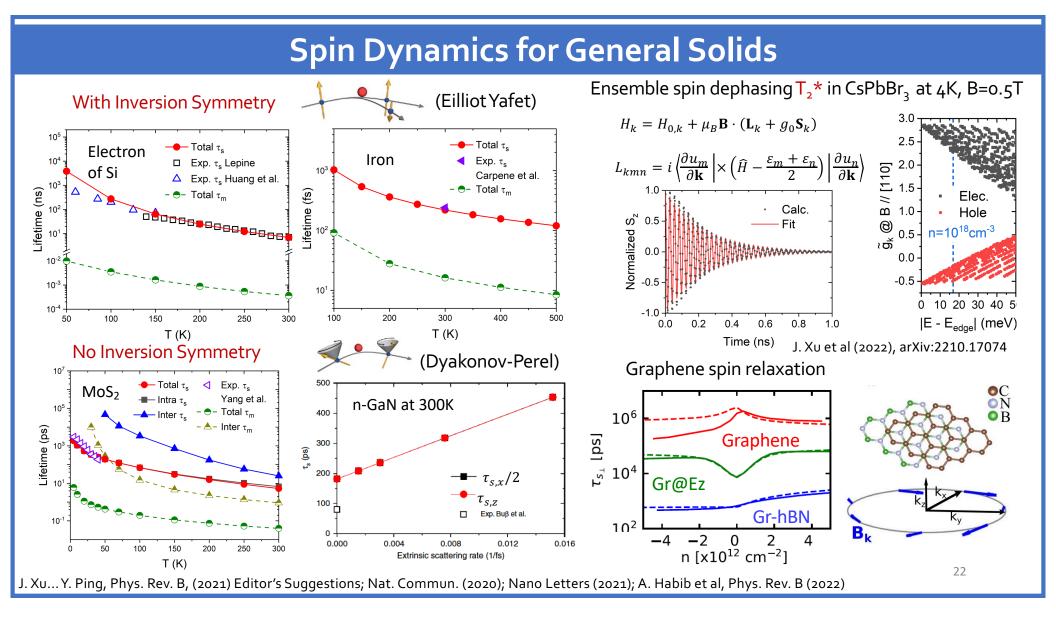
Wannier interpolation R space $\rightarrow k$ space

Eigenvalues, phonons, e-phonon matrix on **fine** k and q meshes, e.g., 800*800*800

JDFTx

J. Xu, A. Habib, R. Sundararaman and Y. Ping, PRB, Editor's Suggestions, (2021). J. Xu, A. Habib, S. Kumar, F. Wu, R. Sundararaman and Y. Ping, Nat. Commun. 11, 2780 (2020). **Density-matrix dynamics** $\frac{d\rho}{dt} = \frac{d\rho}{dt}|_{\text{pump}} + \frac{d\rho}{dt}|_{\text{c}}$

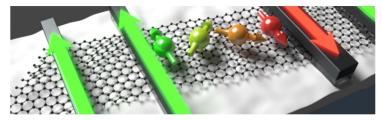

e-ph, e-e, e-i scattering matrix Time evolution of observables Spin, Carrier, Kerr rotation $\Delta S(t) = \Delta S(0) \exp\left(-\frac{t}{\tau_c}\right)$


 $\times \cos(\omega t)$

DMD code interfaced with JDFTx

$$\frac{d\rho_{12}}{dt}|_{c} = \frac{1}{2} \sum_{345} \begin{bmatrix} (I-\rho)_{13} P_{32,45}^{c} \rho_{45} \\ -(I-\rho)_{45} P_{45,13}^{c,*} \rho_{32} \end{bmatrix}_{20} + H.C.$$

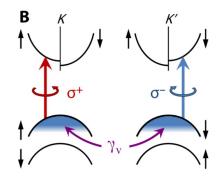
Physical Observables


Outline

- Introduction of spin-based QIS
- Theoretical framework for ab-initio spin dynamics in solids
- Spin relaxation and transport in 2D materials
- Spin relaxation and dephasing in halide perovskites
- Conclusion and outlook

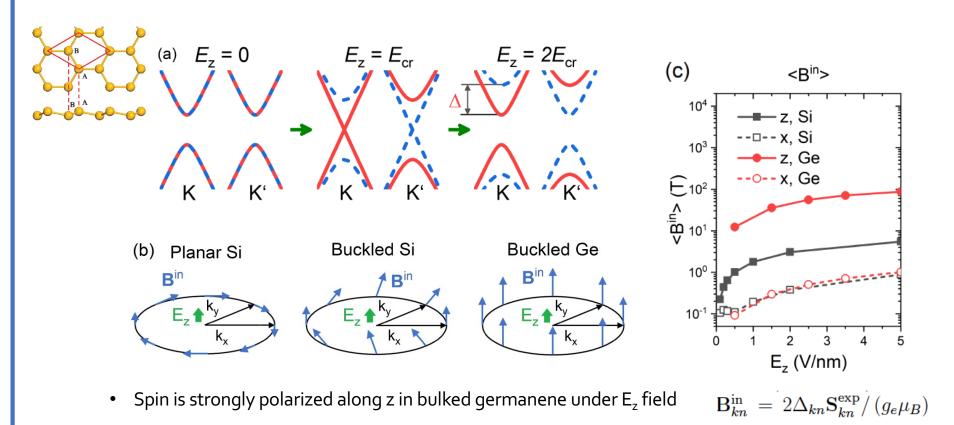
Design Materials for Optimal Spin Transport

Graphene


✓ High carrier mobility
 ✓ Longest RT spin diffusion length
 X No spin-valley locking (too small SOC)

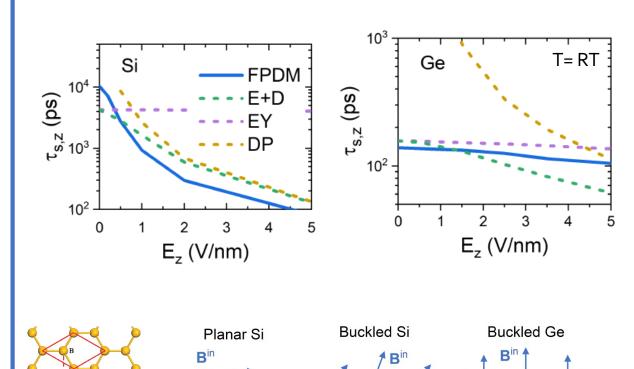
https://institut2a.physik.rwth-aachen.de/research

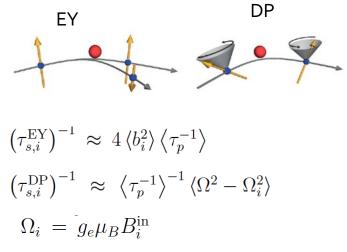
Transition metal dichalcogenides


- ✓ Spin-valley locking effect
- ✓ Ultralong spin lifetime at low T
- X Low carrier mobility

Goryca et al., Sci. Adv., 5, eaau4899 (2019)

Can we have a material with spin-valley locking, high carrier mobility, long spin lifetime and spin diffusion length?

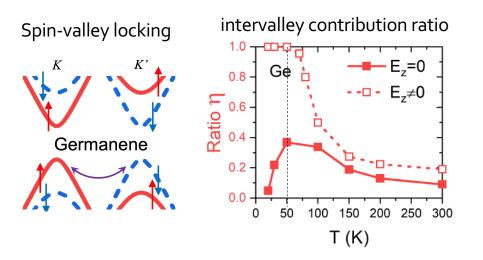

Spin-orbit Coupling in Silicene and Germanene under E field



25

Spin-orbit Coupling in Silicene and Germanene under E field

E.,

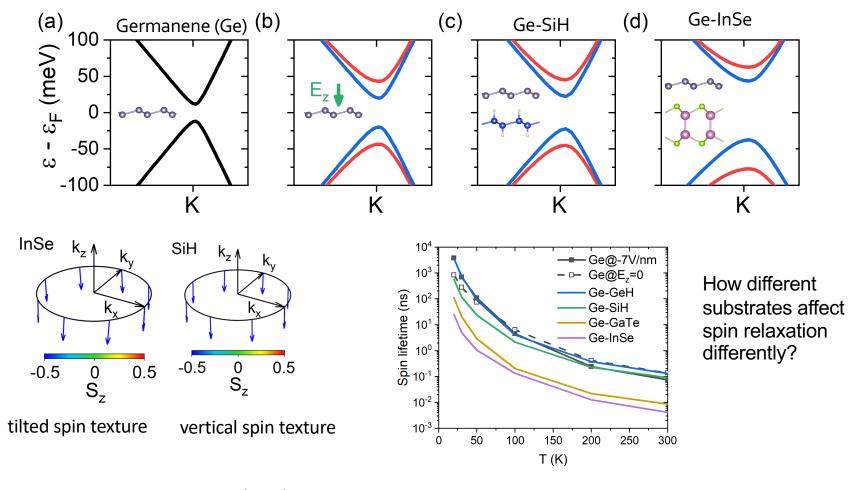


- Silicene under E is closer to DP
- Germanene under E is closer to EY

J. Xu et al, Nano Letters (2021), arXiv: 2110.01128

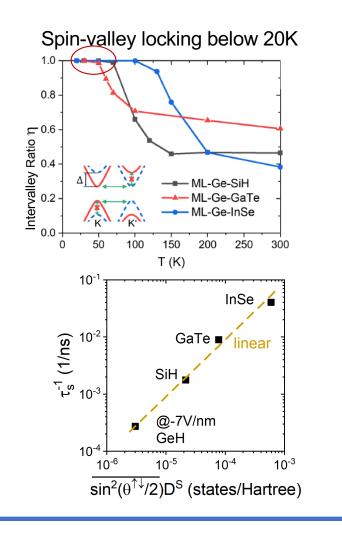
E.,

Spin-Valley Locking and Spin Transport of Germanene under E

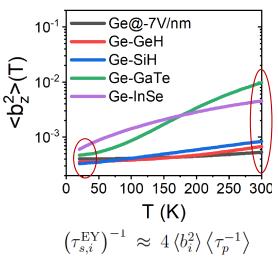

Ab-initio spin and carrier transport calculations under E field

Т (К)	$n_i (\mathrm{cm}^{-2})$	$(\mathrm{ps})^{ au_\mathrm{p}}$	$rac{\overline{\mu}_c}{(\mathrm{cm}^2/(\mathrm{V}~\mathrm{s}))}$	$D \ (cm^2/s)$	$\stackrel{ au_{\mathrm{s},z}}{(\mathrm{ns})}$	$l_{\parallel,s_z}\ (\mu{ m m})$
300	0	0.4	3.2×10^{4}	830	0.1	2.9
300	1×10^{11}	0.3	2.5×10^{4}	620	0.1	2.5
50	0	7.2	3.8×10^{6}	16700	97	400
50	1×10^{11}	1.6	4.5×10^{5}	2000	76	120
50	1×10^{12}	0.2	5.8×10^{4}	250	26	25

- Spin valley locking: spin and valley polarization changes together; intervalley spin flip transition dominates
- Long spin lifetime 100 ns at low impurity density due to spin-valley locking
- Long spin diffusion length $l_{||,S_Z} = \sqrt{D. \tau_{S,Z}} \approx 120 \,\mu m$ at moderate impurity density $10^{11} cm^{-2}$ vs. graphene 1-40 μm


J. Xu, A. Habib, R. Sundararaman, Y. Ping, Nano Letters, 21, 9594, (2021)

Substrate Effect on Spin Relaxation of Strong SOC Systems



J. Xu, Y. Ping, npj Comput. Mater. in press (2023), arXiv:2206.00784

Substrate Effect on Spin Relaxation of Strong SOC Systems

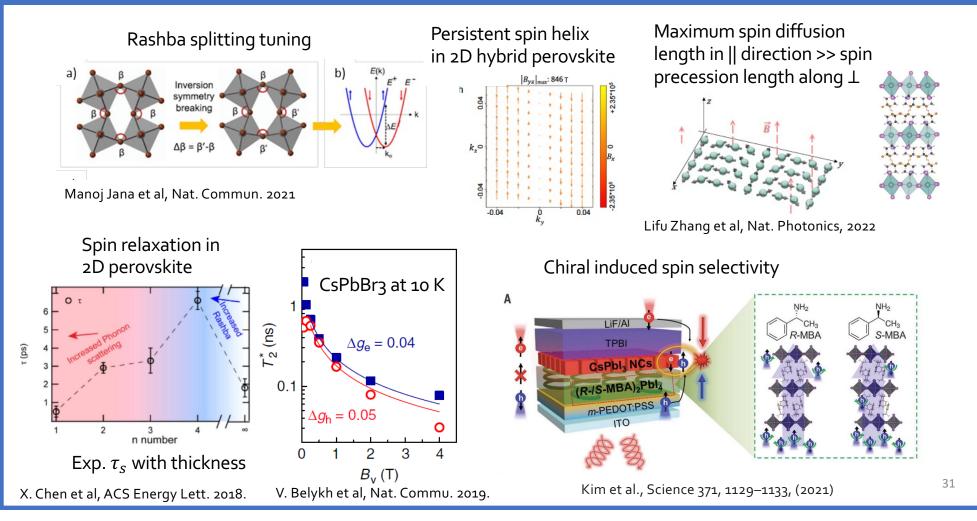
Spin mixing only explains high temperature spin lifetime difference

Dominate phonon at K nearly unchanged

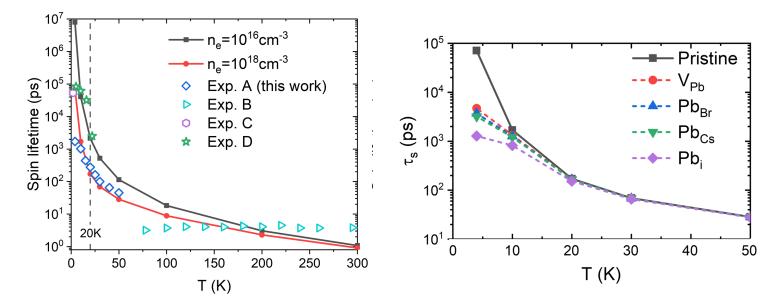
Substrate	$\omega_K \; ({\sf meV})$	Contribution	
Ge@-7V/nm	7.7	78%	
Ge-GeH	6.9	70%	
Ge-SiH	7.1	64%	
Ge-Ga T e	6.4	90%	
Ge-InSe	7.2	99%	

 $\theta_{k_1,k_2}^{\uparrow\downarrow}$: angle between pair of spin states (k_1,k_2) spin expectation value direction

Spin flip angle $\theta_{k_1,k_2}^{\uparrow\downarrow}$ has best correlation with spin lifetime as a function of substrates


J. Xu, Y. Ping, npj Comput. Mater. in press (2023), arXiv:2206.00784

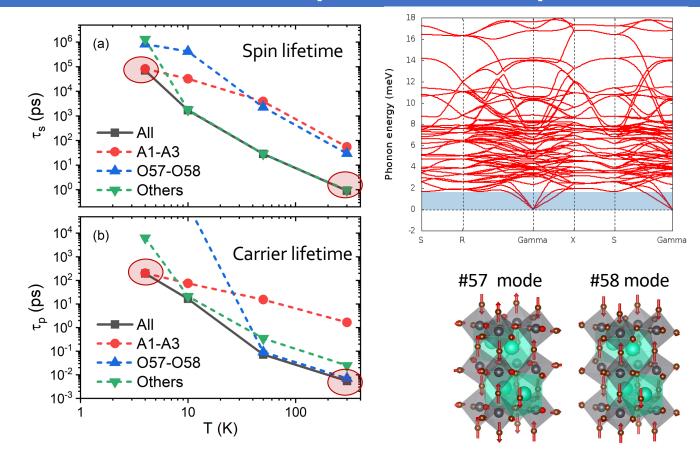
29


Outline

- Introduction of spin-based QIS
- Theoretical framework for ab-initio spin dynamics in solids
- Spin relaxation and transport in 2D materials
- Spin relaxation and dephasing in halide perovskites
- Conclusion and outlook

Opto-Spintronics in Hybrid Organic-Inorganic Materials

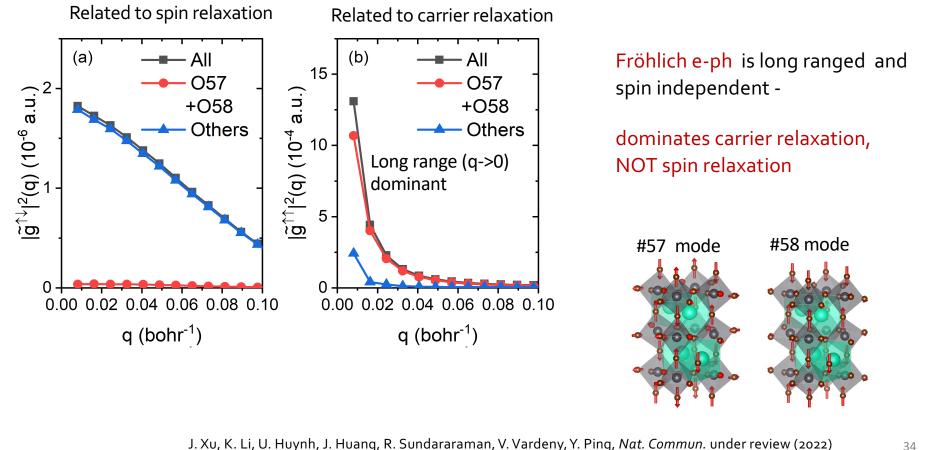
Spin Relaxation and Decoherence of CsPbBr3

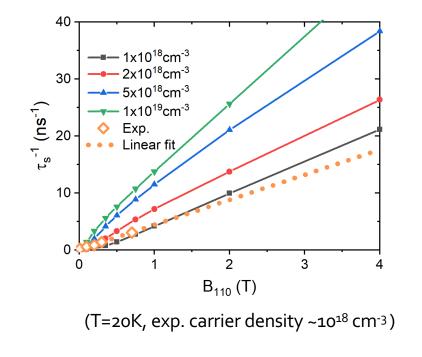


- Good agreement between theory and experiments > 20 K
- We found spin lifetime has strong dependence on carrier density (exp: n ~10¹⁸ cm⁻³) <20 K
- Below 20K, defects/impurities have important contributions

J. Xu, K. Li, U. Huynh, J. Huang, R. Sundararaman, V. Vardeny, Y. Ping, Nat. Commun. under review (2022)

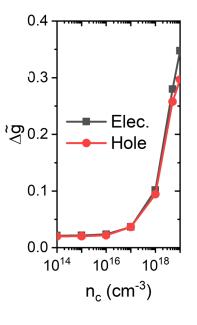
Exp.A: experiment in this work Exp B: Zhou et al., J. Phys. Chem. Lett. 11, 1502, (2020)


Different Phonon Dependence for Spin and Carrier lifetime

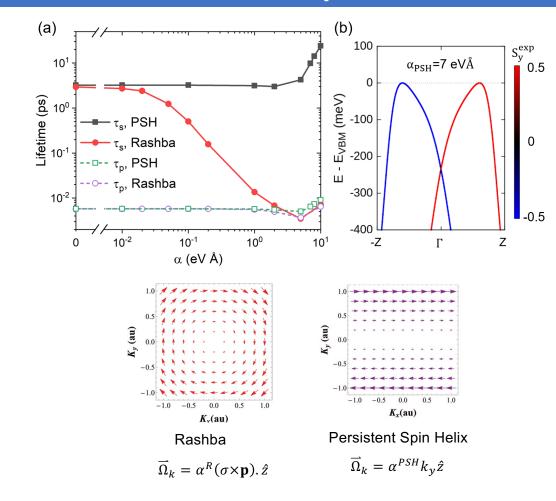

- Acoustic phonon (A1-A3) dominates at low temperature
- Optical modes (O57-O58; mixed LO-TO) dominant in carrier relaxation, but not in spin relaxation

J. Xu, K. Li, U. Huynh, J. Huang, R. Sundararaman, V. Vardeny, Y. Ping, *Nat. Commun.* under review (2022)

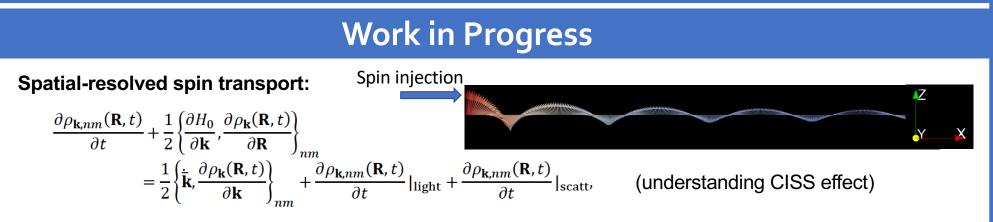
Fröhlich Electron-Phonon Coupling for Spin and Carrier lifetime



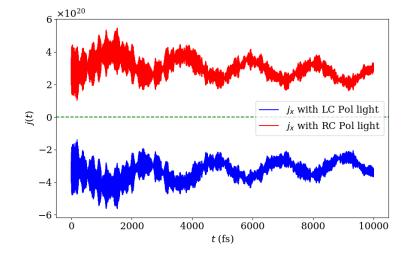
Ensemble Spin Dephasing T2* under B Field of CsPbBr3


- At relatively high B field, spin relaxation rate linearly proportional to B field $\tau_s^{-1}(\mathbf{B}) \approx (\tau_s^0)^{-1} + (\tau_s^{\Delta\Omega})^{-1}(\mathbf{B}),$ $(\tau_s^{\Delta\Omega})^{-1} \sim (\tau_s^{\mathrm{FID}})^{-1} \sim C^{\Delta g} \Delta \Omega = C^{\Delta g} \mu_B B \Delta \tilde{g},$
- The strength of B field dependence varies with carrier density due to $\Delta \tilde{g}$

Efficient tuning spin T₂* by changing carrier density


J. Xu, K. Li, U. Huynh, J. Huang, R. Sundararaman, V. Vardeny, Y. Ping, *Nat. Commun.* under review (2022)

Relation of Spin Texture and Spin Lifetime



- Including broken-inversion symmetry SOC to CsPbBr₃ perturbatively for extrinsic effects
- PSH spin texture can increase spin lifetime when SOC strength is large, not Rashba
- PSH spin texture can be realized by controlling crystal symmetry*
 *Lifu Zhang et al, Nat. Photonics, 2022

J. Xu, K. Li, U. Huynh, J. Huang, R. Sundararaman, V. Vardeny, Y. Ping, *Nat. Commun.* under review (2022)

Predict spin coherence and diffusion length, and time-dependent spin texture and polarization

Steady-state photocurrent (photogalvanic effect):

$$j_x = Tr(\rho v_x)$$

Density matrix dynamics with absorption, scattering, stimulated and spontaneous emission for photocurrents (shift current and CPGE) in noncentral-symmetric materials

Conclusion

• Developed density matrix formalism for open systems including electron-phonon, e-e, e-i interactions and spin-orbit for coupled spin and carrier dynamics in general solids

J. Xu, A. Habib, S. Kumar, R. Sundararaman, Y. Ping, *Nat. Commun.* **11**, 2780, (2020). J. Xu, A. Habib, R. Sundararaman, Y. Ping, *PRB*, **104**, 184418, (2021), *Editor's suggestions*

 Realized spin-valley locking and long spin lifetime in 2D Dirac materials under E field and investigated substrate effects, and investigated g factor fluctuation effect on spin dephasing

> J. Xu, H. Takenaka, A. Habib, R. Sundararaman, Y. Ping, *Nano Letters*, **21**, 9594, (2021) J. Xu, Y. Ping, *npj Comput. Mater.* in press, 2023, <u>arXiv:2206.00784</u> J. Xu, K. Li, U. Huynh, J. Huang, V. Vardeny, R. Sundararaman, Y. Ping, *Nat. Commun.* under review (2022) https://arxiv.org/abs/2210.17074

 Work in progress on developing methods for computing steady-state photocurrents for photogalvanic effect, and developing spatial resolved spin transport to understand the effect of CISS

Postdoc and PhD positions are available!

NSF DMR-1956015

38

Computational codes

- DFT calculations
- BSE code built on a private version of Quantum Espresso
- GW implementation for 2D built on the West code; benchmarked with the Yambo code
- Density matrix and spin dynamics in DMD code interfaced with JDFTx code and EPW

