ITR/SY: Center for Modeling of Quantum Dynamics, Relaxation and
Decoherence in Solid-State Physics for Information-Technology Applications
PI: Vladimir Privman, Clarkson University, DMR Award 0121146

The main objective of our program has
been to explore coherent quantum
mechanical processes in novel solid-
state semiconductor information
processing devices, with components of
atomic dimensions. These include
quantum computers, spintronic devices,
and nanometer-scale logic gates.

Our achievements to date include: Donor electron spin in silicon decohers owing to

Lo interactions with phonons and nuclear spins
New measures of initial decoherence,

and evaluation of decoherence for spins donors 2DEG
in semiconductors. v

Evaluation of solid-state quantum
computing designs, and studies of
transport associated with quantum
measurement.

Investigation of spin-polarized devices
and role of nuclear spins in spintronics
and quantum CompUting- Spin-flip scattering in semiconductor nano-device



ITR/SY: Center for Modeling of Quantum Dynamics, Relaxation and
Decoherence in Solid-State Physics for Information-Technology Applications
PI: Vladimir Privman, Clarkson University, DMR Award 0121146

Our program has involved four co-Pls: For a spin system in a bosonic bath, we find
M.-C. Cheng, M. L. Glasser, 10y 2 . X
D. Mozyrsky, Ch. Tamon, and ||5||{(pﬁ(°)‘/’w(0)) 2 ]*[(l—e "o ©@lsin(F=p,) | =

extensive collaborations with leading
experimental groups and with Los
Alamos National Laboratory.

2 1/2
- (1_6320))[M+|pw(0)|2 Gin? (%t_%)J

where the norm for the density operator deviation is defined as
The educational impact has included o
training of 3 undergraduate students, ||5||=supM
4 graduate students, 4 postdoctoral ol
researchers, and development of a new
course to introduce quantum device
concepts to Physics and Electrical &

Computer Engineering students. L

Our outreach program has included NSPI OW

sponsoring presentation events, and an TR
international workshop Quantum Device Transport through NSPI QW  Conductance quantization
Technology, held at Clarkson University

in May of 2002. EEessssss masssssss Mask TH

Our results were published in several sample

papers in refereed journals, and we set

) Local nuclear spin polarization
up a web site for outreach.



Quantum Dynamics, Relaxation and Decoherence in Solid State Physics
Vladimir Privman, Clarkson University, privman@clarkson.edu

The main objective of our program
has been to explore coherent
quantum mechanical processes in
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Our achievements to date include:

New measures of initial decoherence,
and evaluation of decoherence for
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Survey of Issues: Computer Science — Physics — Engineering
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First Proposals for Solid-State Quantum
Computers in Semiconductor Structures

Approach:  Quantum Dots
D. Loss, D. P. DiVincenzo, Phys. Rev. AS7, 120 (1998)

Approach:  Nuclear Spins in the Quantum-Hall-State

Semiconductor Heterostructures
V. Privman, I. D. Vagner, G. Kventsel, Phys. Lett. A239, 141 (1998)

Approach:  Nuclear and Electronic Spins in Semiconductor

Heterostructures, Control by Gates
B. E. Kane, Nature 393, 133 (1998)
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Quantum Hall Quantum Computing

V. Privman, 1. D. Vagner, G. Kventsel, Phys. Lett. A239, 141 (1998)

Nuclear spin qubits immersed in the 2D electron gas which is in the
nondissipative integer quantum Hall effect (QHE) state

Qubits: spins (nuclear, or bound-electron)
Coupling: via 2D electron gas 2DEG)

Low temperatures & high magnetic field — to decrease decoherence and
quantize the 2D conduction electron motion

The 2DEG (with added “gate” ideas borrowed from Kane) and superconducting QC schemes
are probably the closest to the next-generation “classical” computer component technology:

GATE

For QC:

SOURCE

embed and control single spins
T—0
B —large

Nanoscale Metal Oxide Semiconductor isotope puriﬁcation
Field Effect Transistor (MOSFET)
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Evaluation and Design of QC Models

Time Scales of Quantum Dynamical Processes
Initialize , ,
Review: V. Privman, D. Mozyrsky, I. D. Vagner,
Computer Phys. Comm. (July 2002)

Control qubits: T oy
Control and ‘
EVOIVG iIl tlme Control interactions: Tine (> Text)

Avoid thermalization: T,

Avoid decoherence: I, (<T))

Measure
Goal: Texta Tint << TZa Tl
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Time Scales of Quantum Dynamical Processes

Evaluation of T and 7, can be done initially for a single-qubit system
interacting with the excitations of the 2DEG which have a spectral gap (owing
to the Zeeman splitting). Because of the spectral gap, we have T, << T, and the
physics of these processes is different: relaxation (77) requires energy exchange,
whereas decoherence (73) 1s due to virtual excitations. Both are impurity driven.
D. Mozyrsky, V. Privman, after a lengthy caleultion, we gt

L. D. Vagner, Phys. Rev. B 63, Hep = 537 [Wil Tod (e 1S5+ W] Leb (1 I @)
085313 (2001) '

where | Tal{le | = lﬁbl in the appropriate subspace, and

Calculation of T;,; requires W= pong pos [ PR RATR ) RU R, - Ry Gax)Citrir) )
consideration of two qubits and

their interactions via the excitations .
of the 2DEG. e

D. Mozyrsky, V. Privman, M. L. Glasser, Phys. Rev. Lett. 86, 5112 (2001)

Ck(ry,rz) = exp {—4%2 [(331 —z3)? + (g1 — y2)® — iz — z2)(w1 + yz)] } %
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Improved QC Design: Kane + QHE — 0.1 pm Gate Separation

L ] E

P N V. Privman, 1. D. Vagner, G. Kventsel, Phys. Lett. A239, 141 (1998)
Qubit distance: ~ 10 nm (of the order of the magnetic length).

R e 1 o I « 1 o [l o

B. E. Kane, Nature 393, 133-137 (May 14, 1998)

I I— 1 E
ﬁi; i Barrier  Qubit distance: realistically, must be ~ 4 nm.
e e e e A\ S Interaction can be oscillatory.
a- e- '
31 31 :
+ + —
P P .~ Substrate

D. Mozyrsky, V. Privman, M. L. Glasser, Phys. Rev. Lett. 86, 5112 (2001)

Couple nuclear spin qubits indirectly via their hyperfine interaction with the outer bound electrons
(as in Kane’s scheme) which in turn interact via the 2DEG. Qubit distance: ~ 100 nm = 0.1 pm.
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[lustration of Type of Results for a QC Scheme

Time Scales

T,.. O(10°)sec Single-qubit external NMR-radiation control time
T, O(107°)sec Time scale defined by the two-qubit interactions
T O(10)sec  Time scale associated with energy relaxation

T, O(10 ") sec Intrinsic quantum-mechanical decoherence time

Qubit-Qubit Interactions

HLQ = J‘0112><1102‘ + J*‘1102><0112‘

= Epa) e = (8) aatna (D) (). e
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Short Time Decoherence and Deviation from Pure Quantum States:
Can we escape the 77-T, paradigm?

V. Privman: quant-ph/0205037

We have developed a new short-
time approximation scheme for
evaluation of decoherence. At
low temperatures, the
0 approximation is argued to apply
at intermediate times
as well. It then provides a
tractable approach
complementary to Markovian
T approximations, and is
0, (0)=0 appropriate for evaluation of

nm deviations from pure states in
quantum computing models.
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Open Problems and Future Research Directions

Experiment Theory
Basic Study spin populations Derive results for couplings,
Physics coupled by 2DEG and relaxation, decoherence, to
controlled by NMR/ESR  test our techniques for
radiation and by gates calculating spin properties

at7=0and 7>0

Spintronics Reduce the size of the Effects of gates will become
polarized spin domains important to account for (break
or regions under gates, the planar symmetry, cause
to nanoscale decoherence, etc.)

Quantum True single-spin control Aspects of measurement and
Computing and isotope engineering the associated transport properties
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Quantum computing with spin qubits in semiconductor structures

Vladimir Privman, Dima Mozyrsky, Israel D. Vagner

Department of Physics and Center for Advanced Materials Processing,
Clarkson University, Potsdam, New York 13699-5820, USA

Electronic address: privman@clarkson.edu

Abstract

We survey recent work on designing and evaluating quantum computing implementations
based on nuclear or bound-electron spins in semiconductor heterostructures at low
temperatures and in high magnetic fields. General overview is followed by a summary of
results of our theoretical calculations of decoherence time scales and spin-spin
interactions. The latter were carried out for systems for which the two-dimensional

electron gas provides the dominant carrier for spin dynamics via exchange of spin-
excitons in the integer quantum Hall regime.

PACS: 73.20.Dx, 71.70.E}, 03.67.Lx, 76.60.-k

Keywords: quantum computing, semiconductor, decoherence, spin, qubit, electron gas

1. Introduction

The field of quantum computing has seem explosive growth of experimental and
theoretical interest. The promise of quantum computing [1-5] has been in exponential
speedup of certain calculations via quantum parallelism. In Figure 1, the top flow chart
shows the *“classical” computation which starts from binary input states and results in
binary output states. The actual dynamics is not really that of Newtonian classical
mechanics. Rather the computation involves many-body irreversible “gate” device
components, made of semiconductor materials in modern computers, which evolve
irreversibly, “thermodynamically” according to the laws of statistical mechanics. As the
size of the modern computer components approaches atomic, the many-body quantum
behavior will have to baccounted for in any case [6].

The idea of quantum computing, however, is not just to account for, but to actiliadly ut
the quantum-mechanical dynamical behavior. This is not an easy task. Quantum
mechanics allows for parallelism in evolution: one can “process” a linear superposition of



several input states at once, as illustrated in the lower flow chart in Figure 1. The price
paid is that coherent processing of information, according to the law of quantum

mechanics, must be accomplished in systems much larger than atomic-size (or more
importantly, with many degrees of freedom). There are numerous conceptual and
experimental obstacles to accomplishing this task, that have generated a lot of interest,
excitement, and new results in computer science, physics, and engineering.

The functioning of a quantum computer involves initialization of the input state, then the
actual dynamical evolution corresponding to computation, and finally reading off the
result. Various specific requirements for implementation have been identified [2-5]; here
we provide only a limited introductory overview.

Let us begin by considering the reading off of the final result. The reason for the question
mark in the lower chart in Figure 1 is that quantum measurement of the final
superposition state can erase the gain of the parallel dynamics, by collapsing the wave
function. Therefore, a key issue in quantum computing has been to find those algorithms
for which the readout of the final state, by way of projecting out a certain average
property, still retains the power of the quantum parallelism. To date, only few such
examples are known [1,3,4,7], the most celebrated being the Shor algorithm [1] for
factoring of integers, the invention of which boosted quantum computing from an
obscure theoretical field to a mainstream research topic.

The preparation of the initial state does not seem to present a problem for most quantum
computing realizations [2-5], accept perhaps the ensemble liquid state NMR approach
[8,9] which relies on the initial thermal distribution to produce deviation of the density
matrix from the equal-probability mixture state. In most other approaches, the initial state
can be produced by first fully polarizing the quantum bits (qubits), i.e., putting them in
one of the two quantum levels. Note that we consider two-state qubits here, realized, for
instance, by spins 1/2 of nuclei or gate- or impurity-bound electrons, in applied magnetic
field. The fully polarized state is then subject to gate operations to form the desired input
state. Part of a quantum-computing algorithm should be the prescription on how to
choose the initial state to represent the classical information of the input, like the input
integer in the factoring. In most cases, this prescription is easily accomplished by single-
gubit and two-qubit gates.

The actual dynamical evolution (the process of computation) in quantum computing is

fully reversible and nondissipative, unlike classical computing. Much progress has been
made in resolving both the conceptual and computer-engineering “design” issues for

guantum computation. Specifically, the computation can be carried out [2-5,10-13] by a

universal set of gates: single-qubit rotations and nearly any two-qubit gate. The gates are
not connected in space like in classical computers but are activated in succession in time,
to control single-spin dynamics and also switch on and off two-spin interactions (we use

“spin” and “qubit” interchangeably).

Many interesting matters have been resolved, which are not reviewed here. These include
the understanding of how the finiteness of the state space (i.e., two states for spin 1/2)



replaces the “classical’ digitalization in quantum computing. Also, the “classical’
copying (fan-out) function is not possible in quantum mechanics. It is replaced by
entanglement with ancillary qubits smwcomplish redundancy needed for error correction
[14-20]. Sources of errors due to interactions with environment in quantum mechanics
involve not only the usual relaxation (thermalization) but also loss of coherence [21-28].
This quantum decoherence (dephasing) can be faster than relaxation because it does not
require energy exchange.

A conceptually important issue has been the scalability of quantum computing: can one
process macroscopically large amounts of information by utilizing quantum error
correction based on redundancy via entanglement with ancillary qubits? The affirmative
answer to this question has been one of the triumphs of the theory [14-20]. It provided a
new paradigm for emergence of controlled/organized macroscopic behavior from
microscopic dynamics, on par with the conceptual possibility of living organisms, which
we observe by cannot yet “manufacture,” and million-gate classical computers which are
man-made.

With all these theoretical advances at hand, the next step is to ask whether a man-made
guantum computer can be realized? There have been several experimental directions of
exploration, most presently are still at the level of one or two qubits, or, for ensemble
liquid-state NMR, which emulates quantum dynamics by evolution of the density matrix
of a large collection of molecules, 5-7 qubits.

In this introductory survey, we summarize results of our work on two-spin interactions
and spin decoherence in semiconductor heterostructures. In Section 2, we consider the
spin-based quantum computing proposals in such systems. Time scales of relaxation and
decoherence are addressed in Section 3. Finally, Section 4 reports results for models with
nuclear spins as qubits.

2. Spin-Based Quantum Computing in Semiconductor Heterostructures

The general layout of a solid-state quantum computer is shown in Figure 2. Qubits are
positioned with precision of few nanometers in a heterostructure. One must propose how
to effect and control single-qubit interactions, two-qubit interactions, and explore how the
controlled dynamics owing to these interactions compares to decoherence and relaxation.
The proposal must include ideas for implementation of initialization, readout, and gate
functions.

The first proposal including all these components was for qubits realized in an array of
guantum dots [29] coupled by electron tunneling. The first spin-based proposal [30]
utilized nuclear spins coupled by the two-dimensional electron gas, the latter in the
dissipationless integer quantum Hall state [31] that requires low temperatures and high
magnetic fields. An important advancement was the work of Kane [32] where gate
control of nuclear-spins of donor impurities, separated less than 10 nm and coupled via
the outer impurity electrons which are bound at low temperatures, was proposed. Most of



these ideas also apply to electron-spin qubits, bound at impurities, in quantum dots, or
directly by gates. Several elaborate solid-state heterostructure quantum computing
schemes have been proposed in the literature recently [28,33-41]. There are also other
promising proposals involving surface geometries: superconducting electronics [42-46]
and electrons on the surface of liquid helium [47].

There have been several planned and ongoing experimental efforts [32-36,43-45,48-54]
ultimately aimed at solid-state quantum computing and other quantum information
processing realizations. The final geometry is expected to be most sensitive to the
implementation of readout, because it involves quantum measurement, i.e., supposedly
interaction with or transfer of information to a macroscopic device. Therefore, much of
the experimental effort presently has been focused on single-qubit (single-spin)
measurement approaches.

The theoretical efforts can be divided into two majors tasks. The process of single-spin
measurement must be understood for the readout stage of quantum computing. Several
conceptual and calculations advancements have been made in understanding quantum
measurement [26,32-36,46,50,55,56] as it applies to atomic-size qubit systems interacting
with environment and typically “measured” directly by the effect of the spin-qubit state
on transport, or first transferring the spin state to a charge state that is easier to measure,
e.g., in single-electron transistors and similar devices.

In this survey, we outline results of the second evaluation task: that of understanding the
processes and times scales involved in the dynamics of the actual computation. As
summarized in Figure 3, this main stage of the quantum computation process involves
control of spins and their interactions. It also involves processes that we do not control
and are trying to minimize: relaxation and decoherence.

Control of individual qubits is usually accomplished externally. For nuclear spins, NMR
radio-frequency radiation can be used, see Figure 2. For electron spins, the ESR
microwave frequencies are suitable. Such radiation cannot be focused on the scale of 10-
100 nm. Instead, selectivity must be accomplished by independent means. Several
proposals exist, the most promising being control by gates. The applied gate voltage
modifies the electronic wave function changing interactions and therefore resonant
frequencies. We will denote the time scale of the external single-qubit contify,by

This can be the Rabi time of a spin flip.

The qubit-qubit interactions are typically assumed to be mediated by electrons that “visit”
both qubit environments. For instance, in liquid-state ensemble NMR [8,9] with complex
molecules, or in the original model [32] of phosphorous impurity donors in silicon, the
wave functions of the valence, outer electrons of nearby qubits overlap. Specifically, in
the P donor case, the single outer electron of the donor atom remains bound at low
temperatures but has orbital radius of order 2 nm owing to the large dielectric constant of
the silicon host. Therefore, it is hoped that these electrons, in nearby donors positioned as
in Figure 2, will mediate nuclear-spin qubit interactions.



Our approach [27,28] allows for larger qubit separation, up to order 100 nm, by relying
on the two-dimensional electron gas in the heterostructure to mediate qubit-qubit
interactions. This two-dimensional electron gas is usually obtained by spontaneous or
gate-induced transfer of electrons from impurities to the two-dimensional interface layer
in which the qubits are positioned. The source impurities are located at some separation
from this layer or in the bulk. The two-dimensional electron gas can be made
nondissipative in certain ranges of large applied magnetic fields at low temperatures,
when these conduction electrons in the layer are in the integer quantum Hall effect state.
Owing to this property and also larger qubit separation allowed, we consider this the most
promising approach and focus our present review on such systems.

The time scale of the qubit-qubit interactions will be devoted py This is the time it

takes to accomplish a two-qubit quantum gate, such as CNOT [2-5,57]. Typically for
semiconductor quantum computing proposdls, <T,,, and in fact the case with

Tt has some advantages because one can use several fast single-spin flips to
effectively switch interactions of some qubits off over the gate cycle. Another approach
to controlling (on/off) of the two-qubit interactions is by gates, see Figure 2, which affect

the two-dimensional electron gas and the localized electron wavefunctions.

<T

ext

However, the same conduction electrons that provide the qubit-qubit interactions, also
expose the qubits to the environment, causing relaxation and decoherence. Other
interactions will also be present, that play no role in the useful quantum-computing
dynamics but contribute to these undesirable processes. Relaxation and decoherence, and
their associated time scales, are addressed in the next section.

3. Time scales of relaxation and decoherence

The processes of relaxation and decoherence considered here [21-28] are associated with
the dynamics of a small, few-qubit quantum system as it interacts with the environment.
Ultimately, for a large, multi-qubit system, many-body quantum chaos-like behavior
must also be accounted for, and some advances in model system studies have been
reported recently [5,58]. Our discussion herdl e for the few-qubit case mostly
because it allows more system-specific investigations for actual quantum-computing
proposals.

Dynamical processes that are unwanted in quantum computing, because they result from
the environmental influences rather than from the controlled radiation pulses and gate
potentials, can proceed on various time scales. In fact, it is not guaranteed that processes
of various types, relaxation/thermalization vs. decoherence/dephasing, can even be
unambiguously distinctly identified.

At low temperatures, it is generally hoped that thermalization, which requires transfer of
energy, slows down. If the fastest such processes proceed on times scales @f,order
then this time increases at low temperatures because there are less excitations (phonons,



electron gas modes, etc.) to couple the small quantum system to the rest of the solid-state
host material.

On the other hand, processes that do not require flow of energy to or from the
environment, can still effect the phase of the quantum-superposition amplitudes and
cause decoherence. These processes can thus proceed faster, on the tife\&tel

these comments seem to suggest That T, there is no obvious reason to have generally
T, < T, at low temperatures.

However, if the spectrum of the dominant excitations mediating the qubit coupling (both
to each other and to the host material) has a gap, then we expect that all the relaxation
and decoherence processes will hgppsessed. Furthermore, the suppression of the
relaxation will be exponential, with the Boltzmann factor for that energy gap. Then,
T, < T, will be satisfied but also, more importantly, the actual values of both time scales
will be inordinately large. This was found, theoretically and experimentally, to be the
case for the integer-quantum-Hall-state two-dimensional electron gas as mediator of the
localized-spin (nuclear, electronic) coupling in semiconductor heterostructures [27,28,59-
63].

It is important to emphasize that relaxation and decoherence are really many-body
properties of the system plus environment. Entanglement with the environment owing to
the unwanted couplings results in the small quantum system having no pure wavefunction
even if initially it was prepared in a pure state. Instead, it can be described by a statistical
mixture represented by a density matrix, once the environment is traced over.

This reduced density matrix of the system is expected to evolve to the thermal one at
large times. The approach to the thermal density matrix, which is diagonal in the system-
energy basis, defines the time scéle If the temperature is low enough, then there is the
expectation, see [25,26] and references therein, that for some intermediate time scales, of
order T,, the density matrix becomes nearly-diagonal in a basis which is determined not
by the systems Hamiltonian (energy), but by the interaction operator with the
environment. This latter process corresponds to loss of quantum coherence.

As emphasized in Figure 3, evaluation of a quantum-computing proposal requires, among
other things, establishing the relatidg,, T,, < T,, T,. Owing to calculational difficulties,

the single-qubit timed, , will usually be used, though, as mentioned earlier, some study
of the multi-qubit “quantum chaos” effects may be required. For spin-qubit quantum
computing in  semiconductor heterostructures, the relation is typically
T, <T,.<T, < T, so the issue is usually how small is the quality r@xe T,/ T,.

ext int = int

The required value o), needed for fault-tolerant quantum error correction, depends on

the physical model of error sources and can be as sm@ll=sK0° -10*, see [15,18-
20], or as large a® = 1/Zee [64]. For the systems of interest to us here, spin qubits in



semiconductor structures, the value@£&10” is a reasonable working estimate. Thus,
we seek systems/conditions withy, / T, <107°.

4. Results for nuclear-spin qubits

In this section we outline results for models of quantum computing with nuclear spins as
qubits, and with coupling mediated by the two-dimensional electron gas in the integer
guantum Hall effect state [27,28,30]. In strong magnetic fields, the spatial states of the
electrons confined in the two-dimensional layer in which the qubits are placed, see Figure
2, are quantized by the field to resemble free-space Landau levels. The lattice potential
and the impurities actually cause formation of narrow bands instead of the sharp levels,
separated by localized states. As a result, for ranges of magnetic field, the localized states
fill up while the extended states resemble completely filled integer number of Landau
levels. These states are further Zeeman split owing to the electron spin. At low
temperatures, one can find field values such that only one Zeeman sublevel is completely
filled in the ground state.

The electronic state in such systems, that show the quantum Hall effect [31] in
conductivity, are highly correlated and nondissipative. If nuclear spins are used as qubits,
i.e., atoms with nuclear spin 1/2 are sparsely positioned in the zero-nuclear spin host,
such as the zero-nuclear-spin isotope 28 of Si, which constitutes 92% of natural silicone,
then their zero-temperature relaxation will be significantly slowed down: experimentally,

T, =10’sec [62].

Localized spins, both nuclear and electronic, interact by exchanges of spin excitons—
spin waves consisting of a superposition of bound electron-hole pair states. The spectrum
of these excitations [65,66], observed experimentally in [67], has a gap corresponding to
the Zeeman splitting. This gap is the cause of slow relaxation and decoherence. The
exchange of virtual spin excitons mediates the qubit-qubit interaction and also, via
scattering of virtual excitons from impurity potentials, relaxation and decoherence of
single qubits.

The original proposal to use nuclear spin qubits directly coupled by the two-dimensional
electron gas [30], required positioning the qubits at distances comparable to several
magnetic lengths. The latter is of order 10 nm for magnetic fields of several Tesla. The
qubit-qubit interaction decays exponentially on this length scale. Recently, we proposed a
new improved model [28] in which the qubit interactions are mediated via coupling of the
two-dimensional electron gas to the outer impurity electrons. This applies if the atoms,
whose nuclear spins are the qubits, are single-electron donors such as the isotope 31 of P.
These phosphorous impurities were originally utilized in the model of Kane [32] where
they must be actually positioned at separations of about 4 nm for the wavefunctions of
the outer electrons, which are bound at low temperatures, to overlap significantly.



In our new improved model [28], with nuclear spins coupling to the outer bound
electrons which, in turn, interact via the two-dimensional electron gas, the interaction
turned out to be of a much longer range as compared to the model of [32]: the qubit
separation can be of order 100 nm. Another advantage is that gate control of the
individual qubits and of qubit-qubit interactions is possible. We have carried out
extensive perturbative many-body calculations [27,28,30,68] allowing estimatidp, of

and T, for both the original quantum-computing proposal [30] and its improved version

[28], where the main improvement is in the possibility of the gate control along the lines
of [32]. The “clock speed” of the improved model is also faster by about two orders of
magnitude. The technical details of these rather cumbersome calculations are available in
the literature and will not be detailed here.

The results are summarized in Table 1. We show estimates of all four relevant time scales
for the two models introduced earlier. The “original” model [30] corresponds to nuclear
spins 1/2 introduced at qubits in atoms without an outer loosely bound electron. The
“improved” model corresponds to the case when the outer electron is present and its
interaction with the nuclear spin and the two-dimensional electron gas dominates the
dynamics.

The data shown in Table 1 were obtained assuming typical parameters for the standard
heterojunctions utilized in quantum-Hall-effect experiments today, and qubit separation

of 65 nm. Thus, the parameter values taken [28,30] were more appropriate for the GaAs
system than for Si, even though the main isotopes of gallium and arsenic have nuclear
spin 3/2 and cannot serve as spin-zero hosts. The reason for using these values has been
that experimental verification of some of the numbers might be possible in the available
materials before cleaner and different composition materials needed for quantum
computing are produced.

Our estimates, see Table 1, indicate that the quality f&gtot0™ is not obtained for the
present system. Actually, no quantum computing proposal to date, scalable by other

criteria, satisfies the0™ quality-factor criterion. The values range frdii* to 107,

The resolution could come from development of better error-correction algorithms or
from improving the physical system to obtain a better quality factor. In our estimation of
the decoherence time scale, we used parameters typical of a standard, “dirty”
heterostructure with large spatial fluctuations of the impurity potential. These
heterostructures have been suitable for standard experiments because they provide wider
guantum-Hall plateaus, i.e., ranges of magnetic field for which all the extended states of a
Zeeman sublevel are filled. Much cleaner, ultra-high mobility structures can be obtained
by placing the ionized impurity layer at a larger distance from the two-dimensional gas or
by injecting conduction electrons into the heterostructure by other means. Thus, our
guantum-computing proposals [28,30] are unique not only in the large qubit separation
allowed but also in that there is a clear direction of exploration to allow physical, rather
than algorithmic, resolution of the quality factor problem. This possibility should be
further explored both experimentally and theoretically.
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Figure 1. Comparison of the classical and quantum approaches to computing. The
upper flow chart schematically represents implementation of a traditional irreversible
“classical” computation process, where transformation of the input set of bits into the
result is accompanied by a succession of irreversible gates. Owing to their

irreversibility, the gates can be connected mcgprather than switched on and off at

different times. The lower flow chart shows quantum processing of information, where
the input and the final result are both in superposition states, yielding quantum
parallelism. The dynamics is reversible: there is a one-to-one correspondence between the
initial and final states. Therefore, number of the input and output quantum bit (qubits) is
the same even though some of the output qubits (set in a smaller font) might not be used
in the final extraction of the classical result by measurement. The quantum gates are
applied in succession by being switched on and of at different times during the
computation. The question mark signifies the difficulty of finding quantum algorithms

that retain the power of quantum parallelism after measurement needed to read off the
final result as classical information.
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Figure 2. Schematic illustration of a semiconductor heterostructure quantum
information processor. The qubits, represented by the arrows overlaying heavy dots, are
spins 1/2 of nuclei or localized electrons. Individual control of the temporal evolution of
the spins can be achieved with the use of external electromagnetic radiation, i.e., NMR or
ESR pulses. The spins are also coupled with each other via interaction mediated by the
two-dimensional electron gas in the heterostructure, or by other means. The external and
internal interactions can be controlled by gates formed on top of the heterostructure. The
external environment, that includes crystal lattice, electron gas, defects, impurity
potentials, causes relaxation and decoherence of the qubits.
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Figure 3. Evaluation of quantum computing models. One of the criteria for
feasibility of quantum computing in a given physical system is the possibility of
initialization of the qubits in the desired superposition state. Another important design
consideration is control of qubit states and of their interactions. In order to implement
guantum computing effectively, the time scales for realization of single and two-qubit
logic gates, T, and T, ;, respectively, should be several orders of magnitude smaller

than the time scales of relaxation and decoherefjcand T,. The relationships

between these time scales are further explained in the text. Finally, efficient and reliable
measurement of the output state of the qubits is required for reading off the result of the
computation and presently represents a formidable experimental challenge.
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Table 1. Time scales of the qubit dynamics for the original [30] and improved [28]
versions of the nuclear spin quantum computer with interactions mediated by the two-
dimensional electron gas.

Text

T

int

T,

The original model
O(10°) sec
O(1) sec
O(1C®) sec

0O(10) sec
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The improved model
O(10°) sec
0(10?) sec
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‘We propose a mechanism of long-range coherent coupling between nuclear spin qubits in semiconductor-
heterojunction quantum information processing devices. The coupling is via localized donor electrons
which interact with the two-dimensional electron gas. An effective interaction Hamiltonian is derived and
the coupling strength is evaluated. We also discuss mechanisms of decoherence and consider gate control
of the interaction between qubits. The resulting quantum computing scheme retains all the control and
measurement aspects of earlier approaches, but allows qubit spacing at distances of the order of 100 nm,
attainable with the present-day semiconductor device technologies.
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Recent technological advances in electronics related
to spin polarization [1,2] have boosted experimental and
theoretical interest in quantum information science in
condensed matter systems, specifically, in semiconductor
heterostructures at low temperatures and in high magnetic
fields. The solid-state implementations of quantum in-
formation devices seem to be among the most promising
ones, due to possible scalability of the elementary logic
gates into more complicated integrated circuits. Several
designs for solid state and related spin-based quantum
information processors have been suggested [3—8]. Pre-
liminary experiments, involving several quantum bits
(qubits), have been carried out or are being contem-
plated [9,10].

Our work stems from the proposals that utilize nuclear
or electronic spins as qubits for information processing
[3—7]. These are natural choices for qubits because at low
temperatures spin states in semiconductors have relatively
long decoherence times, sometimes milliseconds or even
longer for electronic spins, and seconds for nuclear spins
[11-14]. We propose a new mechanism for coupling be-
tween two nuclear-spin qubits, combining aspects of two
models of quantum information processors, one based on
nuclear spins in quantum-Hall effect systems [4], and an-
other utilizing the nuclear spins of phosphorous donors in
a silicon heterostructure [5].

An appealing aspect of Kane’s model [5] is a possibly
experimentally feasible scheme for reading out the state of
the quantum register, i.e., measurement of a nuclear spin,
achieved by transferring the nuclear-spin polarization to
the electronic state, while the latter is measured with the
use of a single electron transistor. The model proposed
in [4] has a different advantage: Unlike [5], the inter-
action between the nuclear spins is mediated by the two-
dimensional (2D) electron gas, and thus is longer ranged
due to the highly correlated state of the 2D electron gas
in the quantum-Hall regime. This opens up possibilities
for experimental realization of such quantum information
processors, because large separation between spin qubits
means greater lithographic dimensions in manufacturing
the device. The price paid is that the coupling is weak,

5112 0031-9007/01/86(22)/5112(4)$15.00
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and therefore the time scales of the “gate function” can be
as large as 1 s.

In this work we combine the two proposals, thus re-
taining the measurement and control scheme proposed in
[5,7,9] and at the same time allowing larger separations,
of the order of 100 nm, between interacting qubits. The
resulting system is thus realizable with the present-day
semiconductor technologies. We propose a model where
sparsely positioned phosphorous donors are imbedded in
a 2D electron gas in the quantum-Hall regime. The local-
ized donor electrons interact via the delocalized 2D elec-
trons and thus indirectly mediate nuclear-spin interactions.
In 3D, spin coupling mechanisms via conduction electrons
have been well studied [15]. Here, we estimate the range
of this induced nuclear-spin interaction for the 2D case and
find it to be of the order of 100 nm. This is large compared
to atomic dimensions, donor-electron bound state radii,
and even the electronic magnetic length which is typi-
cally of the order of 10 nm. We find that this interaction
is also stronger, thus corresponding to faster gate function
times, than in [4].

We assume that the coupling between the electronic
and the nuclear donor spins is given by the Fermi
contact interaction, H._, = Ao, * o,. Here, A =
(87 /3) pgninlWo(0)|?, where w, and g, are the nuclear
magnetron and nuclear g factor, respectively, |Wo(0)]? is
the donor-electron probability density at the nucleus, up
denotes the Bohr magnetron, and ¢’s are Pauli matrices.
Coupling of the delocalized electrons to the nuclear spin
is considerably weaker than that of the localized donor
electron. Therefore, we assume that the nuclear spin
interacts with conduction electrons indirectly via the
donor electron.

As a prototype system, we consider 3'P donors posi-
tioned in Si, so all the spins involved are % The donor
electronic and nuclear spins form a four-level system. The
spectrum of this two-spin system can be obtained to O(A)
with H,_, treated as perturbation. The energy levels are
Eo=—(yn + 0)/2+ A Er = (ya —A)/2 - A E, =
(=y, + A)/2 — A, and E; = (y,, + A)/2 + A, where
Yn = &nMnH 1s the nuclear-spin splitting. Here, H is the

© 2001 The American Physical Society
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magnetic field, and the expression for A, the electronic
Zeeman gap, will be given shortly. The eigenstates associ-
ated with these energy levels are [0) = | | e | n), |1) =
[leTn)+ QA/A)Teln), [2)=|Teln)+ (24/
A)|leln), and |3) =|1e1n), where || e | n) rep-
resents the electronic and nuclear-spin down state, etc.
Here we propose to consider the states |0) and |1) as qubit
states of a quantum computer. By altering the hyperfine
coupling constant A by distorting the spatial state ¥ of
the donor electron with an electrostatic gate [5,7], one
can selectively control the state of an individual qubit by
means of the NMR technique.

In order to calculate the interaction Hamiltonian be-
tween two qubits, we first consider the coupling between
the donor electron and conduction electrons. The ground
state of the donor electron is bound (localized) and will
typically lie in the energy gap, several meV below the
conduction band edge. For temperatures of order mK,
electronic transitions from this localized state to the con-
duction band are highly improbable. The dominant in-
teraction between the localized electron and conduction
electrons is their Coulomb interaction. We are interested
only in the exchange part of this interaction, i.e., the
spin-dependent part. The spin-independent part causes
screening, but it is weak in 2D [16] and, especially in the
presence of the magnetic field, cannot ionize the donor.

In a large magnetic field, the delocalized 2D electrons
occupy highly degenerate Landau energy levels [16]. It is
convenient to introduce electron bound state creation and
annihilation operators b,;fs and b,s, where n represents the
donor spatial state, and s is the spin z component, | or

l. Let a):,kxs, amk,s denote the creation and annihilation
operators for the delocalized 2D electrons, where m labels
the Landau level, while ik, is the x momentum (we use the
asymmetric gauge). Then the exchange coupling between
the bound and delocalized electrons can be written as

ZGm m' ky k’bnyamk s’bn Is'Am'k.s (1)

where the sum is over all the indices. Here, we have
neglected the spin-orbit interaction. In what follows, we
will retain only the lowest donor-electron spatial state, i.e.,
account only for the transitions between the two Zeeman
levels of the ground state.

The 2D electrons are assumed to be in a nondissipa-
tive quantum-Hall state with filling factor » = 1; i.e., the
lower Zeeman sublevel of the Landau ground state is com-
pletely filled [4]. This choice ensures reduced decoher-
ence and relaxation effects [14], owing to the energy gap
in the spectrum of the lowest-energy spin-wave excitations
which are well studied [17,18]; their spectrum is given

Ck(rl’r2) = exp{ 462

¢ ky . . ki . :
X exp[—z(kf + k) — Ey(lyl + iy — x1 + x2) — ?(lxl +ixy + oy — yz)]

by &k = A + E.[1 — Io(€2k?/4) exp(—€?k?*/4)], where
Iy is the modified Bessel function. Here, A = gugH is
the Zeeman gap, E. = (m/2)"/2(¢2/€{) is the character-
istic Coulomb energy, and g is the effective g factor in the
potential well that holds the 2D electron gas, while € is the
dielectric constant of the material, and € = (fic/eH)"/?
is the magnetic length. Extension to larger integer filling
factors is possible [14,17,18]. One can also introduce [18]
normalized creation and annihilation operators for the spin
waves, quadratic in electronic operators,

+ 2 62\!/2
Sk:< ) Ze ‘pap+(k/2)1“p k/21>  (2)

Here, L, , are the transverse dimensions, taken to infin-
ity in the final calculation. The summation over p is
taken in such a way [18] that the wave number subscripts
are quantized in multiples of 277/L,. The spectrum of
these spin waves has been experimentally verified in GaAs
heterostructures [19].

We will include only these lowest excitations in the sum
(1); our goal is to rewrite (1) in terms of the spin-wave
operators (2). The exchange coupling is thus truncated to

Gt ekt = Gro e, 0n.00n,00m,00m 0, Where
Gk«\"k,,r = f d3R1d3R2 \PS(RI)‘PO(RZ)

X UR; — R)Pg; (R2)Pow(R1), (3)
UR; — Ry) = ¢%/€|R| — Ry is the Coulomb interac-
tion, and Wo(R) is the donor-electron ground state. The
states of the conduction electrons confined in the 2D well
are ®g i (R) = o (r)x(z), where ¢o (r) are the stan-
dard 2D Landau states [16]; x(z) describes the confine-
ment of the conduction electron wave function in the z
direction and depends on the nature of the confinement
potential. Here and in the following R = (r, z), with R
and r = (x,y) being 3D and 2D coordinates, respectively,
while z is the direction perpendicular to the heterostruc-
ture, in which the applied magnetic field is pointing.

With the use of the expressions for Landau ground
state wave functions, ¢ou (r) = ¢ (L) 2eihx x
exp[—(y — €%ky)?/2€%], and (2), after a lengthy calcula-
tion, we get

[ — )2 + (1 — y2) — 2i(x — x2) (31 + y2>]}

1 ,
He = EZ[Wlee><le|Sk + Wklle><Te|Sl-(r],
k
where | T ) .| = b;r by in the appropriate subspace, and
1 3 3 *
= — "R R, ¥ (R)Vo(R
Wk = @mL L) f 4 RidRoT5(R)To(R2)
X UR| — Ro)x (z2) x(z1)Ck(ry,12), &)
(6)
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Note that since all the position vectors R, r are measured
from the origin at the donor atom, the quantity Wy de-
pends also on the donor coordinates. To the leading order,
(4) gives the interaction of the donor electron spin with
excitations of the 2D electron gas in the » = 1 integer
quantum-Hall state.

One can rewrite the interaction (4)—(6), with (4) multi-
plied by the unit operator in the nuclear-spin Hilbert space,
in terms of the eigenstates of the electron-nucleus system.
With the use of the expressions derived earlier for these
eigenstates in terms of direct products of electronic and
nuclear spin states, we obtain

1 2A
Ho = 3 S 1001+ 2

2
+ 3yal - KA |3><2|>sk +He. (D

Now one can calculate an effective Hamiltonian for the
interaction of two qubits. Since the electronic Zeeman gap
is much larger than the nuclear one, we can truncate the
Hilbert space of the combined electron-nucleus spins to
the two lowest lying states. Thus, we retain only the |0) (1]
and conjugate transitions in the exchange interaction (7).

An effective interaction between two qubits can be ob-
tained within the standard framework of second order per-
turbation theory by tracing out the states of the spin waves;
see [15,20,21] for similar calculations. The result can be
written as

Hyp = J]0112){1102] + J*[1,02)(0;15]. ®)
Here, the coupling constant between the two qubits is
A\? Wic1 Wi
J:<K>Z£ +E - Ey ©
k=0 “k 1 0

The subscripts 1 and 2 in (8) and (9) label the two donor
qubits, while Wy ; and Wy ; are the coupling constants of
each donor electron spin to spin waves, given by (5), and
&k is the spin-wave energy.

The nuclear-spin energy gap is much smaller than the
electronic spin-wave excitation energies. Therefore, we
can ignore E; — Ej in the denominator in (9). Further-
more, due to the large value of the spin-wave spectral gap
atk = 0, & = A, we do not have the “small denomina-
tor” problem encountered in other calculations of this sort,
e.g., [20]. Physically, this means that the spin excitations in
the 2D electron gas mediating the effective qubit-qubit in-
teraction are virtual, and so this interaction does not cause
appreciable relaxation or decoherence on the gate function
time scale /i/J.

It is important to note that one can construct a universal
CNOT logic gate from the controlled dynamics governed by
Hamiltonians of the form of H;» and single qubit rotations
[6]. The coupling strength J between the qubits can be
externally controlled by the electrostatic gates built above
the 2D inversion layer. By applying gate voltages, one can
locally vary the density of the 2D electrons, thus chang-
ing coupling between the delocalized and donor electrons.
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This results in control over the effective coupling constant
J in (9). The precise effect of gates on interactions be-
tween the qubits, as well as on decoherence of their states,
should be further studied in order to establish the feasi-
bility of the quantum-computing approach proposed here.
Most other semiconductor solid-state quantum-computing
approaches [3—7] utilize gates.

Let us explicitly calculate the coupling constant J in
(8) and (9). Because the spatial ground state of the donor
is localized on a scale smaller than the magnetic length
€, the overlap integrand in (5) is vanishingly small for
[r; — r2] > €. At the same time, for |k| > 1/€, the
value of Cy decreases exponentially. Thus, Cx can be
simplified by neglecting the x; — x; and y; — y; terms in
(6). Moreover, for two donors at separation larger than ¢,
we can put (r; + ry)/2 = r;, with r; being the location
of either one of them. Then 2(§) can be approximated by
Wi = Z(LyLy) Pexp(—5- — ik - rj), with Z =
(17276212 [ @*Ry d*R, V5(R))Wo(R2)U(R; — Ry) X
X" (z2) x (z1).

Finally, the coupling constant J of the effective interac-
tion (8) can be obtained by transforming the summation in
(9) to integration in the limit L, , — o°,

1 (3) e (4) el -5
_(AY _ZE faNT (o
A) emPEC\F P7a )

(r>19), (10)

where d = (E./2A)"/2¢. A similar dependence of the
coupling on the donor separation r was obtained in a
study of nuclear polarization diffusion in the quantum-Hall
regime [21]. Interaction (8) between the spins has finite
range d, which, however, is very large compared to the
effective Bohr radius of the donor ground state. Thus,
the indirect exchange at large distances dominates the di-
rect exchange interaction resulting from the overlap of the
two atomic wave functions. For magnetic field H = 6 T
and € = 12, we get d = 65 nm, which is indeed much
greater than the characteristic Bohr radius for a donor elec-
tron in silicon.

In order to estimate J, we have to evaluate the over-
lap integral Z. For an order-of-magnitude estimate, we
will assume that y(z) is constant inside the well and
zero outside. Then Z = (277)~'/2(6€)~" [d°R | d°R, X
\pS(Rl)\Po(Rz)U(Rl — R»), where § is the width of the
well. We put 6 = 4 nm. For Wy(R), the donor ground
state, we choose a spherically symmetric hydrogenlike
ground state with the effective Bohr radius ap = 2 nm.
This is, of course, not the case in a realistic situation [22].
The ground state of the donor will be influenced by the
band structure, by the magnetic field, and by the confining
2D well potential, while the states of the conducting elec-
trons will be distorted by the impurity potentials. We are
not aware of a thorough study of these effects for our sys-
tem. For the purposes of an order of magnitude estimate,
however, a spherical state should be sufficient.
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Evaluating the integral for the Coulomb potential U, we
obtain Z = (5a%/168)E,. Assuming that the two donors
are separated by the distance r = 100 nm and using the
value 2A/h = 58 MHz from [4], we obtain the estimate
J/h ~ 10* s71.

The clock speed of the information processor just de-
scribed appears to be a fraction of kHz and should be
compared with the time scales for relaxation and decoher-
ence. The leading mechanism for these at low temperatures
is through interaction with impurities. It has been found
theoretically [12,23] and confirmed experimentally [2] that
nuclear-spin relaxation in the quantum-Hall regime is slow
and strongly dependent on the impurity potentials; typi-
cally, the relaxation time 7 is of order 103 s. In our case,
the interaction of a qubit with the 2D gas is stronger, and,
as a result, the relaxation is expected to be faster. An es-
timate from formulas in [12,23] gives 77 = 1 s. There is,
however, another important issue—decoherence, on time
scales T,. Recently, this quantity has been calculated in
the same framework, that is, when the interaction of the
conduction electrons with impurities is taken into account
[14]. The results of [14] can be adjusted for the present
case and yield the estimate 75 = 107! s.

The existing quantum error correction protocols require
the quality factor, equal the ratio of the gate-function clock
time to decoherence time, not to exceed 107> [24]. Our
estimates indicate that this is not the case for the present
system. Actually, no quantum-computing proposal to date,
scalable by other criteria, satisfies this 107> quality-factor
criterion. The values range from 10™! to 1073, The reso-
lution could come from development of better error-
correction algorithms or from improving the physical
system to obtain a better quality factor. In our estimate of
the decoherence time scale, we used parameters typical
of a standard, “dirty” heterostructure with large spatial
fluctuations of the impurity potential. These heterostruc-
tures have been suitable for standard experiments because
they provide wider quantum-Hall plateaus. Much cleaner,
ultrahigh mobility structures can be obtained by placing
the ionized impurity layer at a larger distance from the
2D gas or by injecting conduction electrons into the
heterostructure by other means.

Thus, our present quantum-computing proposal offers
a clear direction for exploring a physical, rather than al-
gorithmic, resolution to the quality-factor problem. This
possibility should be further examined both experimentally
and theoretically. Our new quantum-computing paradigm
suggests several interesting avenues for research. The ef-
fect of gates on the switching of qubit interactions and on
decoherence requires further investigation. The first ex-
perimental realizations will probably involve only a few
qubits. The interactions of these may be significantly
affected by the geometry, specifically, the edges, of the
heterostructure.
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We report a theoretical estimate of the nuclear-spin dephasinglgrowing to the spin interaction with the
two-dimensional electron gas, when the latter is in the integer quantum Hall state, in a two-dimensional
heterojunction or quantum well at low temperature, and in large applied magnetic field. We argue that the
leading mechanism of dephasing is due to the impurity potentials that influence the dynamics of the spin via
virtual magnetic spin-exciton scattering. Implications of our results for implementation of nuclear spins as
guantum bitgqubity for quantum computing are discussed.
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[. INTRODUCTION fluctuations. Generally, for various systems, there are ex-
treme examples of theoretical prediction, ranging from no
Recent ideds 3 for utilizing nuclear spins in semiconduc- decoherence to finite decoherelft® at zero temperature,
tor quantum wells and heterojunctions as quantum (oits ~ depending on the model assumptions.
bits) for quantum computation have generated an emphasis In order to consider contrdl‘programming”) of a quan-
on the studies of nuclear-spin relaxation and, especiallytum computer, we have to identify the time scdlg, of the
quantum decoherence, in such systems. In this paper we cosingle-spin rotations owing to the interactions with an exter-
sider the case of the integer=1 quantum Hall staté The  nal NMR magnetic field. We also identify the time scalg
two-dimensional electron gas is then in a nondissipativeassociated with evolution owing to the pairwise spin-spin
state. Since the electrons mediate the dominaninteractions. The preferred relation of the time scale§;is
interactiort>® between nuclear spins, it is reasonable to ex-T,> Tey, andTi,, which is obviously required for coherent
pect that relaxation times of the latter, as well asquantum-mechanical dynamics.
decoherence/dephasing effects, will occur on large time The aim of this paper is to advance theoretical under-
scales. standing of the time scales of interest for the quantum com-
Solid-state proposals for quantum computatiGrwith ~ puter proposalbased on nuclear spins in a two-dimensional
nuclear spins are all presently theoretical. Related proposaglectron gas, with the latter in the integer quantum Hall ef-
to utilize quantum dofs'® are also, at present, all in the fect state obtained at low temperatures, of order 1 K, and in
theory stage. Usually, nonzero nuclear-spin atoms will béhigh magnetic fields, of several Tesla, in two-dimensional
considered placédby modern “atomic engineering” tech- semiconductor structurdsThis system is a promising candi-
niques in a host material of zero nuclear-spin isotope. Irflate for quantum computing because the nuclear spin relax-
order to allow positioning with respect to other features ofation timeT; can be as large as 6ec. In the summarizing
the system, such as gate electrotlesd making replicas, discussion, Sec. V, we discuss and compare the values of all
etc., the nuclear-spin separation will be larger than thdghe relevant time scales.
atomic size, typically, of the order of 20 to 100 A. At these ~Our main result, presented in Secs. Il through 1V, is a
separations, the direct magnetic dipole-dipole interaction ofheoretical calculation of the nuclear-spin dephasing/
the nuclear spins is negligible. decoherence time scdlg for such systems. We note that the
The dynamics of the nuclear spins is governed by theirecent stud$*~2* of the nuclear-spin relaxation timig, has
interactions with each other and with their environment. Inrelied heavily on the accepted theoretical and experimental
the regime of interest, these interactions are mediated by thdéews of the properties and behavior of #lectronic statef
two-dimensional electron gas. Various time scales are assthe two-dimensional electron gas in the quantum Hall re-
ciated with this dynamics. The relaxation tiriig is related  gime. These electronic properties have been a subject of sev-
to the energy exchange and thermalization of the spinseral studie$=®*~*Wwe utilize these results in our calcula-
Quantum-mechanical decoherence and dephasing will ocction as well.
on the time scal@,. The latter processes correspond to the
demolition of the quantum-mechanical superposition of Il. THE MODEL
states and erasure of phase information, due to interactions
with the environment. Generally, there are many dynamicabi
processes in the system, so the timigsand T, may not be
uniquely, separately definé&l’ Theoretically and experi-
mentally, it has been established that processes of ener
exchange are slow at low temperatures,Tsds very large,
but there still might be some decoherence owing to quantum H=H,+He+tHpetHinpp- 1)

We consider a single nuclear spin coupled to a two-
mensional electron gas in a strong magnetic fRldlong
the z axis that is perpendicular to the two-dimensional struc-
ture. Assuming nuclear spin-1/2, for simplicity, we write the
Yamiltonian as
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Here, the first term is the nuclear-spin interaction with thealizations. Calculations beyond this approximatfoare not
external magnetic fieldH,=—1/2y,Bo,, where vy, in-  definitive. Therefore, in order to avoid introduction of an
cludes# and the nucleag factor, ando, is a Pauli matrix.  arbitrary cutoff parameter, we stick with the parabolic form,
The second term is the electronic component of the totalvhich allows an analytical calculation, even though some of
Hamiltonian(1). Within the free-electron nomenclature, the our expressions require the dispersion relation for wave-
Fermi level lies in between the two Zeeman sublevels of thezector values that are not technically small.
lowest Landau level. The spin-up sublevel is then completely The electronic Hamiltonian can be written in terms of the
occupied, so the filling factor is=1, while the spin-down spin exciton operators as
sublevel is completely empty; note that the relevant effective
electronicg factor in typically negative. In fact, the calcula-
tion need not be limited to the lowest Landau level. Here,
however, to avoid unilluminating mathematical complica-
tions, we restrict our attention to the lowest level, as has beewhere thec-numberé, is the spin-independent ground-state
uniformly done in the literaturé&*?° energy of the electron gas. This description of the electronic
The last two terms in Eq(1) correspond to the nuclear- 9as is appropriate only for low density of excitons, which is
spin electron interactions and to the effects of impuritiesthe case in our calculation, as will be seen later.
These will be addressed shortly. The magnetic sublevels are We now turn to the third term in Eq1), the interaction
actually broadened by impurities. At low temperatures, thedbetween the electrons and nuclear spins. It can be adequately
v=1 system is in the quantum Hall state. The interactions oftPproximated by the hyperfine Fermi contact term
the two-dimensional electron gas with the underlying mate- 8
rial are not shown in Eq(l). They are accounted for phe- _om 3.
nomenologically, as desqwbed Ia¥er. P Hne= 3 7”9“8'“'28 Se0 P re=Rn). ®
The electron-electron interactions are treated within an _ )
approximate quasiparticle theory that only retains transitiorti€re.f1, and# S, are nuclear- and electronic spin operators,
amplitudes between Zeeman sublevels. The elementary exdspectively, and. are the electron coordinates. The nuclear
tations of the electron gas are then well described as magoordinateR, can be put equal to zero. Such an interaction
netic spin excitons, or spin wav&s:2” The spin excitons are  ¢an be split into two parts
guasiparticles arising as a result of the interplay between the
Coulomb repulsion of the electrons and their exchange inter- Hne=Haiagt Hoffdiag, (6)
action. A creation operator of a spin exciton with a two- whereH g4 cOrresponds to the coupling of the electrons to
d|men3|9nal wave vectok ca? _be Wr|tten in terms of the ¢ diagonal part of nuclear-spin operatdr,, and
electronic creation operato®' in the spin-down Zeeman H oftgiag—t0 its off-diagonal part.

He=50+; EAAL, (4)

sublevel and annihilation operatdssn the spin-up sublevel The diagonal and off-diagonal contributions can be re-
as written in terms of electronic creation and annihilation op-
52 erators as
T .2
Al= e'*Pal b . 2
“VLL 2 ¢ e @ (8713) yguawolO)
. . diag™ VL, ld
Here,| =+/cfi/eB is the magnetic length, and tlpesumma- mhy
tion is taken in such a way that the wave number subscripts o o
are quantized in multiples of 2/L,. Note that expression XY, e O g (ala,—blby), 7)
(2) assumes the Landau gauge, which is not symmetric under ka
Xy,
For our purposes, the following parabolic approximation _ (87/3) yng el Wo(0)|?
for the dispersion relation of the excitdfis?’ provides an offdiag™ JmLld
adequate approximation, y
W 172/ o2\ |2k2 X b e_'zlz(k2+q2)(a+blaq+ o-_albq). (8
Be=atlg) a2 @

Here, O'i=1/2(0'xii0'y). The interactions of the electrons
Here,A =|g|ugB, whereug is the Bohr magneton, amglis  of the two-dimensional gas with the underlying material are
the electroniqy factor, ande is the dielectric constant of the incorporated phenomenologically through the dielectric con-
material. It has been pointed 88t that the gapA in the  stant andg factor, see Eq(3), et seq, and via|w,(0)|? and
excitonic spectrum suppresses nuclear-spin relaxation at login Eq. (8) above. The latter is the transverse dimension of
temperatures. The dispersion relation for spin excitons actuhe effectively two-dimensional regionheterojunction,
ally levels out at large wave vectors. However, its preciseguantum well in which the electrons are confined. The
form is only known within a single-Landau-level quantitywq(0) represents phenomenologically the enhance-
approximatiorf.*2>which is not valid, for instance, for Si, a ment of the amplitude of the electron wave function at the
material that is a likely candidate for quantum computer renuclear position owing to the effective potential it experi-
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ences as it moves in the solid-state material. It is looselyion of the nuclear-spin relaxation time;, along the lines
related*® to the zero-momentum lattice Bloch wave function of.?223 The dominant mechanism for both processes at low
at the origin. temperatures is the interactions with impurities. Thus, both
For the purposes of the calculations performed here, witltalculations are effectively zero temperature, single spin;
the relevant states being the ground state and the singléhese assumptions will be further discussed in Sec. V.
exciton states of the electron gas, one can show that the We assume that initially at time=0 the nuclear spin is
terms in Eq.(7) that correspond to differett andq do not  polarized, while the excitons are in the ground state,
contribute, while the remaining sum ovérbecomes a&  |¥(0))=|—-)®|0), where|—) is the polarized-dowr(ex-
number, representing the Knight shift of the polarized elec<cited) state of the nuclear spin an@) is the ground state of
trons. ThusH g can be incorporated into the nuclear-spinspin excitons. Since the Hamiltonig2) conserves the
energy splitting, redefining the Hamiltonian of the nuclearcomponent of the total spin in the system, the most general
spin asH,=1/2'c,, wherel'= y,(B+Bkngn). Note that wave function evolving fron}¥ (0)) can be written as
the Knight shift can be used to estimate the value of the
phenomenological parametgrvy(0)| from experimental _ _
data. The off-diagonal cougling8) |can be expressed in V()= a(t)] >®|0>+; Be(D|+)®[L), (13
terms of the excitonic operatotg) as follows®®23 . . o
with |+) corresponding to the nuclear spin in the ground
state and|1,) describing the single-exciton state with the

offdiag=—T—= e KAl + Ao ), (9)  wave vectork. Equations of motion for the coefficients
Vhyby K and B, can be easily derived from the Schinger equation:
where 1
ifia=5Ta+ 2 gby. (14)
(87/3) ynG sl Wo(0)[? .
C= . (10)
V2mld

) 1
ihB=—=T B+ EBy+ +gya. 15
The summations ovéy, andk, are taken over all the integer % B 2 Bt Exbi % Pr.abat Ok (19

multiples of 2/L, and 2r/L,, respectively. .
The last term in Eq(1) describes the interaction of the In order to solve the system of E¢d4) and(15), we intro-

electrons with impurities and plays a crucial role in nuclearduce Laplace transformg(S) =[5 f(t)e™*'dt, which satisfy

relaxation in the systems of interest. This interaction can be 1

written in the spin-exciton representatiorf & iSha—ih= EFZHE 9B, (16)
k

Himp=(2i/LxLy)k2 U (q)sin{12(kydly — Ky /2JAL A q . )
el (11) iSﬁﬂk:_EF,@k-i-Ek,Bk-l—% qﬁkqﬂq—l—gka_ (17)

whereU(q)=fUimp(r)eiq'r d?r is the Fourier component of i
the impurity potential for electrons in the two-dimensional . Let us first solve Eqs(16) and(17) for the case when the

plane. We will assunfd?® that the impurity potential has a !nteractlon of spin excitons with |mpur|t|¢s is switched off,
£ ¢1,q=0. After some algebra we obtain

zero average and can be modeled by the Gaussian whit

noise  completely described by its correlator, 1 i QE
<Uimp(r)Uimp(r,)>:Q5(2)(r_rl)- = =5S+ gz my (18)
In summary, the relevant terms in the full Hamiltonidn a(s) k1S k

can be expressed solely in terms of the nuclear-spin opergyhere we have shifted the variable= S+iT/(24), which
tors and spin-exciton operators as only introduces an noninteresting phase factor.
1 In the absence of the hyperfine interaction, i.e., dgr
H=—-To,+ > EAIA+ D gAlo™+Aw™) =0, &(s) in Eq. (18) has only the pole as=0. When the
2 k k interaction is switched on, the pole shifts from zero. This
shift can be calculated in a standard way, within the leading
+E ¢>kqulAk+q, (12) order perturbative approach, by taking the lisit 0, so that
kaq 1U(ins*+T —E)—P[U(T —E)]—imdI —E,), whereP
denotes the principal value. This type of approximation is
encountered in quantum optitsThe relaxation rate and the
added phase shift of the nuclear-spin excited-state probabil-
ity amplitude«a(t) are given by the real and imaginary parts
of the pole, I =2w/%)3@i6(T—E) and o
=P, [0d(T—E,)], respectively, so that af(t)
In order to set the stage for the calculationTof, let us  «e”¥2(TV¥iet |t is obvious that due to the large gap in the
first briefly summarize in this section aspects of the calculaspin-exciton spectrunB) I'<A the energy conservation re-

where the explicit expressions fé , g, and ¢y 4 can be
read off Eqs(3), (9), and(10), respectively, and the quantity
I" was introduced in the text preceding E).

Ill. ENERGY RELAXATION
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quired by the delta function above can never be satisfied, and As expected, the perturbative solution does not describe
so in the absence of interaction with impuritifg,=«. It  the energy relaxationT(;), but it does yield the additional
also transpires thak, is infinite>° as will become apparent phase shift due to the impurity potential. We will see shortly

later. that this phase shift, when averaged over configurations of
Interactions with impurities, described by the last term inthe impurity potential, produces a finite dephasing timg,
Eq. (12), will modify the solution of Eqs(16) and(17), and, Let us consider the reduced density matrix of the nuclear

as a consequence, the energy conservation condition. In papin, given by
ticular, if the impurity potential is strong enough, it can pro-
vide additional energy to spin excitons, so that their energy pa(D)=[Tre| W (1) )(¥(1)|1y, (20

can fluctuate on the scale of ordey thu?gsﬁ?making nuclear-  yocall Eq.(13). Here the trace is partial, taken over the states
spin relaxation possible. This mechanfSr corresponds 10 ot the spin excitons, while the outer brackets denote averag-

large fluctuations of the impurity potential(r), which usu- 4 gver the impurity potential. The trace over the spin ex-
ally occur with a rather small probability, St is very large  cjtons can be carried out straightforwardly because, within
for such systems. o the leading-order perturbative approximation used here, they
In order to carry out the above program quantitatively,remain in the ground state; all excitations are virtual and
one has to solve the system of EGE6) and (17) with non- ¢ontripyte only to the phase shift. The diagonal elements of
Z€ro ¢y q. Such a solution is only possible within an ap- , () are not influenced by virtual excitations and remain
proximation. One can introduce the effective spin-exciton;gnstant.
self-energy Xy in Eq. (18), so that 1/{(hs+I—E) The off-diagonal elements gf,(t) contain the factors
—1U(iis+I'—E,+3,). An integral equation forX, can  g=ieut s the averaging of these quantities over the white-
then be d_erlveq, takmg_the continuum limit in E¢$6) and 1 qise impurity potentiald(r) that yields dephasing of the
(17). Solving this equation would allow one to calculate the ,,c|ear spin. In order to proceed, let us rewrite &§) more

relaxation rate from Eq(18). However, in order to satisfy explicitly. From Eqs(9)—(11), after changing the summation
the energy conservation, we require-E,+2,=0, so the index (k—k— (q+p)/2) in the first sum in Eq(19) we ob-
self-energy should be rather large, of orégr. Therefore, as ;

a result of the spectral gap of the excitons, the perturbative

approach is inadequate as it automatically assumes that 4C2 5 )
|3 |<|E.|. Instead, a certain variational approatH?has wu=m2 U(q)U(p)e "B *a)
been adapted to evaluafe, consistent with the experimen- xoyl ap

tal value$®>* of order 10 sec; for further discussion, see E— 12 p 12 q
- in-| k+ = in-|k—=
Sec. V. 5 € sins 2 ZS 2 2P ,
X )
IV. DEPHASING MECHANISM k Ek+q+P/2Ek+q—P/2Ek—Q+P/2
(21)

We argue that in order to calculate the phase shift due to
the impurity potential, one can indeed use the perturbativélere we use the following shorthand notation for gheom-
solution of Egs.(16) and(17). Indeed, phase shifts result in ponent of a vector product
virtual processes that do not require energy conservation and
therefore are dominated by relatively small fluctuations of [k, a]z=kxdy—ky0x-
the impurity potential simply because large fluctuations are ) . . .
very rare. Moreover, the terms of the sum in E&g) that Itis apprpprlate to assume t_hat impurity potentla_ls are short
contribute to the relaxation rate do not contribute to the@nged, i-e.a<l, where a is the scale of variation of
phase shift, see the discussion above. This consideration alsbmp(r). This assumption and the white-noise property of the
applies when the self-energy is introduced. impurity potentials, are required to make the problem ame-

One can show that the contribution to dephasing linear iable to analytical calculation. Thus, the main contribution
¢k,p vanishes due to symmetry. Thus, let us solve E#) to the Fourier transform (p), dominating the summation in
and (17) perturbatively up to the second order ¢ , and  Eq. (21), comes from large wave vectops(andq), of the
perform the inverse Laplace transform@fs). Within this ~ order a~*>1"1. Therefore, one can replace the exponent
approximation, the pole 6(s) in the complexs plane is e~ (78(P+d* by the Kronecker symbob,, _,, to obtain a
imaginary, so thata(t)|=1. We conclude that(t)xe'“u! simplified expression fow, 1
and B, (t) =0, where the part of the phase shift responsible ,
for dephasing is . o (72K sinZI?[k,p]z
s Sy Has Peabcae g0 TR YPVER £,

K Bk'd BkqP  Bk-g-p (22

(UU:_

SYN

The zeroth-order term in Eq19) was dropped as irrelevant Now the sum ovek can be carried out because fork, we
for our calculation of the dephasing time. Sincds much  can assume thatEy,,~E,= E.(1?/2)p?, where E.
smaller tharE,, it was also omitted. =(m/2)Y1e?/(el)].
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Moreover, for largep, the factor sif{(1%/2)[k,p],} can be
replaced by its average, 1/2. Finally, we get

|2
e "0 sirP [k, pl,

1
LxLy; EiExp
1 1 e7I2/8k2
:ﬁzpzzf kdk——z 2 (23
¢ (A+Ec?k2)

The integral can be evaluated explicitly; specifically, for

A/E.<1 we get

wk ) e—I2/8k2 1
jo d 12 ) 2_IZECA’ (24)
A+EC?|(
so that
2c? 1 U(p)U(—=p)
VT R EATA (LxLy)ZEp T
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. _2h12A
27 y,C?

(30)
with U,=Q/(27I2E?).

V. RESULTS AND DISCUSSION

The quantityU, characterizes the strength of the impurity
potential with respect to the Coulomb interactiéhé.et us
summarize typical parameter vald&for a GaAs heterojunc-
tion, which is the system best studied in the literature. For
magnetic field valu8=10T, we have the following values
of parameters:|=0.8x10 8m, E.=3x10 %], C=2.5
X 10 36Jm, A=4.6x102%J. From the experimental data
for electronic mobility, one then estimatésU,=0.0025,
yielding T,=40sec. We emphasize that this is an order of
magnitude estimate only, because of the uncertainty in vari-
ous parameter values assumed and the fact that the param-
eters, especially the strength of the disorder, may vary sig-
nificantly from sample to sample. For instance, there is
another estimate of the disorder stren@tavailable in the
literature®® obtained by fitting the value 6F; to the experi-
mentally measured £@ec3°* as cited earlier. This yields
an estimate foll, that is smallerT,=0.5 sec. Generally, we

Recall that we have assumed the white-noise distributioréxpect that with typical-quality sampleS, may be a frac-

for the impurity potential, (Uiny(r) Uimp(r'))=Q38@)(r

—r"). This corresponds to the following probability distri-

bution functional for the Fourier transformed potential:

1
P[U(p>]=Nexp[—2QLxLy§ U(PU(-p)

. (26)

The latter expression, and other approximations assumeg
earlier, allow us to reduce the averagingetfu! to a product
of Gaussian integrations. The off-diagonal elements of the |- lation2l-23

nuclear-spin density matrix are, thus,

H ( ir ) —-1/2
~ 1_ P
Po1 ; LXLypz

(27)

where 7=4QC?t/(hwE2I*A).
We are interested in the real part of the sum in &7),

tion of a second or somewhat larger.

In ordinary semiconductors, even at low temperatures, the
decoherence times would be expected to be 2—-3 orders of
magnitude shorter than our values. The reason that the deco-
herence is that slow here is that we consider the case when
the spectrum of the electron-gas excitations has a gap, which
slows down both relaxation and decoherence. The main in-
cation that there are no other mechanisms operational
comes from the success of the relaxation tinlg
which were confronted with
experiment®3* However, we emphasize that at close
nuclear-spin separations, their direct dipolar interaction does
provide an alternative, at least as an effective mechafism.
Thus, our results are limited to the case of large nuclear spin
separations, appropriate for quantum computing architec-
tures, for which the host material will have to be isotope
engineered with zero nuclear spins, e.g.? $b date, there
are no direct experimental probes of dephasing by the
disorder-dominated mechanism identified here for dilute
nuclear-spin positioning. For those materials whose atoms

which represents decoherence/dephasing of the nuclear spighyve nonzero nuclear-spin-isotope nuclei, specifically, for

The off-diagonal elements decay exponentially as

1
po1~ exp{ - ZE In

p

2
. (28

.
1+ ———g
(LyLy)*p?

The summation ovep can be converted into integration

72 ) L,L "
In| 1+ = yfdz In 1+—).
2 (LLy%p) ~ 2m? ) TP L)%
(29)
Explicit calculation then yields the result theg,~e~ 76 or

por~e VT2, where

GaAs (spins 3/2, we are aware only of one experiméht
where indirect information on dephasing can be obtained
from the linewidth. Indeed, in that case the dipolar interac-
tion likely provides the dominant dephasing mechanism. We
also point out that the assumption of low temperature assures
that indirect decoherence and relaxation mechanisms via the
electrons are not operational.

Let us now compare various time scales relevant for
quantum computing applications. The relaxation timeis
of order 16 sec?®%*3 For the spin-spin interaction time
scale T, values as short as 1If'sec have been
proposed:® These estimates are definitely overly optimistic
and require further work. Since such calculations require
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considerations beyond the single spin interactions, they arebserve the quantum Hall effect plateaus in the resistance.
outside the scope of the present paper. Fgi, modern  The latter requires a finite density of impurities. However,
experiments have used NMR field intensities correspondin@or the quantum-computer applications, a much cleaner
to the spin-flip times of 10°sec. This can be reduced to sample would suffice. Indeed, as suggested by our calcula-
10 ’"sec, and with substantial experimental effort, perhapsions, T, is mostly due to dephasing owing to virtual spin-
even shorter times, the main limitation being heating up ofexciton scattering from impurities. Therefore, the valud pf

the sample by the radiation. . can be increased by using cleaner samples.
Thus, the present information on the relevant time scales

does not show a violation of the conditiohy,, T,> Ty,
Tint» Stated in the introduction, required for quantum com-
puting. To firmly establish the feasibility of quantum com-
puting, reliable theoretical evaluation df, is needed, as We acknowledge helpful discussions with Drs. S. E. Bar-
well as experimental realizations of few-qubit systems engitett, M. L. Glasser, and R. Mani. This research was sup-
neered with nuclear spins positioned as separations of ord@orted by the National Security AgenéiMSA) and the Ad-
30-100 A. vanced Research and Development Activi§RDA) under

We also note that typical lab samples, for which the pathe Army Research OfficéARO) Contract No. DAAD 19-
rameter values used were estimated, have been prepared3®-1-0342.
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Abstract

We describe a quantum information processor (quantum computer) based on the hyperfine interactions between the
conduction electrons and nuclear spins embedded in a two-dimensional electron system in the quantum-Hall regime.
Nuclear spins can be controlled individually by electromagnetic pulses. Their interactions, which are of the spin-exchange
type, can be possibly switched on and off pair-wise dynamically, for nearest neighbors, by controlling impurities. We also
propose the way to feed in the initial data and explore ideas for reading off the final results. (© 1998 Elsevier Science B.V.

The field of quantum computing has seen an ex-
plosive growth of theoretical development {1-7]. It
has been realized that quantum computers can be
faster than classical computers for some problems
[1-3,8~13]. The analog nature of errors and pos-
sible error correction schemes have been explored
[6,7,9,13-21]. There have also been several proposals
for actual realizations of quantum information pro-
cessing [4,5,13,22-31]. Two of these proposals, the
ion-trap system [5,22,25,27,28] and the ensemble-
of-molecules liquid-state NMR approach [29-31]
have been studied extensively as possible experi-
mental realizations of quantum computing. However,
all experimental results to date only accomplish the
simplest quantum-logic functions such as single-spin
rotations or two-spin controlled-NOT [ 1-7].

A major challenge faced by both experiment and
theory has involved scaling up from one to many quan-
tum gates and actual “programming,” i.e., conduct-
ing calculations by coherent quantum unitary evolu-

tion, in a controlled fashion. Experimentally, quantum
computation requires switching on and off pair-wise
interactions between various two-state systems, e.g.,
spins %, termed “qubits.” Initialization and reading off
the final results are also nontrivial parts of the pro-
cess. Ideally, the latter should involve efficient mea-
surement of a single qubit. The NMR variant [29-31]
measures instead ensemble averages (expectation val-
ues). Certain “fault-tolerant” error correction schemes
[7,13,17,19-21] actually also require measurements
of some of the qubits during the computation,
Theoretically, the most striking recent development
has been the formulation of the fault-tolerant error cor-
rection schemes [7,13,17,19-21]. Correction of ana-
log errors inherent in quantum computation due to
the superposition-of-states property (which in turn is
central to the speed-up of some calculations) means
an uphill battle against the second law of thermody-
namics. These error correction schemes [7,13,17,19-
21] aim at calculations that can go on indefinitely

0375-9601/98/%$19.00 © 1998 Elsevier Science B.V. All rights reserved.
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provided the overall error rate at each qubit is small
enough.

It is not our goal here to review these issues: We
will adopt the point of view that modern error cor-
rection schemes will allow calculations long enough
to be useful provided a working quantum information
processor can be devised. It is the latter aspect that
we address in this work. Thus, we propose a quantum
computer realization based on hyperfine interactions
[32] between the conduction electrons and nuclear
spins embedded in a two-dimensional electron system
in which the electron gas is in the quantum-Hall ef-
fect (QHE) regime [33,34]. Such systems have been
made at the interfaces between semiconductor materi-
als and in superlattices (layered semiconductor struc-
tures) [35].

In these systems, at temperatures of order 1 K and
applied magnetic fields of several teslas, there are in-
tervals of magnetic field values for which the electrons
fill up an integer number of Landau levels [36]. The
electron gas then forms a nondissipative QHE fluid
[35]; the Hall resistance exhibits a plateau at a value
that is a multiple of 2/, while the dissipativity of the
conduction electron gas (the magnetoresistance) ap-
proaches zero. Nuclear-spin thermalization/relaxation
processes occur on the time scale denoted Ty [32],
which, experimentally, ranges from several minutes
to half an hour [37-39]. It is then expected that the
nuclear spin dynamics is dominated by coherent spin
exchanges mediated by electrons [40,41]. Owing to
rapid advances in the experimental facilities, the hy-
perfine interactions in QHE systems have recently at-
tracted growing theoretical {41,42] and experimental
[37-39] interest; this progress makes it feasible to
handle the electron spin—nuclear spin interactions with
almost atomic precision.

Similar to the ion-trap system [5,22,25,27,28], we
consider a chain of spin-% nuclei, of atoms positioned
by the molecular-beam epitaxy techniques [35] in
an effectively two-dimensional system subjected to a
strong magnetic field. The typical separation should be
comparable to the magnetic length £y = (hc/eH)'/?,
where H is the applied magnetic field, perpendicu-
lar to the two-dimensional layer. This length is of
the order of 100 A. We propose to control individ-
ual nuclear spins by electromagnetic-radiation pulses
in the nuclear magnetic resonance (NMR) frequency
range [32].

An important question is how to control nuclear
spins individually. Use of a magnetic field gradient
could be contemplated to achieve differentiation, but
there are severe limitations on the field variation ow-
ing to the need to maintain the QHE electronic state.
Instead, one can use different nuclei. Theoretically,
there is no apparent limit on how many different spins
can be arranged in a chain. However, practically the
number of suitable spin-% isotopes may be limited.
Thus, achieving sufficient chemical-shift dispersion
for systems of more than few qubits may require addi-
tional ideas; the following ones are tentative because
presently it is not known how realistic these propos-
als are from the point of view of actual experimen-
tal realizations. Specifically, one can position nuclear
spins in different crystalline environments. The latter
can be controlled by implanting atoms and complexes
into the host material [32]. It may also be possible to
utilize small clusters of nuclear spins, rather than in-
dividual spins. These can be made coherent [43] by
lowering the temperature to a value of order of several
uK, as compared to order 1 K needed to achieve the
QHE state.

Under the typical conditions of QHE the direct
dipole—dipole interaction of the nuclear spins is negli-
gibly small [41]. The dominant interaction will be me-
diated by the contact hyperfine interactions between
nuclear spins and conduction electrons [40]. Sim-
ilarly, electron-mediated interactions leading to the
scalar coupling have been utilized in the liquid-state
NMR realization of quantum computation [29-31].
In ordinary metals, the electron-mediated nuclear spin
interactions exhibit Friedel oscillations {32] because
of the existence of a sharp Fermi surface.

In the quantum-Hall regime, however, the energy
spectrum of the two-dimensional electron gas is dis-
cretized by the magnetic field. As a result, the inter-
action is no longer oscillatory but rather monotonic,
exponentially decaying [40] on the length scale £p.
The following terms in the effective phenomenologi-
cal two-spin interaction Hamiltonian correspond to the
second-order perturbative calculation (carried out for
two identical nuclei) of Ref. [40], where for differ-
ent nuclei we replaced Z? by the product of the two
atomic numbers ( which is basically a guess),
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fct
—_yzMz@ g1 Tye“"”"(ag)of)+ai')a(_2’),
(1)

where ¢ is a dimensionless quantity [40] of order 1,
ZJ) are the atomic numbers of the nuclei, while V is
some constant. Note that

r/éyocr\/ﬁ. (2)

Here H is the applied field, r is the spin-spin separa-
tion, while o/ are the Pauli matrices corresponding
to the spin-% operators of the two nuclei labeled by the
superscripts j = 1,2. Each nuclear spin also interacts
with the applied field via the magnetic coupling of the
form -y fHo!/). Determination of the precise ef-
fective spin-spin interaction Hamiltonian will likely
be accomplished to a large extent by direct experimen-
tal probe. The strength of the interaction in Eq. (1)
can be roughly estimated to be of order 107! erg,
which corresponds to a frequency of order 10'! Hz.
For quantum computation, one has to devise the
means to control the spin-spin interactions. Ideally,
one would like to be able to switch interactions on and
off at will, for varying time intervals A¢. Switching
on a pair-wise interaction would allow one to carry
out a unitary transformation on a pair of spins inde-
pendently of the other spins. It has been established
{13,23,44-47} that nearly any such transformation,
combined with single-spin transformations which can
be accomplished by radiation pulses form a universal
set in the sense that an arbitrary “computer program”
can be built from them. There are NMR “refocusing”
methods that allow for such control, as utilized, for in-
stance, in the liquid-state NMR formulation [29-31]
of quantum computing. However, until the full form
of the spin-spin interaction Hamiltonian is established
tor our case, it is useful to consider other ideas as well.
Geometry constraints would limit the pairs of spins
for which the two-spin interactions are nonnegligible
typically to nearest-neighbor pairs. Furthermore, other
interactions cannot be really fully eliminated, but only
reduced. Still, control of the spin-spin interactions
would allow for added flexibility in “programming”
the unitary evolution of a computational device. Even
when the control is possible, in practice it would be
unrealistic to expect the form of the interaction, such
as Eq. (1) above, to be known exactly from theoret-
ical calculations alone. Thus, Eq. (1) is a leading-
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Fig. 1. The schematics of the proposed two-dimensional nuclear

spin system: N denotes atoms with spin-% nuclei; I denotes im-

purity atoms or complexes that can be ionized to disrupt the
spin-exchange interactions mediated by conduction electrons (the
impurity placement may be different, see text); R represents repli-
cas (actually there will be many of them); E and C represent
conducting electrodes and the connecting strip for measurement
(see text),

approximation/guess phenomenological form. Input
from experiments will be required to fine-tune the
computer functions that depend on such internal in-
teractions.

One possibility not based on the NMR methods is
to disrupt (ideally, switch off), for the duration of
some time interval A, the interaction for one (nearest-
neighbor) pair of spins by placing impurities between
the spins, see Fig. 1. The impurities can be ionized by
external electromagnetic pulses to electronic configu-
rations that capture electrons and locally destroy the
coherence of the electron gas. Differentiation can be
achieved by using different impurity species. Admit-
tedly, this is a rather speculative idea. Specifically, it
may be more appropriate to place the impurities near
or surrounding the nuclear spins, instead of the geom-
etry of Fig. 1.

It is important to emphasize that the pair-wise in-
teractions are “on” most of the time, for each pair of
spins. Therefore, the “idle” unitary transformations in
the latter approach will not be simple phase changes
as for noninteracting spins. The ability to change the
interactions locally, pair-wise, will only allow one to
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change the relative unitary transformations to which
nearest-neighbor spin pairs are subject. In addition,
one has the single-spin rotations that can be done by
external electromagnetic pulses. Programming of such
a computer is therefore less straightforward than usu-
ally expected in the theoretical approaches that assume
noninteracting idling elements [1-7,13,23,44-47];
however, this is only a matter of new mathematical
developments being called for.

We now turn to the process of “feeding in” the ini-
tial data into the computer. This can be accomplished
as follows. Initially, all the nuclear spins in the system
are pumped in one direction. This can be achieved by
shining a polarized light at the system [49] that cre-
ates electron-hole pairs. These pairs annihilate, forc-
ing on a fixed nuclear spin polarization, correspond-
ing to that of the incident light [49]. After the initial
alignment, the nuclear spins can be rotated to the de-
sired quantum states needed for computation by elec-
tromagnetic pulses at their respective frequencies.

In all the proposals for quantum computation
[1-7,13,22-31], reading off the final spin states by
measuring, and also the measurement processes that
are required for error correction [7,13,17,19-21}]
are most challenging to realize. This is because di-
rect interaction of a microscopic system with any
macroscopic system for the purpose of measurement
is disruptive and difficult to carry out in an orderly
fashion for all the individual spins in the system.

We note that as for the liquid-NMR proposal
[29-31], we could read off averages by NMR tech-
niques by producing replicas of the spin chain, see
Fig. 1, and letting them evolve in parallel. The elec-
tromagnetic pulses that control the computation can
be applied to all the replicas at once. However, some
quantum error correction protocols [7,13,17,19-21]
require actual measurements rather than averages.
Furthermore, unlike the liquid-state NMR, there may
be uncontrollable differences between the replicas.
The only thing that might save the situation is the fact
that our spins are located at distances much larger
than atomic dimensions. Therefore, some averaging
of the “atomic” scale influences may be expected
in the spin-spin interactions controlling the actual
computation in each chain. The latter observation
suggests that measurement methods other than NMR
based must be explored. We propose three measuring
processes below: The first and second may be more

appropriate for final-state readout while the second
and third for error correction schemes.

First, let us assume that the final state is one of the
direct-product states of the n-spin system. It is possible
to generate by holographic and other methods [48-51]
a narrow strip of conductance at each spin in turn, see
Fig. 1, and send a current of spin-polarized electrons
through it. The observed current can be pre-calibrated
to enable high certainty determination of whether there
was a spin-exchange scattering event, thus determining
the nuclear spin’s direction, resembling the spin-diode
[38,52] techniques. Furthermore, one can extend the
strip of conductance over several replicas of the spin
chain, separated an order of magnitude more than the
spins, e.g., 1000 A. One can probably have enough
of them to significantly reduce any uncertainty in the
spin direction determination.

Second, if the final or intermediate state (the latter
case is relevant for error correction) can be entangled,
so that one cannot simply measure each spin in turn,
then the situation is more complicated. One can gener-
ate a “mask” of conducting strips, for all or a group of
spins. However, “calibration” to derive data pertinent
to the multispin quantum state may be a challenge.

Third, some error correction schemes [7,13,17,19-
21]) require measurement of the difference of the
components of nearby spins. This might be con-
templated by having two conducting strips with the
spin-polarized electron current, and adding a time-
dependent component to the applied magnetic field
for the duration of the measurement. The difference in
the nuclear spin states will then affect the Aharonov—
Bohm oscillatory structure of the observed current;
see Ref. [53] for a survey of such effects.

In summary, we have proposed a model of a quan-
tum computer based on the hyperfine interactions be-
tween the electron and nuclear spins in quantum Hall
effect systems. This brings to two the number of pro-
posals that have been formulated theoretically for re-
alizations of quantum computing which can be po-
tentially done in solid-state systems; the other is the
quantum-dot proposal [26]. The possibility of quan-
tum computing in solid state is exciting. Indeed, the
intricacies of modern technology, especially as far as
nanoscale “engineering” is concerned, are much more
geared for solid-state systems than any other medium.
All modern electronic devices, presently, with compo-
nents on submicron scales, are solid state.
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However, unlike the more ‘“established” quantum
computing proposals such as ion traps and liquid-state
NMR, the two solid-state proposals are presently the-
oretical. There are several investigations needed of
the form and strength of the spin—spin interactions,
of the time scales of interaction versus decoherence,
and other topics, before initial experimental attempts
to build few-qubit QHE quantum computing systems
can be deemed realistic. Specifically, no estimates are
available of the time scales of decoherence which may
be orders of magnitude shorter than 7.
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Abstract

We present a new short-time approximation scheme for evaluation of decoherence.
At low temperatures, the approximation is argued to apply at intermediate times as
well. It then provides a tractable approach complementary to Markovian-type approx-
imations, and appropriate for evaluation of deviations from pure states in quantum

computing models.
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1. Introduction

Consider a microscopic quantum system with the Hamiltonian Hg. We will refer
to the quantum-computing single quantum bit (qubit) or multi-qubit paradigm to help
define the questions and set up the challenges, in describing how the system, S, interacts
with the surrounding macroscopic world. However, in principle S can be any quantum

system.

Interactions with the surroundings can be quite different depending on the setting.
For example, in quantum measurement, which is presently not fully understood, the
wavefunction of the system is probed, so part of the process would involve a strong
interaction with the measuring device, such that the system’s own Hamiltonian plays
no role in the process. However, in most applications, the external interactions are
actually quite weak. Furthermore, the aim is to minimize their effect, especially in

quantum computing.

Traditionally, interactions with the surrounding world have been modeled by the
modes of a bath, B, with each mode described by its Hamiltonian My, so that the bath

of modes is represented by

Hp=>» Mg . (1.1)
K

The interaction, I, of the bath modes with the system .S, will be modeled by

Hy=AsPp=Ag)» Jk, (1.2)
K

where Ag is some Hermitean operator of S, coupled to the operator Pg of the bath.

The bath, or “heat bath”, can be a collection of modes, such as photons, phonons,

spins, excitons, etc. For a bosonic bath of oscillators, [1-6], which we use for derivation

-2 -



of specific results, we take

MK :wKa}{aK N (13)

Jrg = g}}CLK —l—gKCL}( . (14)

Here we have assumed that the energy of the ground state is shifted to zero for each

oscillator, and we work in units such that h = 1.

The total Hamiltonian of the system and bath is

H=Hs+ Hp+ H; . (15)

More generally, the interaction, (1.2), can involve several system operators, each cou-
pling differently to the bath modes, or even to different baths. The bath modes, in turn,

can be coupled to specified external objects, such as impurities.

Let p(t) represent the reduced density matrix of the system at time ¢t > 0, after
the bath modes have been traced over. For large times, the effect of the environment
on a quantum system that is not otherwise externally controlled, is expected to be

thermalization: the density matrix should approach

exp (—8Hg)

Pl = ) = F e (B H)]

(1.6)

where § = 1/kT. At all times, we can consider the degree to which the system has
departed from coherent pure-quantum-state evolution. This departure is due to the
interactions and entanglement with the bath. We also expect that the temperature, T,

and other external parameters that might be needed to characterize the system’s density

T



matrix, are determined by the properties of the bath, which in turn might interact with

the rest of the universe.

Let us introduce the eigenstates of Hg,

Hg|n) = E,|n) , (1.7)

and have AFE denote the characteristic energy gap values of S. We also consider the

matrix elements of p(t),

prn(t) = (m|p(t)[n) - (1.8)

For large times, we expect the diagonal elements p,,,, to approach values proportional to
e PEn while the off-diagonal elements, Pm#n, to vanish. These properties are referred

to as thermalization and decoherence in the energy basis.

To establish these thermalization and decoherence properties, several assumptions
are made regarding the system and bath dynamics [1-11]. At time ¢ = 0, it is usually

assumed that the bath modes, K, are thermalized, i.e., have density matrices

Ok = e*BMK/TrK (676MK) : (1.9)

The density matrix R of the system plus bath at time ¢ = 0 is then the direct product

R(0) = p(0) ] ] tx . (1.10)
K

and the system and bath modes are not entangled with each other.

Now, a series of assumptions are made, e.g., the Markovian and secular approxi-

mations. The most important is the Markovian approximation, which, even though it
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can be stated and introduced in various ways, essentially assumes that the density ma-
trices of the bath modes are reset externally to the thermal ones, on time scales shorter
than any dynamical times of the system interacting with the bath. This is a natural
assumption, because each bath mode is coupled only weakly to the system, whereas it
is “monitored” by the rest of the universe and kept at temperature T'. In its straightfor-
ward version, this amounts to using (1.10) for times ¢ > 0. Ultimately, such approaches
aim at master equations for the evolution of p,,,(t) at large times, consistent with the

Golden Rule and with the expected thermalization and decoherence properties.

In variants of these formalisms, several time scales are identified. One is the inverse
of the upper cutoff, Debye frequency of the bath modes, 1/wp. Another is the thermal
time h/kT = [ (in units of A = 1). The system S has its own characteristic time,
1/AE, as well as the system-bath dynamical times of thermalization and decoherence,
etc., Th 2., corresponding to the “intrinsic” NMR/ESR times T4, T5, etc. Heuristically,
bath modes of frequencies w comparable to AFE are needed to drive thermalization and
decoherence. Initial decoherence can be also mediated by the modes near w = 0. At

low temperatures, we can assume that 1/wp < 1/AE < g.

There is evidence [7,11,12] that at low temperatures, the Markovian-type and other
approximations used in the derivation of equations for thermalization and decoherence,
are only valid for times larger than the thermal time scale 5. For quantum comput-
ing applications, in solid-state semiconductor-heterostructure architectures [13-19], we
expect temperatures of several tens of uK. The thermal time scale then becomes dan-
gerously close to the external single-qubit control, Rabi-flip time even for slower qubits,
those based on nuclear spins. We emphasize that not all the approximation schemes

have this problem [11].

In Section 2, we offer additional comments on decoherence and quantum comput-

ing. Then, in Section 3, we develop a short-time-decoherence approximation. In a
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discussion at the end of Section 3, we offer arguments that, at low temperatures, our
approximation is actually valid for intermediate times, larger than 1/wp, hopefully up
to times comparable or larger than 1/AFE. Specific results for the bosonic heat bath are
presented in Section 4. Section 5 comments on the case of adiabatic decoherence, when

the short-time approximation becomes exact.



2. Decoherence and quantum computing

Quantum computing architectures usually emphasize systems, both the qubits and
the modes that couple them (and at the same time act as a bath mediating unwanted
coupling to the rest of the universe), that have large spectral gaps. It is believed that,
especially at low temperatures, spectral gaps slow down relaxation processes. Therefore,
quantum computing architectures usually assume [13-19] qubits in quantum dots, or in
atoms, or subject to large magnetic fields, and coupled by highly nondissipative quantum

media [14,19].

The spectral gaps are expected to slow down exponentially, by the Boltzmann
factor, the processes of thermalization, involving energy exchange. Off-shell virtual
exchanges, will be also slowed down, but less profoundly. The latter processes contribute
to decoherence. Therefore, at low temperatures, we might expect separation of time
scales of the initial decoherence vs. later-stage thermalization and further decoherence.
The latter two processes are described by the traditional NMR/ESR intrinsic 77 and

T5, respectively.

Since only thermalization is clearly associated with the energy eigenbasis, one can
also ask whether the energy basis is the appropriate one to describe decoherence for
short and intermediate times, before the thermalizing processes, that also further drive
decoherence, take over. The issue of the appropriate basis for studying decoherence, has
also come up in models of quantum measurement. It has been argued [20-24] that the
eigenbasis of the interaction operator, Ag, may be more appropriate for intermediate

times than the energy eigenbasis.

Yet another aspect of decoherence in quantum computing, involves the observation
that we really want to retain a pure state in the quantum computation process [25-

30]. Decay of off-diagonal matrix elements, in whatever basis, might not be the best



measure of deviations from the pure-state density matrix. For instance, the deviation
of Trg [pQ(t)] from 1, may be more appropriate. Therefore, it is desirable to have

basis-independent expressions for the reduced density operator p(t).

Recently, several groups have reported [12,19,24,31-41] results for spin decoherence
in solid state systems appropriate for quantum computing architectures. Some of these
works have not invoked the full battery of the traditional approximations, Markovian
and secular, etc., or have utilized the spectral gap of the bath modes, to achieve better
reliability of the short-time results. In [41], interaction of the spin-exciton bath modes
with impurities was accounted for, as the main mechanism of decoherence. In the
present work, we limit ourselves to the bath modes only interacting with the system.
Experimental efforts are picking up momentum, with the first limited results available

[42,43] by traditional NMR/ESR techniques, with the quantum-computing emphasis.

An approach, termed adiabatic decoherence, have been developed by us [24], ex-
panding the earlier works [12,31-33], with the goal of avoiding the ambiguity of the basis
selection and achieving exact solvability. The price paid was the assumption that Hg
is conserved (a particular version of the quantum nondemolition processes), which is

equivalent to requiring that

[Hs,H|] = [Hg,As] =0 (adiabatic case) . (2.1)

This makes the eigenbasis of Hg and Ag the same, but precludes energy relaxation,
thus artificially leaving only energy-conserving relaxation pathways that contribute to

decoherence. We will comment on the results of this approach in Section 5.

Most of the results referred to earlier, have involved approximations of one sort or
another. The most popular and widely used approximation has been the second-order

perturbative expansion in the interaction strength, H;, though some nonperturbative
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results have also been reported. In Section 3, we describe a novel approximation scheme
[44] that is valid for short times. It has several advantages, such as becoming exact in
the adiabatic case, allowing derivation of several explicit results, and, at least in princi-
ple, permitting derivation of higher-order approximations. Certain models of quantum
measurement evaluate decoherence by effectively setting Hg = 0. Our approximation

then becomes exact, and our results are consistent with these studies [45,46].

Our formulation in Section 3, will be quite general, and we will not use the specific
bath or thermalization assumptions. However, we do utilize the factorization property
(1.10) at time t = 0. Thus, we do have to assume that, at least initially, the system and
the bath modes are not entangled. In fact, the present formulation also relies on that
the Hamiltonians at hand are all time-independent. Therefore, we have excluded the
possibility of controlled dynamics, in the quantum computing sense, when gate functions
are accomplished by external couplings to individual qubits and by external control of
their pairwise interactions. Our formulation, therefore, applies to “idling” qubits or
systems of (possibly interacting) qubits. It is reasonable to assume that a lower limit
on decoherence rate can be evaluated in such an idling state, even though for quantum
error correction, qubits otherwise idling, might be frequently probed (measured) and

entangled with ancillary qubits [25-30].

The t = 0 factorization assumption (1.10), shared by all the recent spin-decoherence
studies, then represents the expectation that external control by short-duration but large
externally applied potentials, measurement, etc., will “reset” the qubits, disentangling
them from the environment modes to which the affected qubits are only weakly coupled.
Thus, we assert that it is the qubit system that gets approximately reset and disentan-
gled from the bath towards time ¢ = 0, rather than the bath is thermalized by the rest

of the universe, as assumed in Markovian approximation schemes.



3. Short-time decoherence

In addition to the energy basis, (1.7), we also define the eigenstates of the interaction

operator Ag, by

Asly) = M), (3.1)

where the Greek index labels the eigenstates of Ag, with eigenvalues A, while the
Roman indices will be used for the energy basis, and, when capitalized, for the bath

modes, (1.2)-(1.4).

The time dependence of the density matrix R(t) of the system and bath, is formally

given by

R(t) = e~ (HstHBHHDLR(() ¢ (st Hp+HL (3.2)

We will utilize the following approximate relation for the exponential factors, as our

short-time approximation,

6i(Hs+HB+H])t+O(t3) — eiHst/Q ei(HB+H[)t e’iHst/2 . (3.3)

This relation has the following appealing properties. It becomes exact for the adiabatic
case, (2.1). Furthermore, if we use the right-hand side and its inverse to replace e***,
then we are imposing three time-evolution-type transformations on R(0). Therefore,
the approximate expression for R(¢) will have all the desired properties of a density
operator. Finally, extensions to higher-order approximations in powers of ¢ are possible,

by using relations derived in [47], where various expressions valid to O(t*) and O(t°)

were considered.
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Our goal is to evaluate the resulting approximation to the matrix element,

pmn(t> — TrB<m|e—iHst/2 e_i(HB+HI)t e—iHst/QR(O) e’iHst/Q ei(HB+HI)t eiHst/2|n> .

(3.4)

First, we apply the operators Hg in the outer exponentials, acting to the left on (m| ,
and to the right on |n), replacing Hg by, respectively, E,, and E,,. We then note that
the second exponential operator in (3.4) contains Ag, see (1.2). Therefore, we insert the
decomposition of the unit operator in the system space, in terms of the eigenbasis of Ag,
before the second exponential, and one in terms of the eigenbasis of Hg after it. This
allows us to apply Ag in the second exponential and also Hg in the third exponential.

The same substitution is carried out on the other side of R(0), with the result

pmn(t) = > Trp [e‘iE'”W(mW) (ylp)e™"HBFAPBI =i 2 (0)
Ypqé

« <H 0K>eieq/2 ei(HB—H\(;PB)t <q|5> <5|n>eiEnt/2 ] ' (35)
K

The next step is to collect all the terms, and also identify that the trace over the

bath can be now carried out for each mode separately. We use (1.1)-(1.2) to write

prn(t) = > {e“EﬁE“‘EP‘Em)“2<mh>('y!p> Ppa(0) (a]6)(8|n)

Ypgqé

X H Tr g [e_i(MK+>‘”JK)t Ok ei(MKJrA‘sJK)t] } ) (3.6)
K

While this expression looks formidable, it actually allows rather straightforward calcula-

tions in some cases. Specifically, the simplest quantum-computing applications involve
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two-state systems. Therefore, the sums in (3.6) are over two terms each. The calcula-
tions involving the overlap Dirac brackets between the eigenstates of Hg (labeled by m,
n, p and ¢) and of Ag (labeled by v and 0), as well as the energy-basis matrix elements
of p(0), cf. (1.8), involve at most diagonalization of two-by-two Hermitean matrices.
Of course, the approximation (3.6) can be used for evaluation of short-time density

matrices for systems more general than two-state.

The challenging part of the calculation involves the trace over each mode of the
bath. Since these modes have identical structure, e.g., (1.3)-(1.4) for the bosonic bath
case, but with K-dependent coupling constants, the calculation needs only be done
once, in the space of one mode. Furthermore, results for the bath models ordinarily
used, such as the bosonic and spin baths, are either already available in the literature
or can be calculated without much difficulty. For the thermalized initial bath-mode

density matrix 0, we give the exact bosonic-model expression in the next section.

In the remainder of this section, we first further analyze the trace over one bath
mode entering (3.6). We then comment on the limits of validity of the present approx-

imation.

In an obvious shorthand notation, we write the single-mode trace in (3.6) as

L L e e L (3.7)

Now, to the same order of approximation as used in (3.3), we can write

6i(M+5J)t+O(t3) — oiMt/2 jid Tt jiMt/2 (3.8)

The resulting approximation for the trace (3.7) reads
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Tr [(e—th/z 061’Mt/2>ei(6—'y)]t} , (3.9)

which illustrates that, within this approximation, the product of traces in (3.6) is a
function of the difference A\, — As. In fact, this product is exactly 1 for A, = A5 and, in

most applications, the following form is likely to emerge,

[T Tl ] = e comtOamro+0() (3.10)
K

though we caution the reader that (3.10) is somewhat speculative and suggested by the

exact result for the bosonic heat bath, reported in the next section.

Finally, we point out that in most cases of interest, the initial single-mode density
matrix  will commute with the bath-mode energy operator M. In fact, the thermalized

6 is a function of M. Therefore, (3.9) can be further simplified to

Tr [06“5—7“’5] . (3.11)

However, let us emphasize that the approximate relations (3.9)-(3.11) are likely of
value only as far as they help to derive basis-independent (operator) approximations to
p(t), by a technique illustrated in the next section. Indeed, for most bath models it is
advisable to calculate the single-mode trace exactly first, according to (3.6), and then

attempt various approximations.

The latter statement reflects our expectation that the approximation developed
here is valid, for low temperatures, not only for short times, defined by ¢t < 1/wp,
but also for intermediate times, exceeding 1/wp. This is suggested by the result of
an illustrative calculation in the next section, but mainly by the fact that (3.11) only

includes the bath-mode energy scales via 6, and, therefore, at low temperatures, is
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dominated by the lowest bath-mode excitations, and is not sensitive to frequencies
of order wp. Thus, we expect our approximation to be applicable complementary to
the Markovian-type approximations and definitely break down in the regime of fully
developed thermalization, for ¢t > O((3). Additional supporting observations are offered

in Section 5, when we consider the adiabatic case (2.1).
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4. The bosonic heat bath

In this section, we consider the bosonic heat bath [6], see (1.3)-(1.4), in the initially

thermalized state,

O = e PME )Ty g (e_BMK) =(1- e_ﬁw") e Pwrajcar (4.1)

The product of the single-mode traces in (3.6), is then available in the literature

[12,24,31],

prn(t) = Y {e“E"+E"_E"_E"‘)t/2<m|7><7|p><QI5><5ln>ppq(0)

Ypgqé

[2 (Ay — As)? sin? %Kt coth BWTK +1i ()\,2Y — \}) (sinwgt — wKt)}

X exp <—Z s
ralls

(4.2)

The last term in the exponent, linear in ¢, is usually viewed as “renormalization” of the

system energy levels due to its interaction with the bath modes. It can be removed by

adding the term,

Hp = A2 gk fwrc | (4.3)
K

to the total Hamiltonian. However, the usefulness of this identification for short times
is not clear, and we will not use it. One can check that, unmodified, (4.2) is consistent

with the expectation (3.10).

Let us now define two non-negative real spectral sums, B(t) and C(t), over the

bath modes,
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% w%( 2 2
Ot = 9K |? :
OEDY 5 (wict —sinwet) . (4.5)
K K

When converted to integrals over the bath mode frequencies, with the cutoff at wp,
these sums have been discussed extensively in the literature [6,12,31], for several choices
of the bath mode density of states and coupling strength ¢ as functions of the mode

frequency.

The final expression is,

prn(t) = > {e“E”E”‘EF_E*"””<mh><v!p><q!5><5!n>ppq(0)

Ypqd
X exp [—EB%) Ay — As)? — iC(t) (A2 — Ag)} } | (4.6)

When the spectral functions are expanded in powers of ¢, this result confirms all the
conclusions and conjectures discussed in Section 3, in connection with relations (3.9)-

(3.11).

Let us now turn to the derivation of the basis-independent representation for p(t),

by utilizing the integral identity

o0

VT exp[—B2(AN)?/4] = / dy e expliyB(AN)] . (4.7)

— o0

Exponential factors in (4.6) can then be reproduced by applying operators on the wave-

functions entering the overlap Dirac brackets, with the result
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ﬁp(t) _ /dy e—y2€—iHst/2 ei[yB(t)As—C(t)Ag] e~ iHst/2 p(0) ciHst/2 e—z‘[yB(t)As—C(t)Ag] ciflst/2

(4.8)

Within the O(#?) approximation (3.3), given that B and C are of order linear or
higher in ¢, we can combine the exponential operators to get an alternative approxima-

tion,

JEplt) = /dy e? —iltHs—yBOAS+COAL] () (iltHs—uBOA+CWA] (4.9)

though (4.6) and (4.8) are in fact easier to handle in actual calculations.

As an application, let us consider the case of Hg proportional to the Pauli matrix
0., €.g., a spin-1/2 particle in magnetic field, and Ag = o,, with the proportionality
constant in the latter relation absorbed in the definition of the coupling constants gx
in (1.4). Let us study the deviation of the state of a spin-1/2 qubit, initially in the
energy eigenstate | ) or | | ), from pure state, by calculating Tr g [p?(¢)] according to
(4.8). We note that for a two-by-two density matrix, this trace can vary from 1 for pure

quantum states to the lowest value of 1/2 for maximally mixed states.

A straightforward calculation with p(0) = | 1)(T | or | [ ){(] |, yields

Trg [p?(t)] = % [1 + e—232<t>] . (4.10)

As the time increases, the function B?(t) grows monotonically from zero [6,12,24,31].
Specifically, for Ohmic dissipation, B2(t) increases quadratically for short times t <
O(1/wp), then logarithmically for O(1/wp) < t < O(h/kT), and linearly for t >

O(h/kT). (For other bath models, it need not diverge to infinity at large times.) This
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calculation thus illustrates the fact that the present approximation can yield reasonable

results for short and even intermediate times.

Both approximations, (4.8)-(4.9), make the deviation from a pure state p(0) =
[1o) (10| apparent: p(t > 0) is obviously a mizture (integral over y) of pure-state pro-

jectors |1(y,t))(¥(y,t)|, where, for instance for (4.9),

Yy, ) = o TIEOATHCO] (4.11)

with a somewhat different expression for (4.8).
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5. The adiabatic case

Relation (2.1) corresponds to the system’s energy conservation. Therefore, energy
flow in and out of the system is not possible, and normal thermalization mechanisms are
blocked. The fact that our approximation becomes exact in this case, provides support
to the expectation that, at low temperatures, it is generally valid beyond the cutoff time
scale 1/wp, providing a reasonable evaluation of decoherence and deviation from a pure

state, as exemplified by the calculation yielding (4.10), in Section 4.

With (2.1), we can select a common eigenbasis for Hg and Ag. Then the distinction
between the lower-case Roman and Greek indices in (3.6) becomes irrelevant, and the

sums can all be evaluated to yield

P (t) = & En=Em)t 5 ) H Tr [e—i(MK—i—)\mJK)t 05 ei(MK+)\nJK)t] ' (5.1)

K
This expression was discussed in detail in our work on adiabatic decoherence [24]. Specif-
ically, for the initially thermalized bosonic heat bath case, we have, for the absolute

values of the density matrix elements,

o (8)] = | P (0)] B2 m—2n)?/4 (5.2)

The decay of the off-diagonal matrix elements thus depends of the properties of the
spectral function B?(t) as the time increases. Such explicit results [12,24,31-33] illustrate
that for true irreversibility, the number of bath modes must be infinite, with the spectral

function evaluated in the continuum limit.

In summary, we have derived short-time approximations for the density matrix and

its energy-basis matrix elements. Our expressions are quite easy to work with, because
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for few-qubit systems they only involve manipulation of finite-dimensional matrices, and
they will be useful in estimating decoherence and deviation from pure states in quantum

computing models, including results for low temperatures.

This research was supported by the National Science Foundation, grants DMR-
0121146 and ECS-0102500, and by the National Security Agency and Advanced Re-
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We present an exact derivation of a process in which a microscopic measured system
interacts with the heat-bath and pointer modes of a measuring device, via a coupling
involving a general Hermitian operator A of the system. In the limit of strong interaction
with these modes, over a small time interval, we derive the exact effective many-body
density matrix of the measured system plus pointer. We then discuss the interpretation
of the dynamics considered as the first stage in the process of quantum measurement,
eventually involving the wave-function collapse due to interactions with “the rest of
the universe”. We establish that the effective density matrix represents the required
framework for the measured system and the pointer part of the measuring device to
evolve into a statistical mixture described by direct-product states such that the system
is in each eigenstate of A with the correct quantum-mechanical probability, whereas the
expectation values of the pointer-space operators retain amplified information of the
system’s eigenstate.

1. Introduction

The problem of quantum measurement has fascinated scientists for a long time.!»
It has been argued that a large “bath” is an essential ingredient of the measure-
ment process. Interaction with the bath, which might be a heat-bath in thermal
equilibrium, causes decoherence which is needed to form a statistical mixture of
eigenstates out of the initially fully or partially coherent quantum state of the mea-
sured system. An “external” bath (“the rest of the universe”) may also play a role
in the selection of those quantum states of the pointer that manifest themselves
in classical observations.?” In this work, we propose a model in which the pointer
retains information on the measurement result because of its coupling to the mea-
sured system, without the need to also couple it to the internal bath. The measured
system is still coupled to the internal bath.

In an exactly solvable model of a quantum oscillator coupled to a heat bath of
oscillators, it has been shown? that the reduced density matrix of the system, with
the bath traced over, decoheres, i.e. it loses its off-diagonal elements in the eigen-
basis of the interaction Hamiltonian. Recent work on decoherence® ! has explored
the latter effect for rather general cases, for bosonic (oscillator) and spin baths.

303
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Applications for various physical systems have been reported.!? '8 Fermionic heat
bath has also been used in the literature.!?

It is clear, however, that the full function of a large, multimode measuring
device, interacting with a small (microscopic) quantum system, must be different
from thermal equilibration or similar averaging effect. The device must store and
amplify the measurement outcome information. In this work, we propose a solvable
model that shows how this is accomplished.

It must be stressed that for a complete description of the measurement process,
one needs to interpret the transfer of the information stored after the system-pointer
and system-internal bath interaction to the macroscopic level.? Our attention here
is 20 the process which corresponds to the first stage of the measurement, in which
the pointer acquires amplified information by entanglement with the state of the
system. Thus, we do not claim to resolve the foundation-of-quantum mechanics issue
of how that information is passed on to the classical world, involving the collapse of
the wave functions of the system and each pointer mode. Indeed, it is unlikely that
the wave-function collapse can be fully described within the quantum-mechanical
description of the three subsystems involved. Presumably, it would require consid-
eration of an external bath with which the pointer and the internal bath interact.
This problem is not presently solved,'™ and we first sidestep it by assuming sepa-
ration of time scales (see below). However, we later argue that our results provide
useful hints on how to view the larger problem of quantum measurement.

We now identify the three quantum systems involved. First, the measured sys-
tem, S, is a microscopic system with the Hamiltonian which will also be denoted
by S. Second, the measuring device must have the “bath” or “body” part, B, con-
taining many individual modes. The kth mode will have the Hamiltonian Bj. The
bath part of the device is not observed, i.e. it can be traced over. Finally, the de-
vice must also have modes that are not traced over. These modes constitute the
pointer, P, that amplifies the information obtained in the measurement process and
can later pass it on for further amplification or directly to macroscopic (classical)
systems. The mth pointer mode has the Hamiltonian P,,. It is expected that ex-
pectation values of some quantities in the pointer undergo a large change during
the measurement process.

It turns out, a posteriori, that the device modes involved in the measurement
process can be quite simple and they need not interact with each other. This as-
sumption allows us to focus on the evolution of the system S and its effect on the
pointer P. However, it is the pointer’s interaction with the external bath (some ex-
ternal modes, “the rest of the universe”) that is presumed to select those quantum
states of P that manifest themselves classically. For now, let us avoid the discussion
of this matter, see Refs. 2—6, by assuming that the added evolution of the pointer
due to such external interactions occurs on time scales larger than the measurement
time, £. Similarly, when we state that the internal bath modes can be “traced over”,
we really mean that their interactions with the rest of the universe are such that
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these modes play no role in the wave-function-collapse stage of the measurement
process.

Furthermore, the measurement process probes the wave function of the mea-
sured system at the initial time, ¢ = 0, rather than its time evolution under S
alone. It is ideally instantaneous. In practice, it is faster than the time scales asso-
ciated with the dynamics under S. Such a process can be obtained as the limit of
a system in which very strong interactions between S and B, and also between S
and P, are switched on at ¢ = 0 and switched off at ¢ > 0, with small time interval
t. At later times, the pointer can interact with other external systems to pass on
the result of the measurement.

Thus, we assume that the Hamiltonian of the system itself, S, can be ignored
in the process. The total Hamiltonian of the system plus device will be taken as

H=> Bi+Y Pn+bAY Li+pA> Cp. (1)
k m k m

Here, A is some Hermitian operator of the system that couples to certain operators
of the modes, Ly and Cy,. The parameters b and p are introduced to measure the
coupling strength for the bath and pointer modes, respectively. They are assumed
to be very large; the ideal measurement process corresponds to b, p — oo.

We note that the modes of P and B can be similar. The only difference between
the bath and pointer modes is in how they interact with the “rest of the universe”:
the bath is traced over (unobserved), whereas the pointer modes have their wave
functions collapsed in a later step of the measurement process. Thus, we actually
took the same coupling operator A for the bath and pointer. In fact, all the exact
calculations reported in this work can also be carried out for different coupling
operators Ay and A,, for the bath and pointer modes, provided they commute,
[Ap,Ap] = 0, so that they share a common set of eigenfunctions. The final wave
function of the measured system, after the measurement, is in this set. Analytical
calculation can even be extended to the case when the system’s Hamiltonian S
is retained in (1), provided all three operators, S, Ay, Ap, commute pairwise. The
essential physical ingredients of the model are captured by the simpler choice (1).

We will later specify all the operators in (1) as the modes of the bosonic heat
bath of the Caldeira-Leggett type.'”'726 For now, however, let us keep our dis-
cussion general. We will assume that the system operator A has nondegenerate,
discrete spectrum of eigenstates:

AN = AN 2)

Some additional assumptions on the spectrum of A and S will be encountered later.
We also note that the requirement that the coupling parameters b and p are large
may in practice be satisfied because, at the time of the measurement, the system’s
Hamiltonian S corresponds to slow or trivial dynamics.

Initially, at ¢ = 0, the quantum systems (S, B, P) and their modes are not
correlated with each other. We assume that p is the initial density matrix of the
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measured system. The initial state of each bath and pointer mode will be assumed
thermalized, with 8 = 1/(kT) and the density matrices

efﬁBk e*ﬁpnt (3)
 Try(eFBr) om = Try, (e=BPm)
We cannot offer any fundamental physical reason for having the initial bath and
pointer mode states thermalized, especially for the pointer; this choice is made to
allow exact solvability.

The density matrix of the system at time ¢ is

R = e—iHt/N, (H Og)ak> (H 0m> GiHU/h (4)
k m

The bath is not probed and it can be traced over. The resulting reduced density
matrix 7 of the combined system S + P will be represented by its matrix elements
in the eigenbasis of A. These quantities are each an operator in the space of P:

rwv = ATrp(R)[N). (5)

O

We now assume that operators in different spaces and of different modes com-
mute. Then, one can show that

. . !
AN = Pan [H e*lt(PmJrP}\Cm)/ho.melt(PerP}\ Cn,)/h]
m

% lH Tr, {e—it(Bk,—o—b)\Lk)/hekeit(Bk—o—bA’Lk)/h}‘| (6)
k

where pxx = (A|p|\'). This result involves products of P-space operators and traces
over B-space operators which are all single mode. Therefore, analytical calculations
are possible for some choices of the Hamiltonian (1). The observable A can be kept
general.

The role of the product of traces over the modes of the bath in (6) is to in-
duce decoherence which is recognized as essential for the measurement process,
e.g. Refs. 1 and 2. At time ¢, the absolute value of this product should approach
dxn in the limit of large b. Let us now assume that the bath is bosonic. The Hamil-
tonian of each mode is then hwkazak, where for simplicity, we shifted the zero of the
oscillator energy to the ground state. The coupling operator Ly, is usually selected
as L = giar + gka;fc. For simplicity, though, we will assume that the coefficients g,
are real:

B, = hwkazak L = gk(ak + al) (7)

For example, for radiation field in a unit volume, coupled to an atom,2” the coupling
is via a linear combination of the operators (ax + aL)/, /wy, and i(ag — az)/1 /wy;. For
a spatial oscillator, these are proportional to position and momentum, respectively.
Our calculations can be extended to have an imaginary part of g; which adds
interaction with momentum.
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The product of traces in (6) can be calculated by coherent-state or operator-
identity techniques.® % Here and below, we only list the results of such calculations
which are usually quite cumbersome:

H Tr{ -} = exp {—2b*(A — X)?T(¢) + ib’[\*> — (XN)?]v(¢)} (8)
k
I'(t) = Zk:(hwk)ﬂg,% sin? %kt coth hﬂ;k . (9)

The explicit form of (t) is also known.®

In the continuum limit of many modes, the density of the bosonic bath states
in unit volume, D(w), and the Debye cutoff with frequency, wp, are introduced??
to get

*  D(w)g? —wjwp 2 WE R
F(t):/o dw%e / smz%cothTw. (10)

Let us consider the popular choice termed Ohmic dissipation,??

atomic-physics?” and solid-state applications,?? corresponding to

D(w)g*(w) = Quw, (11)

motivated by

where € is a constant. Other powers of w have also been considered, e.g. Ref. 11.
In studies of decoherence®!! for large times ¢, for models without strong coupling,
not all the choices of D(w)g?(w) lead to complete decoherence!! because I'(¢) must
actually diverge to +o0o for ¢ > hf3, as it happens for the choice (11).

Let us assume that the energy gaps of S are bounded so that there exists a
well-defined time scale i/ AS of the evolution of the system under S. There is also
the time scale 1/wp set by the frequency cutoff assumed for the interactions. The
thermal time scale is i3. The only real limitation on the duration of measurement
is that t must be less then A/AS. In applications, typically?? one can assume that
1/wp < h/AS. Furthermore, it is customary to assume that the temperature is
low,?2

tand 1/wp < h/AS < h3. (12)

In the limit of large /3, the absolute value of (8) reduces to
Q
Abs (1;[ Trp{-- -}) >~ exp {—sz(k —XN)?n[l + (th)Q]} . (13)

In order to achieve effective decoherence, the product (AX)? b? In[1 + (wpt)?] must
be large. The present approach only applies to operators A with nonzero scale of
the smallest spectral gaps, A\.

We note that the decoherence property needed for the measurement process will
be obtained for nearly any well-behaved choice of D(w)g?(w) because we can rely
on the value of b being large rather than on the properties of the function I'(¢). If b
can be large enough, very short measurement times are possible. However, it may
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be advisable to use measurement times 1/wp < t < h/AS to get the extra am-
plification factor ~ In(wpt) and allow for fuller decoherence and less sensitivity to
the value of ¢ in the pointer part of the dynamics, which is to be addressed shortly.
We notice, furthermore, that the assumption of a large number of modes is impor-
tant for monotonic decay of the absolute value of (8) in decoherence studies,® !
where irreversibility is obtained only in the limit of infinite number of modes. In our
case, it can be shown that such a continuum limit allows us to extend the possible
measurement times from ¢ < 1/wp to 1/wp < t < A/AS.

For consideration of the reduced density matrix r of S+ P, see (6). It becomes
diagonal in |A), at time ¢, because all the nondiagonal elements are small,

= Z I Al pax H e (PmAPACm) /By it(PmApACm) /B (14)
A m

Thus, the described stage of the measurement process yields the density matrix that
can be interpreted as describing a statistically distributed system, without quantum
correlations. This, however, is only meaningful within the ensemble interpretation
of quantum mechanics.

For a single system plus device, coupling to the rest of the universe is presumably
needed (this problem is not fully understood in our opinion, see Ref. 2) for that
system to be left in one of the eigenstates |\), with probability pxy. After the
measurement interaction is switched off at ¢, the pointer coupled to that system
will carry information on the value of A. This information is “amplified”, owing to
the large parameter p in the interaction.

We note that one of the roles of the pointer having many modes, many of which
can be identical and noninteracting, is to allow it (the pointer only) to be still
treated in the ensemble, density matrix description, even if we focus on the later
stages of the measurement when the wave functions of a single measured system
and of each pointer mode are already collapsed. This pointer density matrix can be
read off (14). This aspect is new and it may provide a useful hint on how to set up
the treatment of the full quantum-measurement process description.

Another such hint is provided by the fact that, as will be shown shortly, the
changes in the expectation values of some observables of the pointer retain amplified
information on the system’s eigenstate. So, coupling to the rest of the universe
that leads to the completion of the measurement process should involve such an
observable of the pointer. Eventually, the information in the pointer, perhaps after
several steps of amplification, should be available for probe by interactions with
classical devices.

At time t = 0, expectation values of various operators of the pointer will have
their initial values. These values will be different at time ¢ of the measurement
owing to the interaction with the measured system. It is expected that the large
coupling parameter p will yield large changes in the expectation values of the pointer
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quantities. This does not apply equally to all operators in the P-space. Let us begin
with the simplest choice: the Hamiltonian ) P, of the pointer.

We will assume that the pointer is described by the bosonic heat bath and,
for simplicity, use the same notation for the pointer modes as that used for the
bath modes. The assumption that the pointer modes are initially thermalized, see
(3), was not used thus far. While it allows exact analytical calculations, it is not
essential: the effective density matrix describing the pointer modes at time ¢, for
the system’s state A\, will retain amplified information on the value of A\ for general
initial states of the pointer.

This effective density matrix is the product over the P modes in (14). For the
“thermal” o, from (3), the expectation value of the pointer energy Ep can be
calculated from

(Ep) Trp(e= "2, weatas)

= Trp{ (Z hwmainam> H [e*it[“’"“L““*P)‘gn(an+al)]/h(e*hﬁ >k wkalak)

" eit[wna;aﬁpxgn<an+a1>]/h} } (15)

The right-hand side can be reduced to calculations for individual modes. Operator
identities can then be utilized to obtain the results

(Ep)A(t) = (Ep)(0) + (AEp)A(t) (16)
(E0) e 1) .
(AE0) = L5 Be it (258 (18)

For a model with Ohmic dissipation, the resulting integral in the continuum limit
can be calculated to yield

~ 2QuwpA?p?  (wpt)?
B h 1+ (wpt)?

(AEp)A(t) (19)

which should be compared to the exponent in (13). The energy will be an indicator
of the amplified value of the square of A\, provided p is large. Furthermore, we see
here the advantage of larger measurement times, ¢ > 1/wp. The change in the
energy then reaches saturation. After the time ¢, when the interaction is switched
off, the energy of the pointer will be conserved.

Let us consider the expectation value of the following Hermitian operator of the
pointer:

X = ZC’m = ng(am +al). (20)
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For an atom in a field, X is related to the electromagnetic field operators.?* One
can show that (Xp)(0) =0 and

<AXP>}\(t) = <Xp>>\(t) = _@ %Sil’lz <w7mt>

_ 2QuwpAp (wpt)?
ho 1+ (wpt)?’

(21)

The change in the expectation value of X is linear in A. However, this operator is
not conserved. One can show that after the time ¢, its expectation value decays to
zero for times ¢t + O(1/wp).

We note that by referring to “unit volume”, we have avoided the discussion of
the “extensivity” of various quantities. For example, the initial energy (Ep)(0) is
obviously proportional to the system volume, V. However, the change (AEp)y(t)
will not be extensive; typically, g?(w) oc 1/V, D(w) o< V. Thus, while the amplifica-
tion in our measurement process can involve a numerically large factor, the changes
in the quantities of the pointer will be multiples of microscopic values. Multistage
amplification, or huge coupling parameter p, would be needed for the information
in the pointer to become truly “extensive” macroscopically.

In practice, there will probably be two types of pointer involved in a multistage
measurement process. Some pointers will consist of many noninteracting modes.
These pointers carry the information stored in a density matrix rather than a
wave function of a single system. The latter transference hopefully makes the wave
function collapse and transfer of the stored information to the macroscopic level
less “mysterious and traumatic”. The second type of pointer will involve strongly
interacting modes and play the role of an amplifier by utilizing the many-body
collective behavior of the coupled modes (phase-transition style). Its role will be to
alleviate the artificial requirement for large mode-to-system coupling parameters
encountered in our model.

In summary, we described the first stage of a measurement process. It involves
decoherence due to a bath and transfer of information to a large system (pointer)
via strong interaction over a short period of time. The pointer itself need not be
coupled to the internal bath. While we do not offer a solution to the foundation-
of-quantum-mechanics wave-function collapse problem,? our results do provide two
interesting observations.

Firstly, the pointer operator “probed” by the rest of the universe during the
wave-function collapse stage may in part be determined not only by how the pointer
modes are coupled to the external bath,® 7 but also by the amplification capacity
of that operator in the first stage of the process, as illustrated by our calculations.

Secondly, for a single system (rather than an ensemble), the multiplicity of
the (noninteracting) pointer modes might allow the pointer to be treated within
the density matrix formalism even after the system and each pointer-mode wave
functions were collapsed. Since it is the information in the pointer that is passed on,
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this observation might seem to resolve part of the measurement puzzle. Specifically,
it might suggest why only those density matrices entering (14) are selected for
the pointer: they carry classical (large, different from other values) information

in expectation values, rather than quantum-mechanical superposition. However,
presumably? only a full description of the interaction of the external world with
the system S + P can explain the wave-function collapse of S.
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ABSTRACT

We study a general quantum system interacting with environment
modeled by the bosonic heat bath of Caldeira and Leggett type. General
interaction Hamiltonians are considered that commute with the system’s
Hamiltonian so that there is no energy exchange between the system and
bath. We argue that this model provides an appropriate description of
adiabatic quantum decoherence, i.e., loss of entanglement on time scales
short compared to those of thermal relaxation processes associated with
energy exchange with the bath. The interaction Hamiltonian is then
proportional to a conserved “pointer observable.” Calculation of the ele-
ments of the reduced density matrix of the system is carried out exactly,
and time-dependence of decoherence is identified, similar to recent re-
sults for related models. Our key finding is that the decoherence process
is controlled by spectral properties of the interaction rather than system’s

Hamiltonian.



1. Introduction

Quantum decoherence, dissipation, and thermalization due to inter-
actions with environment have long been important fundamental issues

(1—-11)

theoretically and experimentally. Decoherence and related topics

have attracted much interest recently due to rapid development of new
fields such as quantum computing and quantum information theory.(*2—18)
Decoherence due to external interactions is a major obstacle in the way of
implementation of devices such as quantum computers. Thus in addition
to studies of the physics of decoherence processes there emerged a new
field of quantum error correction(!*=2%) aiming at effective stabilization
of quantum states against decoherence essentially by involving many ad-

ditional quantum systems and utilizing redundancy. The present work

contributes to the former topic: the physics of decoherence.

Decoherence is a result of the coupling of the quantum system under
consideration to the environment which, generally, is the rest of the uni-
verse. In various experimentally relevant situations the interaction of the
quantum system with environment is dominated by the system’s micro-
scopic surroundings. For example, the dominant source of such interac-
tion for an atom in an electromagnetic cavity is the electromagnetic field

26)

itself coupled to the dipole moment of the atom. In case of Josephson



junction in a magnetic flux®?7) or defect propagation in solids, the interac-
tion can be dominated by acoustic phonons or delocalized electrons.(2®)
Magnetic macromolecules interact with the surrounding spin environ-

ment such as nuclear spins.(1®) Numerous other specific examples could

be cited.

In this work we aim at a general phenomenological description that
models the physically important effects of external interactions as far as
adiabatic decoherence, to be defined later, is concerned. We note that
generally thermalization and decoherence are associated with the inter-
action of the quantum system, described in isolation by the Hamiltonian
Hg, with another, large system which we will term the “bath” and which
internally has the Hamiltonian Hp. The actual interaction will be rep-
resented by the Hamiltonian H; so that the total Hamiltonian of the

system, H, is

H=Hq+Hg+ H;. (1.1)

It is important to realize that typically the bath is a large, macroscopic
system. Truly irreversible interactions of a quantum system with its en-
vironment, such as thermal equilibration or decoherence associated with
measurement processes, can only be obtained in the Hamiltonian descrip-

tion (1.1) when it is supplemented by taking the limit of the number of

4 -



particles or degrees or freedom of the bath going to infinity.

Interactions of a quantum system with macroscopic systems can lead
to different outcomes. For instance, interaction with a true “heat bath”
leads to thermalization: the reduced density matrix of the system ap-

proaches exp (—(Hg) for large times. Here

B =1/(kT) (1.2)

as usual, and by “reduced” we mean the density matrix traced over
the states of the bath. On the other hand for decoherence we expect
the reduced density matrix to approach a diagonal form in the “pre-
ferred basis” somehow selected by the “pointer observable” Hermitian
operator(1=6:29:30) which is thereby “measured” by the macroscopic sys-

tem (bath).

It is important to realize that study of decoherence in the present
context does not fully resolve the problem of understanding quantum
measurement and other fundamental issues at the borderline of quantum
and classical behaviors, such as, for instance, the absence of macroscopic
manifestations of Schrodinger-cat type quantum superposition of states.
The more optimistic recent literature(*=%) considers description of entan-
glement and decoherence the key to such understanding. However, these

fundamental problems have remained open thus far.

-5 -



The most explored and probably most tractable approach to model-
ing the environmental interactions has involved representing their effects
by coupling the original quantum system to a set of noninteracting har-

(1,2,8—11,14,31-33)  Fermionic heat

monic oscillators (bosonic heat bath).
bath can be also considered, e.g., Ref. 34. We will use the term “heat
bath” for such systems even when they are used for other than thermal-

ization studies because they have the temperature parameter defined via

initial conditions, as described later.

Rigorous formulation of the bosonic heat bath approach was initi-
ated by Ford, Kac and Mazur®?) and more recently by Caldeira and

Leggett.(11:29)

It has been established, for harmonic quantum systems,
that the influence of the heat bath described by the oscillators is effec-
tively identical to the external uncorrelated random force acting on a
quantum system under consideration. In order for the system to satisfy
equation of motion with a linear dissipation term in the classical limit
the coupling was chosen to be linear in coordinates while the coupling
constants entered lumped in a spectral function which was assumed to

be of a power-law form in the oscillator frequency, with the appropriate

Debye cutoff. We will make this concept more explicit later.

This model of a heat bath was applied to studying effects of dis-

sipation on the probability of quantum tunneling from a metastable



state.(8:29) Tt was found that coupling a quantum system to the heat bath
actually decreases the quantum tunneling rate. The problem of a parti-
cle in a double well potential was also considered.(?:33) In this case the
interaction with the bath leads to quantum coherence loss and complete
localization at zero temperature. This study has lead to the spin-boson
Hamiltonian(®19) which found numerous other applications. The Hilbert
space of the quantum systems studied was effectively restricted to the

two-dimensional space corresponding to the two lowest energy levels.

Another possible application of the bosonic heat bath model con-
cerns aspects of quantum measurement. It is believed that the bath is
an intrinsic part of a measuring device. In other words, it continuously
monitors the physical quantity whose operator is coupled to it.(*=%) It
has been shown in the exactly solvable model of the quantum oscillator
coupled to a heat bath(® that the reduced density matrix of the quan-
tum system decoheres, i.e., looses its off-diagonal elements representing
the quantum correlations in the system, in the eigenbasis of the interac-
tion Hamiltonian. It has also been argued that the time scale on which
this “measurement” occurs is much less than the characteristic time for

thermal relaxation of the system.

It is natural to assume that if such a “bath” description of the pro-

cess of measurement of a Hermitian operator Ag exists, then the inter-



action Hamiltonian H; in (1.1) will involve Ag as well as some bath-
Hilbert-space operators. No general description of this process exists.
Furthermore, when we are limited to specific models in order to obtain
tractable, e.g., analytically solvable, examples, then there is no general
way to separate decoherence and thermalization effects. We note that
thermalization is naturally associated with exchange of energy between
the quantum system and heat bath. Model system results and general
expectations mentioned earlier suggest that at least in some cases de-
coherence involves its own time scales which are shorter than those of

approach to thermal equilibrium.

In this work we propose to study adiabatic decoherence, i.e., a special

case of no energy exchange between the system and bath. Thus we assume
that Hg is conserved, i.e., [Hg, H] = 0. This assumption is a special
case of “quantum nondemolition measurement” concept(?3%) exemplified
by the Kerr effect, for instance. Since Hg and Hp is (1.1) operate in

different Hilbert spaces, this is equivalent to requiring

[Hs,H;]=0. (1.3)

Furthermore, we will assume that Hy is linear in Ag:

Hy = AsPg. (1.4)



where Pp acts in the Hilbert space of the bath. Then we have

[As,Hs] = 0. (1.5)

Thus, we consider cases in which the measured, “pointer” observable Ag is
one of the conserved quantities of the quantum system when it is isolated.
Interaction with the bath will then correspond to measurement of such
an observable, which can be the energy itself. Specifically, the model
of Ref. 14 corresponds to Ag = Hg for the case of the spin—% two-state
system, motivated by quantum-computing applications; see also Refs. 2,
12-15. The models of Refs. 1 and 2 correspond to the choices of Ag = Hg
and Ag = f(Hg), respectively, for a system coupled to a bosonic spin

bath, where f is an arbitrary well-behaved function.

Here we derive exact results for adiabatic decoherence due to cou-
pling to the bosonic heat bath, assuming general Ag that commutes with
Hg. While technically this represents an extension of the results of Refs. 1
and 2, we demonstrate that the general case reveals certain new aspects of
the decoherence process. Our new exact-solution method utilizes coher-
ent states and may be of interest in other applications as well. In Section
2, we define the system. Specifically, we choose the bosonic heat bath
form for Hg and Pg in (1.1) and (1.4), but we keep Hg and Ag general.

However, we also analyze the mechanism leading to exact solvability of

-9 —



general models of this type. Section 3 reports our derivation of the exact
expression for the reduced density matrix of the system. Discussion of

the results and definition of the continuum limit are given in Section 4.

~10 —



2. Models of Adiabatic Decoherence

We will be mainly interested in the following Hamiltonian for the
quantum system coupled to a bath of bosons (harmonic oscillators) la-

beled by the subscript k:

H=Hg+ Zwka}:ak + Ag Z (gZak + gka}:) . (2.1)
k k
Here a,]: and aj are bosonic creation and annihilation operators, respec-
T

tively, so that their commutation relation is [ax, a,] = 1. The second term
in (2.1) represents the free field or Hamiltonian of the heat bath Hg. The
last term is the interaction Hamiltonian H;. The coupling constants will
be specified later; exact results obtained in Section 3 apply for general

wi and gx. Here and in the following we use the convention

h=1 (2.2)

and we also assume that the energy levels of each oscillator are shifted

by %wk so that the ground state of each oscillator has zero energy.

Since we assume that Hg and Ag commute, we can select a common

set |i) of eigenstates:

~11 —



Hgli) = E;li), (2.3)

Agli) = Aili) . (2.4)

One of the simplifications here, due to the fact that Hg and Ag commute,
is that these eigenstates automatically constitute the “preferred basis”

mentioned earlier.

We will assume that initially the quantum system is in a pure or
mixed state described by the density matrix p(0), not entangled with the
bath. For the bath, we assume that each oscillator is independently ther-
malized (possibly by prior contact with a “true” heat bath) at tempera-
ture T', with the density matrix 6. The total system-plus-bath density

matrix will then be the product

p(0) ] ] 0 (2.5)

k

Here

0, = Z,;le—ﬁwwiak , (2.6)

~12 —



Zp = (1 — e Por)y=1, (2.7)

where Zj is the partition function for the oscillator k. The quantity (3
was defined in (1.2). Introduction of the temperature parameter via the
initial state of the bath is common in the literature. (28— 11,14-17,29,32,33)
While it may seem artificial, we recall that the bath is supposed to be
a large system presumably remaining thermalized on the time scales of

interest. Specific results indicating that the bosonic heat bath can be

viewed as a source of thermalizing noise have been mentioned earlier; see

also Ref. 35.

Our objective is to study the reduced density matrix of the system

at time ¢ > 0; it has the following matrix elements in the preferred basis:

Pmn (t) = TI‘B

(m|e M <p(0) H9k> e““|n>] . (2.8)

k

Here the outer trace is taken over the states of the heat bath, i.e., the
bosonic modes. The inner matrix element is in the space of the quantum
system. Note that for no coupling to the bath, i.e., for g = 0, the density

matrix of the system is simply

[Pmn ()] gm0 = Prmn (0)e"Fn=Em)E. (2.9)

~ 13—



For the interacting system, the heat-bath states must be summed
over in the trace in (2.8). It is instructive to consider a more general case
with the bath consisting of independent “modes” with the Hamiltonians

My, so that

Hp =) M, (2.10)

where for the bosonic bath we have M; = wka}:ak. Similarly, for the

interaction term we assume coupling to each mode independently,

Hr=As) Ji, (2.11)
k

where for the bosonic bath we have Jy, = gjax + ga,]:. Relation (2.5)

remains unchanged, with the definitions (2.6) and (2.7) replaced by

O = Z, te PMn (2.12)

Y

Zy = Try, [e7PME] | (2.13)

where the trace is over a single mode k.

Owing to the fact that Hg and Ag share common eigenfunctions,

— 14 —



the inner matrix element calculation in (2.8), in the system space, can be
expressed in terms of the eigenvalues defined in (2.3)-(2.4). Specifically,

we define the bath-space operators

hi=Ei+Y M+ Ji, (2.14)
k k

which follow from the form of the Hamiltonian. The calculation in (2.8)

then reduces to

pmn(t) = Trp

(m|e~thm? (p(()) H9k> eih”t|n>] : (2.15)

k

which yields the expression

Pmn(t) = pmn(0)Trp

g~ thm? (H 9k> eih”t] : (2.16)
k

We will now assume that the operators of different modes k com-
mute. This is obvious for the bosonic or spin baths and must be checked
explicitly if one uses the present formulation for a fermionic bath. Then

we can factor the expression (2.16) as follows:

prn (t) = pmn(o)ei(En_EM)t H {Trk [e_i(M’“Jr)‘mJ’“)tﬁkei(MkJr)\an)t] } .
k
(2.17)

—15 —



12,14 suggests that

This expression, or variants derived in earlier works,
the problem is exactly solvable in some cases. Indeed, the inner trace in

over a single mode of the bath. For a spin bath of spin—% “modes” the

calculation involves only (2 x 2)-matrix manipulations and is therefore
straightforward.?'* However, in this case the only nontrivial choice of
the “pointer observable” corresponds, in our notation, to Ag = Hg, with
both operators usually chosen equal to the Pauli matrix o,. There is also
hope for obtaining analytical results for other baths with modes in finite-
dimensional spaces, such as spins other than %; we have not explored this
possibility.

For the bosonic spin bath, the calculation is in the space of a single
harmonic oscillator. It can be carried out by using operator identities.!*?

We have used instead a method based on the coherent-state formalism

which is detailed in the next section.

— 16 —



3. Exact Solution for the Density Matrix

We utilize the coherent-state formalism, e.g., Refs. 35, 36. The co-
herent states |z) are the eigenstates of the annihilation operator a with
complex eigenvalues z. Note that from now on we omit the oscillator
index k whenever this leads to no confusion. These states are not orthog-

onal;

1 1
(21]22) = exp <zfz2 — §|z1|2 — §|z2|2> : (3.1)

They form an over-complete set, and one can show that the identity

operator in a single-oscillator space can be obtained as the integral

/d% (2] = 1. (3.2)

Here the integration by definition corresponds to

d’z = —d (Rez) d (Imz) . (3.3)

|

Furthermore, for an arbitrary operator A, we have, in a single-oscillator

space,

—17 -



Trd = /d2z<z|A|z>. (3.4)

Finally, we note the following identity,3®) which will be used later,

eQaT“ =N [eaT(eQ_l)a] . (3.5)

In this relation € is an arbitrary c-number, while A/ denotes normal

ordering.

The result (2.17) for the reduced density matrix, assuming the bosonic

spin bath, can be written as

prn(t) = prn @I [ S = lomn 0 [ [ St (30

where we used (2.9). Omitting the mode index k for simplicity, the

expression for S,,, for each mode in the product is

Spun = Z T [e_imme_ﬁwane”%] : (3.7)

where the trace is in the space of that mode, and we defined

Ve = wala + A (g*a + gaT) . (3.8)

— 18 —



The partition function Z is given in (2.7). Relations (3.6)-(3.8) already
illustrate one of our main results: apart from the phase factor which
would be present in the noninteracting case anyway, the system energy
eigenvalues E,, do not enter in the expression for p,,,(t). The interest-
ing time dependence is controlled by the eigenvalues \,, of the “pointer
observable” operator Ag (and by the heat-bath coupling parameters wy,

and gk:)-

In order to evaluate the trace in (3.7), we use the coherent-state

approach. We have

ZSmn = /d2z0 A’z d? 25 <z0|e_it7m|z1><z1|e_5w“Ta|z2><z2|eit%|z0>.

(3.9)

The normal-ordering formula (3.5) then yields for the middle term,
—,BwaTa - z*(e_ﬁw—l)zQ -
(z1]e |22) = (z1]22)€™ =

1 1 50 —Bw
exp zfz2—§|z1|2—§|z2|2+z1(e A _ 1)z . (3.10)

In order to evaluate the first and last factors in (3.9) we define shifted

operators

~19 —



n=a+Aw g, (3.11)

in terms of which we have

Y = wnn — A2 g2 (3.12)

Since n and n]L still satisfy the bosonic commutation relation [7, n]L] =1,
the normal-ordering formula applies. Thus, for the first factor in (3.9),

for instance, we get

. . 2 —iwt * *
(zole™""[21) = €Ztki%<zo|z1>€(e () () (3.13)

Collecting all these expressions, one concludes that the calculation of
Smn involves six Gaussian integrations over the real and imaginary parts
of the variables zg, 21, zo. This is a rather lengthy calculation but it can

be carried out in closed form. The result, with indices k restored, is

Smn,k: = exp (_wk_2|gk|2pmn,k) ; (314)

where
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t
Prnk =2 (Am — An)” sin? wTk coth % +1i (A2, = A2) (sinwyt — wyt)

(3.15)

The expression (3.15), with (3.14), when inserted in (3.6), is the prin-
cipal result of this section. It will be discussed in the next section. Here
we note that in the studies of systems involving the bosonic heat bath

2,29

one frequently adds the “renormalization” term in the Hamiltonian,

H=Hg+ Hg+ H;+ Hp, (3.16)

where in our case

Hp = A% Zwk_1|gk|2 . (3.17)
k

The role of this renormalization has been reviewed in Ref. 29. Here we
only notice that the sole effect of adding this term in our calculation is to
modify the imaginary part of P,,,, , which plays no role in our subsequent

discussion. The modified expression is

t
Ponk =2 Am — )\n)2 sin? wTk coth % +1 ()x?n — )xi) sinwgt. (3.18)
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4. Continuum Limit and Discussion

The results of the preceding section, (3.6), (3.14), (3.15), can be
conveniently discussed if we consider magnitudes of the matrix elements

of the reduced density matrix p(t). We have

1

|Pmn (t)] = [pmn (0)] exp 1 (Am — )‘n)2 L), (4.1)

where we introduced the factor i to have the expression identical to that

obtained in Ref. 14:

t
I'(t) =8 Zwk_2|gk|2 sin? wTk coth % : (4.2)
k

These results suggest several interesting conclusions. First, the decoher-
ence is clearly controlled by the interaction with the heat bath rather
than by the system’s Hamiltonian. The eigenvalues of the “pointer ob-
servable” Ag determine the rate of decoherence, while the type of the
bath and coupling controls the form of the function I'(¢). It is interesting
to note that states with equal eigenvalues \,, will remain entangled even
if their energies FE,, are different. As expected, the magnitude of the

diagonal matrix elements remains unchanged.

Secondly, we note that I'(¢) is a sum of positive terms. However, for
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true decoherence, i.e., in order for this sum to diverge for large times, one
needs a continuum of frequencies and interactions with the bath modes

that are strong enough at low frequencies; see below. From this point on,

our discussion of the function I'(#) is basically identical to that in Ref. 14
(see also Ref. 1); we only outline the main points. In the continuum limit,
exemplified for instance by phonon modes in solid state, we introduce
the density of states G(w) and sum over frequencies rather than modes
characterized by their wave vectors. The latter change of the integration
variable introduces the factor which we will loosely write as %; it must

be calculated from the dispersion relation of the bosonic modes. Thus we

have

o dk 2 —p . owl o fuw
F(t)oc/dw de(w)|g(w)| W™ sin” < coth 5 (4.3)

In Ref. 14, the following choice was considered, motivated by properties

of the phonon field in solids; see also Refs. 8-11, 12-18, 29:

dk 2 n —==
@G(w)|g(w)| xw'e we . (4.4)

This combination of the coupling constants and frequencies has been

termed the spectral function. Here w, is the Debye cutoff frequency.

Specifically, the authors of Ref. 14 have analyzed the cases n = 1 and
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n = 3. For n = 1, three regimes were identified, defined by the time scale
for thermal decoherence, 3, which is large for low temperatures, see (1.2),
and the time scale for quantum-fluctuation effects, w_!. Recall that we
use the units 4 = 1. The present treatment only makes sense provided
w,! <« B. According to Ref. 14, the first, “quiet” regime t < w_!
corresponds to no significant decoherence and I' oc (w.t)?. The next,
“quantum” regime, w,! < t < (3, corresponds to decoherence driven
by quantum fluctuations and I' « In(w.t). Finally, for ¢ > 3, in the

“thermal” regime, thermal fluctuations play major role in decoherence

and I' oc /0.

14) Indeed, while n must be

For n = 3, decoherence is incomplete. !
positive for the integral in (4.3) to converge, only for n < 2 we have
divergent I'(t) growing according to a power law for large times (in fact,

o t27") in the “thermal” regime. Thus, strong enough coupling |g(w)| to

the low-frequency modes of the heat bath is crucial for full decoherence.

In summary, we derived exact results for the model of decoherence
due to energy-conserving interactions with the bosonic heat bath. We find
that the spectrum of the “pointer observable” that enters the interaction
with the bath controls the rate of decoherence. The precise functional
form of the time dependence is determined both by the choice of heat-bath

and system-bath coupling. However, for the case studied, it is universal

— 94 —



for all pointer observables and for all the matrix elements of the reduced

density matrix.
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