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Survey of Issues: Computer Science → Physics → Engineering 
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• How to put together �quantum gates� 
and identify a universal set of few-qubit 
gates? 

 

• Is quantum error correction possible? 
 

• What is the equivalent of digital, 
copying, etc., QC? 

• Can we utilize the power of quantum 
superposition for �parallel� information 
processing?    Shor�s algorithm (1994). 
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First Proposals for Solid-State Quantum 
Computers in Semiconductor Structures 

 

Approach: Quantum Dots 
D. Loss, D. P. DiVincenzo, Phys. Rev. A57, 120 (1998) 
 

Approach: Nuclear Spins in the Quantum-Hall-State   
    Semiconductor Heterostructures 
V. Privman, I. D. Vagner, G. Kventsel, Phys. Lett. A239, 141 (1998) 
 

Approach: Nuclear and Electronic Spins in Semiconductor  
    Heterostructures, Control by Gates  
B. E. Kane, Nature 393, 133 (1998) 
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From: B. E. Kane, Nature 393 (May 14, 1998) p. 133-137 

J- Gates
A- Gates
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Quantum Hall Quantum Computing 

 
V. Privman, I. D. Vagner, G. Kventsel, Phys. Lett. A239, 141 (1998) 
 

Nuclear spin qubits immersed in the 2D electron gas which is in the  
nondissipative integer quantum Hall effect (QHE) state 
 

Qubits: spins (nuclear, or bound-electron) 
 

Coupling: via 2D electron gas (2DEG) 
 

Low temperatures & high magnetic field � to decrease decoherence and  
quantize the 2D conduction electron motion 
 

The 2DEG (with added �gate� ideas borrowed from Kane) and superconducting QC schemes 
are probably the closest to the next-generation �classical� computer component technology: 
 
 
 
 
 
 

For QC: 
 

embed and control single spins
T → 0 
B � large 
isotope purification 
� 
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Evaluation and Design of QC Models 
 

  
 Initialize      
 
         
 Control and      
 Evolve in time 
                  
  
 Measure      
 

Time Scales of Quantum Dynamical Processes 
 
Review:  V. Privman, D. Mozyrsky, I. D. Vagner, 
                Computer Phys. Comm. (July 2002) 
  
 Control qubits:   Text 
 
 Control interactions:   Tint ( > Text ) 
       
 Avoid thermalization:  T1 
 
 Avoid decoherence:   T2 ( < T1 ) 
 
Goal: Text , Tint << T2 , T1 
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Time Scales of Quantum Dynamical Processes 
         

Evaluation of T1 and T2 can be done initially for a single-qubit system 
interacting with the excitations of the 2DEG which have a spectral gap (owing 
to the Zeeman splitting). Because of the spectral gap, we have T2 << T1, and the 
physics of these processes is different: relaxation (T1) requires energy exchange, 
whereas decoherence (T2) is due to virtual excitations. Both are impurity driven. 
 

D. Mozyrsky, V. Privman,  
I. D. Vagner, Phys. Rev. B 63, 
085313 (2001) 
 

Calculation of Tint requires 
consideration of two qubits and 
their interactions via the excitations 
of the 2DEG. 
 

D. Mozyrsky, V. Privman, M. L. Glasser, Phys. Rev. Lett. 86, 5112 (2001) 
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Improved QC Design:  Kane + QHE → 0.1 µm Gate Separation 
 

V. Privman, I. D. Vagner, G. Kventsel, Phys. Lett. A239, 141 (1998) 
  

Qubit distance: ~ 10 nm (of the order of the magnetic length). 
 
 
 

 
B. E. Kane, Nature 393, 133-137  (May 14, 1998) 
 

Qubit distance: realistically, must be ~ 4 nm. 
Interaction can be oscillatory. 
 
 
 
 

D. Mozyrsky, V. Privman, M. L. Glasser, Phys. Rev. Lett. 86, 5112 (2001) 
 

Couple nuclear spin qubits indirectly via their hyperfine interaction with the outer bound electrons 
(as in Kane�s scheme) which in turn interact via the 2DEG. Qubit distance: ~ 100 nm = 0.1 µm. 
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Illustration of Type of Results for a QC Scheme 
 

Time Scales 
 

Text O(10�5) sec Single-qubit external NMR-radiation control time 
Tint O(10�2) sec Time scale defined by the two-qubit interactions 
T1 O(10) sec Time scale associated with energy relaxation 
T2 O(10�1) sec Intrinsic quantum-mechanical decoherence time 

 
 

Qubit-Qubit Interactions 
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Short Time Decoherence and Deviation from Pure Quantum States: 
Can we escape the T1-T2 paradigm? 

 
V. Privman: quant-ph/0205037 

 
 
 
 
 
 
 

 
 
 
 
 

 
 

 

We have developed a new short-
time approximation scheme for 
evaluation of decoherence. At 
low temperatures, the 
approximation is argued to apply 
at intermediate times 
as well. It then provides a 
tractable approach 
complementary to Markovian 
approximations, and is 
appropriate for evaluation of 
deviations from pure states in 
quantum computing models. 
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   Open Problems and Future Research Directions 
 
   Experiment    Theory 
 
Basic  Study spin populations  Derive results for couplings, 
Physics  coupled by 2DEG and  relaxation, decoherence, to 
   controlled by NMR/ESR test our techniques for  
   radiation and by gates  calculating spin properties 
         at T = 0 and T > 0 
 
Spintronics Reduce the size of the  Effects of gates will  become 
   polarized spin domains  important to account for (break 
   or regions under gates,  the planar symmetry, cause 
   to nanoscale    decoherence, etc.) 
 
Quantum True single-spin control Aspects of measurement and  
Computing and isotope engineering the associated transport properties 
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Quantum computing with spin qubits in semiconductor structures 
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Abstract 
 
We survey recent work on designing and evaluating quantum computing implementations 
based on nuclear or bound-electron spins in semiconductor heterostructures at low 
temperatures and in high magnetic fields. General overview is followed by a summary of 
results of our theoretical calculations of decoherence time scales and spin-spin 
interactions. The latter were carried out for systems for which the two-dimensional 
electron gas provides the dominant carrier for spin dynamics via exchange of spin-
excitons in the integer quantum Hall regime. 
 
 
PACS: 73.20.Dx, 71.70.Ej, 03.67.Lx, 76.60.-k 
 
Keywords: quantum computing, semiconductor, decoherence, spin, qubit, electron gas 
 
 
 
 
1. Introduction 
 
The field of quantum computing has seem explosive growth of experimental and 
theoretical interest. The promise of quantum computing [1-5] has been in exponential 
speedup of certain calculations via quantum parallelism. In Figure 1, the top flow chart 
shows the “classical” computation which starts from binary input states and results in 
binary output states. The actual dynamics is not really that of Newtonian classical 
mechanics. Rather the computation involves many-body irreversible “gate” device 
components, made of semiconductor materials in modern computers, which evolve 
irreversibly, “thermodynamically” according to the laws of statistical mechanics. As the 
size of the modern computer components approaches atomic, the many-body quantum 
behavior will have to be accounted for in any case [6]. 
 
The idea of quantum computing, however, is not just to account for, but to actually utilize 
the quantum-mechanical dynamical behavior. This is not an easy task. Quantum 
mechanics allows for parallelism in evolution: one can “process” a linear superposition of 
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several input states at once, as illustrated in the lower flow chart in Figure 1. The price 
paid is that coherent processing of information, according to the law of quantum 
mechanics, must be accomplished in systems much larger than atomic-size (or more 
importantly, with many degrees of freedom). There are numerous conceptual and 
experimental obstacles to accomplishing this task, that have generated a lot of interest, 
excitement, and new results in computer science, physics, and engineering.  
 
The functioning of a quantum computer involves initialization of the input state, then the 
actual dynamical evolution corresponding to computation, and finally reading off the 
result. Various specific requirements for implementation have been identified [2-5]; here 
we provide only a limited introductory overview. 
 
Let us begin by considering the reading off of the final result. The reason for the question 
mark in the lower chart in Figure 1 is that quantum measurement of the final 
superposition state can erase the gain of the parallel dynamics, by collapsing the wave 
function. Therefore, a key issue in quantum computing has been to find those algorithms 
for which the readout of the final state, by way of projecting out a certain average 
property, still retains the power of the quantum parallelism. To date, only few such 
examples are known [1,3,4,7], the most celebrated being the Shor algorithm [1] for 
factoring of integers, the invention of which boosted quantum computing from an 
obscure theoretical field to a mainstream research topic. 
 
The preparation of the initial state does not seem to present a problem for most quantum 
computing realizations [2-5], accept perhaps the ensemble liquid state NMR approach 
[8,9] which relies on the initial thermal distribution to produce deviation of the density 
matrix from the equal-probability mixture state. In most other approaches, the initial state 
can be produced by first fully polarizing the quantum bits (qubits), i.e., putting them in 
one of the two quantum levels. Note that we consider two-state qubits here, realized, for 
instance, by spins 1/2 of nuclei or gate- or impurity-bound electrons, in applied magnetic 
field. The fully polarized state is then subject to gate operations to form the desired input 
state. Part of a quantum-computing algorithm should be the prescription on how to 
choose the initial state to represent the classical information of the input, like the input 
integer in the factoring. In most cases, this prescription is easily accomplished by single-
qubit and two-qubit gates. 
 
The actual dynamical evolution (the process of computation) in quantum computing is 
fully reversible and nondissipative, unlike classical computing. Much progress has been 
made in resolving both the conceptual and computer-engineering “design” issues for 
quantum computation. Specifically, the computation can be carried out [2-5,10-13] by a 
universal set of gates: single-qubit rotations and nearly any two-qubit gate. The gates are 
not connected in space like in classical computers but are activated in succession in time, 
to control single-spin dynamics and also switch on and off two-spin interactions (we use 
“spin” and “qubit” interchangeably).  
 
Many interesting matters have been resolved, which are not reviewed here. These include 
the understanding of how the finiteness of the state space (i.e., two states for spin 1/2) 
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replaces the “classical” digitalization in quantum computing. Also, the “classical” 
copying (fan-out) function is not possible in quantum mechanics. It is replaced by 
entanglement with ancillary qubits to accomplish redundancy needed for error correction 
[14-20]. Sources of errors due to interactions with environment in quantum mechanics 
involve not only the usual relaxation (thermalization) but also loss of coherence [21-28]. 
This quantum decoherence (dephasing) can be faster than relaxation because it does not 
require energy exchange. 
 
A conceptually important issue has been the scalability of quantum computing: can one 
process macroscopically large amounts of information by utilizing quantum error 
correction based on redundancy via entanglement with ancillary qubits? The affirmative 
answer to this question has been one of the triumphs of the theory [14-20]. It provided a 
new paradigm for emergence of controlled/organized macroscopic behavior from 
microscopic dynamics, on par with the conceptual possibility of living organisms, which 
we observe by cannot yet “manufacture,” and million-gate classical computers which are 
man-made. 
 
With all these theoretical advances at hand, the next step is to ask whether a man-made 
quantum computer can be realized? There have been several experimental directions of 
exploration, most presently are still at the level of one or two qubits, or, for ensemble 
liquid-state NMR, which emulates quantum dynamics by evolution of the density matrix 
of a large collection of molecules, 5-7 qubits. 
 
In this introductory survey, we summarize results of our work on two-spin interactions 
and spin decoherence in semiconductor heterostructures. In Section 2, we consider the 
spin-based quantum computing proposals in such systems. Time scales of relaxation and 
decoherence are addressed in Section 3. Finally, Section 4 reports results for models with 
nuclear spins as qubits. 
 
 
2. Spin-Based Quantum Computing in Semiconductor Heterostructures 
 
The general layout of a solid-state quantum computer is shown in Figure 2. Qubits are 
positioned with precision of few nanometers in a heterostructure. One must propose how 
to effect and control single-qubit interactions, two-qubit interactions, and explore how the 
controlled dynamics owing to these interactions compares to decoherence and relaxation. 
The proposal must include ideas for implementation of initialization, readout, and gate 
functions. 
 
The first proposal including all these components was for qubits realized in an array of 
quantum dots [29] coupled by electron tunneling. The first spin-based proposal [30] 
utilized nuclear spins coupled by the two-dimensional electron gas, the latter in the 
dissipationless integer quantum Hall state [31] that requires low temperatures and high 
magnetic fields. An important advancement was the work of Kane [32] where gate 
control of nuclear-spins of donor impurities, separated less than 10 nm and coupled via 
the outer impurity electrons which are bound at low temperatures, was proposed. Most of 
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these ideas also apply to electron-spin qubits, bound at impurities, in quantum dots, or 
directly by gates. Several elaborate solid-state heterostructure quantum computing 
schemes have been proposed in the literature recently [28,33-41]. There are also other 
promising proposals involving surface geometries: superconducting electronics [42-46] 
and electrons on the surface of liquid helium [47]. 
 
There have been several planned and ongoing experimental efforts [32-36,43-45,48-54] 
ultimately aimed at solid-state quantum computing and other quantum information 
processing realizations. The final geometry is expected to be most sensitive to the 
implementation of readout, because it involves quantum measurement, i.e., supposedly 
interaction with or transfer of information to a macroscopic device. Therefore, much of 
the experimental effort presently has been focused on single-qubit (single-spin) 
measurement approaches. 
 
The theoretical efforts can be divided into two majors tasks. The process of single-spin 
measurement must be understood for the readout stage of quantum computing. Several 
conceptual and calculations advancements have been made in understanding quantum 
measurement [26,32-36,46,50,55,56] as it applies to atomic-size qubit systems interacting 
with environment and typically “measured” directly by the effect of the spin-qubit state 
on transport, or first transferring the spin state to a charge state that is easier to measure, 
e.g., in single-electron transistors and similar devices. 
 
In this survey, we outline results of the second evaluation task: that of understanding the 
processes and times scales involved in the dynamics of the actual computation. As 
summarized in Figure 3, this main stage of the quantum computation process involves 
control of spins and their interactions. It also involves processes that we do not control 
and are trying to minimize: relaxation and decoherence. 
 
Control of individual qubits is usually accomplished externally. For nuclear spins, NMR 
radio-frequency radiation can be used, see Figure 2. For electron spins, the ESR 
microwave frequencies are suitable. Such radiation cannot be focused on the scale of 10-
100 nm. Instead, selectivity must be accomplished by independent means. Several 
proposals exist, the most promising being control by gates. The applied gate voltage 
modifies the electronic wave function changing interactions and therefore resonant 
frequencies. We will denote the time scale of the external single-qubit control by extT . 

This can be the Rabi time of a spin flip. 
 
The qubit-qubit interactions are typically assumed to be mediated by electrons that “visit” 
both qubit environments. For instance, in liquid-state ensemble NMR [8,9] with complex 
molecules, or in the original model [32] of phosphorous impurity donors in silicon, the 
wave functions of the valence, outer electrons of nearby qubits overlap. Specifically, in 
the P donor case, the single outer electron of the donor atom remains bound at low 
temperatures but has orbital radius of order 2 nm owing to the large dielectric constant of 
the silicon host. Therefore, it is hoped that these electrons, in nearby donors positioned as 
in Figure 2, will mediate nuclear-spin qubit interactions.  
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Our approach [27,28] allows for larger qubit separation, up to order 100 nm, by relying 
on the two-dimensional electron gas in the heterostructure to mediate qubit-qubit 
interactions. This two-dimensional electron gas is usually obtained by spontaneous or 
gate-induced transfer of electrons from impurities to the two-dimensional interface layer 
in which the qubits are positioned. The source impurities are located at some separation 
from this layer or in the bulk. The two-dimensional electron gas can be made 
nondissipative in certain ranges of large applied magnetic fields at low temperatures, 
when these conduction electrons in the layer are in the integer quantum Hall effect state. 
Owing to this property and also larger qubit separation allowed, we consider this the most 
promising approach and focus our present review on such systems.  
 
The time scale of the qubit-qubit interactions will be devoted by intT . This is the time it 

takes to accomplish a two-qubit quantum gate, such as CNOT [2-5,57]. Typically for 
semiconductor quantum computing proposals, int extT T< , and in fact the case with 

int extT T�  has some advantages because one can use several fast single-spin flips to 

effectively switch interactions of some qubits off over the gate cycle. Another approach 
to controlling (on/off) of the two-qubit interactions is by gates, see Figure 2, which affect 
the two-dimensional electron gas and the localized electron wavefunctions. 
 
However, the same conduction electrons that provide the qubit-qubit interactions, also 
expose the qubits to the environment, causing relaxation and decoherence. Other 
interactions will also be present, that play no role in the useful quantum-computing 
dynamics but contribute to these undesirable processes. Relaxation and decoherence, and 
their associated time scales, are addressed in the next section. 
 
 
3. Time scales of relaxation and decoherence 
 
The processes of relaxation and decoherence considered here [21-28] are associated with 
the dynamics of a small, few-qubit quantum system as it interacts with the environment. 
Ultimately, for a large, multi-qubit system, many-body quantum chaos-like behavior 
must also be accounted for, and some advances in model system studies have been 
reported recently [5,58]. Our discussion here will be for the few-qubit case mostly 
because it allows more system-specific investigations for actual quantum-computing 
proposals. 
 
Dynamical processes that are unwanted in quantum computing, because they result from 
the environmental influences rather than from the controlled radiation pulses and gate 
potentials, can proceed on various time scales. In fact, it is not guaranteed that processes 
of various types, relaxation/thermalization vs. decoherence/dephasing, can even be 
unambiguously distinctly identified.  
 
At low temperatures, it is generally hoped that thermalization, which requires transfer of 
energy, slows down. If the fastest such processes proceed on times scales of order 1T , 
then this time increases at low temperatures because there are less excitations (phonons, 
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electron gas modes, etc.) to couple the small quantum system to the rest of the solid-state 
host material. 
 
On the other hand, processes that do not require flow of energy to or from the 
environment, can still effect the phase of the quantum-superposition amplitudes and 
cause decoherence. These processes can thus proceed faster, on the time scale 2T . While 

these comments seem to suggest that 2 1T T≤ , there is no obvious reason to have generally 

2 1T T�  at low temperatures. 
 
However, if the spectrum of the dominant excitations mediating the qubit coupling (both 
to each other and to the host material) has a gap, then we expect that all the relaxation 
and decoherence processes will be suppressed. Furthermore, the suppression of the 
relaxation will be exponential, with the Boltzmann factor for that energy gap. Then, 

2 1T T�  will be satisfied but also, more importantly, the actual values of both time scales 
will be inordinately large. This was found, theoretically and experimentally, to be the 
case for the integer-quantum-Hall-state two-dimensional electron gas as mediator of the 
localized-spin (nuclear, electronic) coupling in semiconductor heterostructures [27,28,59-
63]. 
 
It is important to emphasize that relaxation and decoherence are really many-body 
properties of the system plus environment. Entanglement with the environment owing to 
the unwanted couplings results in the small quantum system having no pure wavefunction 
even if initially it was prepared in a pure state. Instead, it can be described by a statistical 
mixture represented by a density matrix, once the environment is traced over. 
 
This reduced density matrix of the system is expected to evolve to the thermal one at 
large times. The approach to the thermal density matrix, which is diagonal in the system-
energy basis, defines the time scale 1T . If the temperature is low enough, then there is the 
expectation, see [25,26] and references therein, that for some intermediate time scales, of 
order 2T , the density matrix becomes nearly-diagonal in a basis which is determined not 
by the systems Hamiltonian (energy), but by the interaction operator with the 
environment. This latter process corresponds to loss of quantum coherence. 
 
As emphasized in Figure 3, evaluation of a quantum-computing proposal requires, among 
other things, establishing the relation 2 1, ,ext intT T T T� . Owing to calculational difficulties, 

the single-qubit times 1,2T  will usually be used, though, as mentioned earlier, some study 

of the multi-qubit “quantum chaos” effects may be required. For spin-qubit quantum 
computing in semiconductor heterostructures, the relation is typically 

2 1ext intT T T T≤� � , so the issue is usually how small is the quality ratio 2/intQ T T= . 

 
The required value of Q , needed for fault-tolerant quantum error correction, depends on 

the physical model of error sources and can be as small as 6 410 10Q − −= − , see [15,18-
20], or as large as 1/ 2Q = , see [64]. For the systems of interest to us here, spin qubits in 
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semiconductor structures, the value of 510Q −=  is a reasonable working estimate. Thus, 

we seek systems/conditions with 5
2/ 10intT T −≤ . 

 
 
4. Results for nuclear-spin qubits 
 
In this section we outline results for models of quantum computing with nuclear spins as 
qubits, and with coupling mediated by the two-dimensional electron gas in the integer 
quantum Hall effect state [27,28,30]. In strong magnetic fields, the spatial states of the 
electrons confined in the two-dimensional layer in which the qubits are placed, see Figure 
2, are quantized by the field to resemble free-space Landau levels. The lattice potential 
and the impurities actually cause formation of narrow bands instead of the sharp levels, 
separated by localized states. As a result, for ranges of magnetic field, the localized states 
fill up while the extended states resemble completely filled integer number of Landau 
levels. These states are further Zeeman split owing to the electron spin. At low 
temperatures, one can find field values such that only one Zeeman sublevel is completely 
filled in the ground state. 
 
The electronic state in such systems, that show the quantum Hall effect [31] in 
conductivity, are highly correlated and nondissipative. If nuclear spins are used as qubits, 
i.e., atoms with nuclear spin 1/2 are sparsely positioned in the zero-nuclear spin host, 
such as the zero-nuclear-spin isotope 28 of Si, which constitutes 92% of natural silicone, 
then their zero-temperature relaxation will be significantly slowed down: experimentally, 

3
1 10T � sec [62]. 

 
Localized spins, both nuclear and electronic, interact by exchanges of spin excitons—
spin waves consisting of a superposition of bound electron-hole pair states. The spectrum 
of these excitations [65,66], observed experimentally in [67], has a gap corresponding to 
the Zeeman splitting. This gap is the cause of slow relaxation and decoherence. The 
exchange of virtual spin excitons mediates the qubit-qubit interaction and also, via 
scattering of virtual excitons from impurity potentials, relaxation and decoherence of 
single qubits. 
 
The original proposal to use nuclear spin qubits directly coupled by the two-dimensional 
electron gas [30], required positioning the qubits at distances comparable to several 
magnetic lengths. The latter is of order 10 nm for magnetic fields of several Tesla. The 
qubit-qubit interaction decays exponentially on this length scale. Recently, we proposed a 
new improved model [28] in which the qubit interactions are mediated via coupling of the 
two-dimensional electron gas to the outer impurity electrons. This applies if the atoms, 
whose nuclear spins are the qubits, are single-electron donors such as the isotope 31 of P. 
These phosphorous impurities were originally utilized in the model of Kane [32] where 
they must be actually positioned at separations of about 4 nm for the wavefunctions of 
the outer electrons, which are bound at low temperatures, to overlap significantly.  
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In our new improved model [28], with nuclear spins coupling to the outer bound 
electrons which, in turn, interact via the two-dimensional electron gas, the interaction 
turned out to be of a much longer range as compared to the model of [32]: the qubit 
separation can be of order 100 nm. Another advantage is that gate control of the 
individual qubits and of qubit-qubit interactions is possible. We have carried out 
extensive perturbative many-body calculations [27,28,30,68] allowing estimation of intT  

and 2T  for both the original quantum-computing proposal [30] and its improved version 
[28], where the main improvement is in the possibility of the gate control along the lines 
of [32]. The “clock speed” of the improved model is also faster by about two orders of 
magnitude. The technical details of these rather cumbersome calculations are available in 
the literature and will not be detailed here.  
 
The results are summarized in Table 1. We show estimates of all four relevant time scales 
for the two models introduced earlier. The “original” model [30] corresponds to nuclear 
spins 1/2 introduced at qubits in atoms without an outer loosely bound electron. The 
“improved” model corresponds to the case when the outer electron is present and its 
interaction with the nuclear spin and the two-dimensional electron gas dominates the 
dynamics. 
 
The data shown in Table 1 were obtained assuming typical parameters for the standard 
heterojunctions utilized in quantum-Hall-effect experiments today, and qubit separation 
of 65 nm. Thus, the parameter values taken [28,30] were more appropriate for the GaAs 
system than for Si, even though the main isotopes of gallium and arsenic have nuclear 
spin 3/2 and cannot serve as spin-zero hosts. The reason for using these values has been 
that experimental verification of some of the numbers might be possible in the available 
materials before cleaner and different composition materials needed for quantum 
computing are produced.  
 
Our estimates, see Table 1, indicate that the quality factor 510Q −=  is not obtained for the 
present system. Actually, no quantum computing proposal to date, scalable by other 
criteria, satisfies the 510−  quality-factor criterion. The values range from 110−  to 210− . 
The resolution could come from development of better error-correction algorithms or 
from improving the physical system to obtain a better quality factor. In our estimation of 
the decoherence time scale, we used parameters typical of a standard, “dirty” 
heterostructure with large spatial fluctuations of the impurity potential. These 
heterostructures have been suitable for standard experiments because they provide wider 
quantum-Hall plateaus, i.e., ranges of magnetic field for which all the extended states of a 
Zeeman sublevel are filled. Much cleaner, ultra-high mobility structures can be obtained 
by placing the ionized impurity layer at a larger distance from the two-dimensional gas or 
by injecting conduction electrons into the heterostructure by other means. Thus, our 
quantum-computing proposals [28,30] are unique not only in the large qubit separation 
allowed but also in that there is a clear direction of exploration to allow physical, rather 
than algorithmic, resolution of the quality factor problem. This possibility should be 
further explored both experimentally and theoretically.                            
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Figure 1.  Comparison of the classical and quantum approaches to computing. The 
upper flow chart schematically represents implementation of a traditional irreversible 
“classical” computation process, where transformation of the input set of bits into the 
result is accompanied by a succession  of  irreversible gates. Owing to their 
irreversibility, the gates can be connected in space rather than switched on and off at 
different times. The lower flow chart  shows quantum processing of information, where 
the input and the final result are both in superposition states, yielding  quantum 
parallelism. The dynamics is reversible: there is a one-to-one correspondence between the 
initial and final states. Therefore, number of the input and output quantum bit (qubits) is 
the same even though some of the output qubits (set in a smaller font) might not be used 
in the final extraction of the classical result by measurement. The quantum gates are 
applied in succession by being switched on and of at different times during the 
computation. The question mark signifies the difficulty of finding quantum algorithms 
that retain the power of quantum parallelism after measurement needed to read off the 
final result as classical information. 
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Figure 2.  Schematic illustration of a semiconductor heterostructure quantum 
information processor. The qubits, represented by the arrows overlaying heavy dots, are 
spins 1/2 of nuclei or localized electrons. Individual control of the temporal evolution of 
the spins can be achieved with the use of external electromagnetic radiation, i.e., NMR or 
ESR pulses. The spins are also coupled with each other via interaction mediated by the 
two-dimensional electron gas in the heterostructure, or by other means. The external and 
internal interactions can be controlled by gates formed on top of the heterostructure. The 
external environment, that includes crystal lattice, electron gas, defects, impurity 
potentials, causes relaxation and decoherence of the qubits. 

Gate 
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Figure 3.  Evaluation of quantum computing models. One of the criteria for 
feasibility of quantum computing in a given physical system is the possibility of 
initialization of the qubits in the desired superposition state. Another important design 
consideration is control of qubit states and of their interactions. In order to implement 
quantum computing effectively, the time scales for realization of single and two-qubit 
logic gates, extT  and intT , respectively, should be several orders of magnitude smaller 

than the time scales of relaxation and decoherence, 1T  and 2T .  The relationships 

between these time scales are further explained in the text. Finally, efficient and reliable 
measurement of the output state of the qubits is required for reading off the result of the 
computation and presently represents a formidable experimental challenge.
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Table 1.  Time scales of the qubit dynamics for the original [30] and improved [28] 
versions of the nuclear spin quantum computer with interactions mediated by the two-
dimensional electron gas.   
 
 
  The original model   The improved model 
 
  extT     5O(10 )−  sec     5O(10 )−  sec 
 
  intT     O(1)  sec      -2O(10 )  sec 
 
  1T     3O(10 )  sec      O(10)  sec 
 
  2T     O(10)  sec      1O(10 )−  sec 
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We propose a mechanism of long-range coherent coupling between nuclear spin qubits in semiconductor-
heterojunction quantum information processing devices. The coupling is via localized donor electrons
which interact with the two-dimensional electron gas. An effective interaction Hamiltonian is derived and
the coupling strength is evaluated. We also discuss mechanisms of decoherence and consider gate control
of the interaction between qubits. The resulting quantum computing scheme retains all the control and
measurement aspects of earlier approaches, but allows qubit spacing at distances of the order of 100 nm,
attainable with the present-day semiconductor device technologies.
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Recent technological advances in electronics related
to spin polarization [1,2] have boosted experimental and
theoretical interest in quantum information science in
condensed matter systems, specifically, in semiconductor
heterostructures at low temperatures and in high magnetic
fields. The solid-state implementations of quantum in-
formation devices seem to be among the most promising
ones, due to possible scalability of the elementary logic
gates into more complicated integrated circuits. Several
designs for solid state and related spin-based quantum
information processors have been suggested [3–8]. Pre-
liminary experiments, involving several quantum bits
(qubits), have been carried out or are being contem-
plated [9,10].

Our work stems from the proposals that utilize nuclear
or electronic spins as qubits for information processing
[3–7]. These are natural choices for qubits because at low
temperatures spin states in semiconductors have relatively
long decoherence times, sometimes milliseconds or even
longer for electronic spins, and seconds for nuclear spins
[11–14]. We propose a new mechanism for coupling be-
tween two nuclear-spin qubits, combining aspects of two
models of quantum information processors, one based on
nuclear spins in quantum-Hall effect systems [4], and an-
other utilizing the nuclear spins of phosphorous donors in
a silicon heterostructure [5].

An appealing aspect of Kane’s model [5] is a possibly
experimentally feasible scheme for reading out the state of
the quantum register, i.e., measurement of a nuclear spin,
achieved by transferring the nuclear-spin polarization to
the electronic state, while the latter is measured with the
use of a single electron transistor. The model proposed
in [4] has a different advantage: Unlike [5], the inter-
action between the nuclear spins is mediated by the two-
dimensional (2D) electron gas, and thus is longer ranged
due to the highly correlated state of the 2D electron gas
in the quantum-Hall regime. This opens up possibilities
for experimental realization of such quantum information
processors, because large separation between spin qubits
means greater lithographic dimensions in manufacturing
the device. The price paid is that the coupling is weak,
0031-9007�01�86(22)�5112(4)$15.00
and therefore the time scales of the “gate function” can be
as large as 1 s.

In this work we combine the two proposals, thus re-
taining the measurement and control scheme proposed in
[5,7,9] and at the same time allowing larger separations,
of the order of 100 nm, between interacting qubits. The
resulting system is thus realizable with the present-day
semiconductor technologies. We propose a model where
sparsely positioned phosphorous donors are imbedded in
a 2D electron gas in the quantum-Hall regime. The local-
ized donor electrons interact via the delocalized 2D elec-
trons and thus indirectly mediate nuclear-spin interactions.
In 3D, spin coupling mechanisms via conduction electrons
have been well studied [15]. Here, we estimate the range
of this induced nuclear-spin interaction for the 2D case and
find it to be of the order of 100 nm. This is large compared
to atomic dimensions, donor-electron bound state radii,
and even the electronic magnetic length which is typi-
cally of the order of 10 nm. We find that this interaction
is also stronger, thus corresponding to faster gate function
times, than in [4].

We assume that the coupling between the electronic
and the nuclear donor spins is given by the Fermi
contact interaction, He2n � Asn ? se. Here, A �
�8p�3�mBgnmnjC0�0�j2, where mn and gn are the nuclear
magnetron and nuclear g factor, respectively, jC0�0�j2 is
the donor-electron probability density at the nucleus, mB

denotes the Bohr magnetron, and s’s are Pauli matrices.
Coupling of the delocalized electrons to the nuclear spin
is considerably weaker than that of the localized donor
electron. Therefore, we assume that the nuclear spin
interacts with conduction electrons indirectly via the
donor electron.

As a prototype system, we consider 31P donors posi-
tioned in Si, so all the spins involved are 1

2 . The donor
electronic and nuclear spins form a four-level system. The
spectrum of this two-spin system can be obtained to O�A�
with He2n treated as perturbation. The energy levels are
E0 � 2�gn 1 D��2 1 A, E1 � �gn 2 D��2 2 A, E2 �
�2gn 1 D��2 2 A, and E3 � �gn 1 D��2 1 A, where
gn � gnmnH is the nuclear-spin splitting. Here, H is the
© 2001 The American Physical Society
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magnetic field, and the expression for D, the electronic
Zeeman gap, will be given shortly. The eigenstates associ-
ated with these energy levels are j0� � j # e # n�, j1� �
j # e " n� 1 �2A�D� j " e # n�, j2� � j " e # n� 1 �2A�
D� j # e " n�, and j3� � j " e " n�, where j # e # n� rep-
resents the electronic and nuclear-spin down state, etc.
Here we propose to consider the states j0� and j1� as qubit
states of a quantum computer. By altering the hyperfine
coupling constant A by distorting the spatial state C0 of
the donor electron with an electrostatic gate [5,7], one
can selectively control the state of an individual qubit by
means of the NMR technique.

In order to calculate the interaction Hamiltonian be-
tween two qubits, we first consider the coupling between
the donor electron and conduction electrons. The ground
state of the donor electron is bound (localized) and will
typically lie in the energy gap, several meV below the
conduction band edge. For temperatures of order mK,
electronic transitions from this localized state to the con-
duction band are highly improbable. The dominant in-
teraction between the localized electron and conduction
electrons is their Coulomb interaction. We are interested
only in the exchange part of this interaction, i.e., the
spin-dependent part. The spin-independent part causes
screening, but it is weak in 2D [16] and, especially in the
presence of the magnetic field, cannot ionize the donor.

In a large magnetic field, the delocalized 2D electrons
occupy highly degenerate Landau energy levels [16]. It is
convenient to introduce electron bound state creation and
annihilation operators by

ns and bns, where n represents the
donor spatial state, and s is the spin z component, " or
#. Let a

y
mkxs, amkxs denote the creation and annihilation

operators for the delocalized 2D electrons, where m labels
the Landau level, while h̄kx is the x momentum (we use the
asymmetric gauge). Then the exchange coupling between
the bound and delocalized electrons can be written as

Hex �
1
2

X
G
n,n0

m,m0,kx ,k0xb
y
nsa

y
mkxs0bn0s0am0k0xs , (1)

where the sum is over all the indices. Here, we have
neglected the spin-orbit interaction. In what follows, we
will retain only the lowest donor-electron spatial state, i.e.,
account only for the transitions between the two Zeeman
levels of the ground state.

The 2D electrons are assumed to be in a nondissipa-
tive quantum-Hall state with filling factor n � 1; i.e., the
lower Zeeman sublevel of the Landau ground state is com-
pletely filled [4]. This choice ensures reduced decoher-
ence and relaxation effects [14], owing to the energy gap
in the spectrum of the lowest-energy spin-wave excitations
which are well studied [17,18]; their spectrum is given
by §k � D 1 Ec�1 2 I0��2k2�4� exp�2�2k2�4��, where
I0 is the modified Bessel function. Here, D � gmBH is
the Zeeman gap, Ec � �p�2�1�2�e2�e�� is the character-
istic Coulomb energy, and g is the effective g factor in the
potential well that holds the 2D electron gas, while e is the
dielectric constant of the material, and � � �h̄c�eH�1�2

is the magnetic length. Extension to larger integer filling
factors is possible [14,17,18]. One can also introduce [18]
normalized creation and annihilation operators for the spin
waves, quadratic in electronic operators,

S
y
k �

µ
2p�2

LxLy

∂1�2 X
p
ei�

2kypa
y
p1�kx�2�,#ap2�kx�2�," , (2)

Here, Lx,y are the transverse dimensions, taken to infin-
ity in the final calculation. The summation over p is
taken in such a way [18] that the wave number subscripts
are quantized in multiples of 2p�Lx . The spectrum of
these spin waves has been experimentally verified in GaAs
heterostructures [19].

We will include only these lowest excitations in the sum
(1); our goal is to rewrite (1) in terms of the spin-wave
operators (2). The exchange coupling is thus truncated to
G
n,n0

m,m0,kx ,k0x � Gkx ,k0xdn,0dn0,0dm,0dm0,0, where

Gkx ,k0x �
Z

d3R1 d
3R2 C�

0�R1�C0�R2�

3 U�R1 2 R2�F�
0,kx �R2�F0,k0x �R1� , (3)

U�R1 2 R2� � e2�ejR1 2 R2j is the Coulomb interac-
tion, and C0�R� is the donor-electron ground state. The
states of the conduction electrons confined in the 2D well
are F0,k0x �R� � f0,k0x �r�x�z�, where f0,k0x �r� are the stan-
dard 2D Landau states [16]; x�z� describes the confine-
ment of the conduction electron wave function in the z
direction and depends on the nature of the confinement
potential. Here and in the following R � �r, z�, with R
and r � �x, y� being 3D and 2D coordinates, respectively,
while z is the direction perpendicular to the heterostruc-
ture, in which the applied magnetic field is pointing.

With the use of the expressions for Landau ground
state wave functions, f0,k0x �r� � �21�pLx�21�2eikxx 3

exp�2�y 2 �2kx�2�2�2�, and (2), after a lengthy calcula-
tion, we get

Hex �
1
2

X
k

�Wkj " e� �# ejSk 1 W�
kj # e� �" ejS

y
k� , (4)

where j " e� �# ej � b
y
" b# in the appropriate subspace, and

Wk �
1

��2pLxLy�1�2

Z
d3R1 d

3R2 C�
0�R1�C0�R2�

3 U�R1 2 R2�x��z2�x�z1�Ck�r1, r2� , (5)
Ck�r1, r2� � exp

Ω
2

1
4�2 ��x1 2 x2�2 1 �y1 2 y2�2 2 2i�x1 2 x2� �y1 1 y2��

æ

3 exp

∑
2

�2

4
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x 1 k2

y � 2
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∏

. (6)
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Note that since all the position vectors R, r are measured
from the origin at the donor atom, the quantity Wk de-
pends also on the donor coordinates. To the leading order,
(4) gives the interaction of the donor electron spin with
excitations of the 2D electron gas in the n � 1 integer
quantum-Hall state.

One can rewrite the interaction (4)–(6), with (4) multi-
plied by the unit operator in the nuclear-spin Hilbert space,
in terms of the eigenstates of the electron-nucleus system.
With the use of the expressions derived earlier for these
eigenstates in terms of direct products of electronic and
nuclear spin states, we obtain

Hex �
1
2

X
k
Wk

µ
2A
D

j1� �0j 1 j2� �0j

1 j3� �1j 2
2A
D

j3� �2j
∂
Sk 1 H.c. (7)

Now one can calculate an effective Hamiltonian for the
interaction of two qubits. Since the electronic Zeeman gap
is much larger than the nuclear one, we can truncate the
Hilbert space of the combined electron-nucleus spins to
the two lowest lying states. Thus, we retain only the j0� �1j
and conjugate transitions in the exchange interaction (7).

An effective interaction between two qubits can be ob-
tained within the standard framework of second order per-
turbation theory by tracing out the states of the spin waves;
see [15,20,21] for similar calculations. The result can be
written as

H1,2 � Jj0112� �1102j 1 J�j1102� �0112j . (8)

Here, the coupling constant between the two qubits is

J �

µ
A
D

∂2 X
kfi0

Wk,1W
�
k,2

§k 1 E1 2 E0
. (9)

The subscripts 1 and 2 in (8) and (9) label the two donor
qubits, while Wk,1 and Wk,2 are the coupling constants of
each donor electron spin to spin waves, given by (5), and
§k is the spin-wave energy.

The nuclear-spin energy gap is much smaller than the
electronic spin-wave excitation energies. Therefore, we
can ignore E1 2 E0 in the denominator in (9). Further-
more, due to the large value of the spin-wave spectral gap
at k � 0, §0 � D, we do not have the “small denomina-
tor” problem encountered in other calculations of this sort,
e.g., [20]. Physically, this means that the spin excitations in
the 2D electron gas mediating the effective qubit-qubit in-
teraction are virtual, and so this interaction does not cause
appreciable relaxation or decoherence on the gate function
time scale h̄�J .

It is important to note that one can construct a universal
CNOT logic gate from the controlled dynamics governed by
Hamiltonians of the form of H1,2 and single qubit rotations
[6]. The coupling strength J between the qubits can be
externally controlled by the electrostatic gates built above
the 2D inversion layer. By applying gate voltages, one can
locally vary the density of the 2D electrons, thus chang-
ing coupling between the delocalized and donor electrons.
5114
This results in control over the effective coupling constant
J in (9). The precise effect of gates on interactions be-
tween the qubits, as well as on decoherence of their states,
should be further studied in order to establish the feasi-
bility of the quantum-computing approach proposed here.
Most other semiconductor solid-state quantum-computing
approaches [3–7] utilize gates.

Let us explicitly calculate the coupling constant J in
(8) and (9). Because the spatial ground state of the donor
is localized on a scale smaller than the magnetic length
�, the overlap integrand in (5) is vanishingly small for
jr1 2 r2j . �. At the same time, for jkj . 1��, the
value of Ck decreases exponentially. Thus, Ck can be
simplified by neglecting the x1 2 x2 and y1 2 y2 terms in
(6). Moreover, for two donors at separation larger than �,
we can put �r1 1 r2��2 	 rj , with rj being the location
of either one of them. Then (5) can be approximated by
Wk,j � Z�LxLy�21�2 exp�2 �2k2

4 2 ik ? rj�, with Z �
�1�2p�2�1�2

R
d3R1 d3R2 C

�
0�R1�C0�R2�U�R1 2 R2� 3

x��z2�x�z1�.
Finally, the coupling constant J of the effective interac-

tion (8) can be obtained by transforming the summation in
(9) to integration in the limit Lx,y ! `,

J �

µ
A
D

∂2 jZj2

�2p�1�2Ec�2

µ
d
r

∂1�2

exp

µ
2
r
d

∂
,

�r . �� , (10)

where d � �Ec�2D�1�2�. A similar dependence of the
coupling on the donor separation r was obtained in a
study of nuclear polarization diffusion in the quantum-Hall
regime [21]. Interaction (8) between the spins has finite
range d, which, however, is very large compared to the
effective Bohr radius of the donor ground state. Thus,
the indirect exchange at large distances dominates the di-
rect exchange interaction resulting from the overlap of the
two atomic wave functions. For magnetic field H � 6 T
and e � 12, we get d 	 65 nm, which is indeed much
greater than the characteristic Bohr radius for a donor elec-
tron in silicon.

In order to estimate J , we have to evaluate the over-
lap integral Z. For an order-of-magnitude estimate, we
will assume that x�z� is constant inside the well and
zero outside. Then Z 	 �2p�21�2�d��21

R
d3R1 d3R2 3

C
�
0�R1�C0�R2�U�R1 2 R2�, where d is the width of the

well. We put d 	 4 nm. For C0�R�, the donor ground
state, we choose a spherically symmetric hydrogenlike
ground state with the effective Bohr radius aB 	 2 nm.
This is, of course, not the case in a realistic situation [22].
The ground state of the donor will be influenced by the
band structure, by the magnetic field, and by the confining
2D well potential, while the states of the conducting elec-
trons will be distorted by the impurity potentials. We are
not aware of a thorough study of these effects for our sys-
tem. For the purposes of an order of magnitude estimate,
however, a spherical state should be sufficient.
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Evaluating the integral for the Coulomb potential U, we
obtain Z 	 �5a2

B�16d�Ec. Assuming that the two donors
are separated by the distance r � 100 nm and using the
value 2A�h � 58 MHz from [4], we obtain the estimate
J�h̄ 
 102 s21.

The clock speed of the information processor just de-
scribed appears to be a fraction of kHz and should be
compared with the time scales for relaxation and decoher-
ence. The leading mechanism for these at low temperatures
is through interaction with impurities. It has been found
theoretically [12,23] and confirmed experimentally [2] that
nuclear-spin relaxation in the quantum-Hall regime is slow
and strongly dependent on the impurity potentials; typi-
cally, the relaxation time T1 is of order 103 s. In our case,
the interaction of a qubit with the 2D gas is stronger, and,
as a result, the relaxation is expected to be faster. An es-
timate from formulas in [12,23] gives T1 	 1 s. There is,
however, another important issue—decoherence, on time
scales T2. Recently, this quantity has been calculated in
the same framework, that is, when the interaction of the
conduction electrons with impurities is taken into account
[14]. The results of [14] can be adjusted for the present
case and yield the estimate T2 	 1021 s.

The existing quantum error correction protocols require
the quality factor, equal the ratio of the gate-function clock
time to decoherence time, not to exceed 1025 [24]. Our
estimates indicate that this is not the case for the present
system. Actually, no quantum-computing proposal to date,
scalable by other criteria, satisfies this 1025 quality-factor
criterion. The values range from 1021 to 1023. The reso-
lution could come from development of better error-
correction algorithms or from improving the physical
system to obtain a better quality factor. In our estimate of
the decoherence time scale, we used parameters typical
of a standard, “dirty” heterostructure with large spatial
fluctuations of the impurity potential. These heterostruc-
tures have been suitable for standard experiments because
they provide wider quantum-Hall plateaus. Much cleaner,
ultrahigh mobility structures can be obtained by placing
the ionized impurity layer at a larger distance from the
2D gas or by injecting conduction electrons into the
heterostructure by other means.

Thus, our present quantum-computing proposal offers
a clear direction for exploring a physical, rather than al-
gorithmic, resolution to the quality-factor problem. This
possibility should be further examined both experimentally
and theoretically. Our new quantum-computing paradigm
suggests several interesting avenues for research. The ef-
fect of gates on the switching of qubit interactions and on
decoherence requires further investigation. The first ex-
perimental realizations will probably involve only a few
qubits. The interactions of these may be significantly
affected by the geometry, specifically, the edges, of the
heterostructure.
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Nuclear-spin qubit dephasing time in the integer quantum Hall effect regime
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We report a theoretical estimate of the nuclear-spin dephasing timeT2 owing to the spin interaction with the
two-dimensional electron gas, when the latter is in the integer quantum Hall state, in a two-dimensional
heterojunction or quantum well at low temperature, and in large applied magnetic field. We argue that the
leading mechanism of dephasing is due to the impurity potentials that influence the dynamics of the spin via
virtual magnetic spin-exciton scattering. Implications of our results for implementation of nuclear spins as
quantum bits~qubits! for quantum computing are discussed.
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I. INTRODUCTION

Recent ideas1–3 for utilizing nuclear spins in semiconduc
tor quantum wells and heterojunctions as quantum bits~qu-
bits! for quantum computation have generated an emph
on the studies of nuclear-spin relaxation and, especia
quantum decoherence, in such systems. In this paper we
sider the case of the integern51 quantum Hall state.4 The
two-dimensional electron gas is then in a nondissipa
state. Since the electrons mediate the domin
interaction1,5,6 between nuclear spins, it is reasonable to
pect that relaxation times of the latter, as well
decoherence/dephasing effects, will occur on large t
scales.

Solid-state proposals for quantum computation1–3 with
nuclear spins are all presently theoretical. Related propo
to utilize quantum dots7–15 are also, at present, all in th
theory stage. Usually, nonzero nuclear-spin atoms will
considered placed1 by modern ‘‘atomic engineering’’ tech
niques in a host material of zero nuclear-spin isotope.
order to allow positioning with respect to other features
the system, such as gate electrodes,2 and making replicas,1

etc., the nuclear-spin separation will be larger than
atomic size, typically, of the order of 20 to 100 Å. At the
separations, the direct magnetic dipole-dipole interaction
the nuclear spins is negligible.

The dynamics of the nuclear spins is governed by th
interactions with each other and with their environment.
the regime of interest, these interactions are mediated by
two-dimensional electron gas. Various time scales are a
ciated with this dynamics. The relaxation timeT1 is related
to the energy exchange and thermalization of the sp
Quantum-mechanical decoherence and dephasing will o
on the time scaleT2 . The latter processes correspond to t
demolition of the quantum-mechanical superposition
states and erasure of phase information, due to interact
with the environment. Generally, there are many dynam
processes in the system, so the timesT1 andT2 may not be
uniquely, separately defined.16,17 Theoretically and experi-
mentally, it has been established that processes of en
exchange are slow at low temperatures, soT1 is very large,
but there still might be some decoherence owing to quan
0163-1829/2001/63~8!/085313~6!/$15.00 63 0853
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fluctuations. Generally, for various systems, there are
treme examples of theoretical prediction, ranging from
decoherence to finite decoherence18-20 at zero temperature
depending on the model assumptions.

In order to consider control~‘‘programming’’! of a quan-
tum computer, we have to identify the time scaleText of the
single-spin rotations owing to the interactions with an ext
nal NMR magnetic field. We also identify the time scaleTint
associated with evolution owing to the pairwise spin-sp
interactions. The preferred relation of the time scales isT1 ,
T2@Text, andTint , which is obviously required for coheren
quantum-mechanical dynamics.

The aim of this paper is to advance theoretical und
standing of the time scales of interest for the quantum co
puter proposal1 based on nuclear spins in a two-dimension
electron gas, with the latter in the integer quantum Hall
fect state obtained at low temperatures, of order 1 K, and
high magnetic fields, of several Tesla, in two-dimensio
semiconductor structures.4 This system is a promising cand
date for quantum computing because the nuclear spin re
ation timeT1 can be as large as 103 sec. In the summarizing
discussion, Sec. V, we discuss and compare the values o
the relevant time scales.

Our main result, presented in Secs. II through IV, is
theoretical calculation of the nuclear-spin dephasi
decoherence time scaleT2 for such systems. We note that th
recent study21–23 of the nuclear-spin relaxation timeT1 has
relied heavily on the accepted theoretical and experime
views of the properties and behavior of theelectronic stateof
the two-dimensional electron gas in the quantum Hall
gime. These electronic properties have been a subject of
eral studies.4–6,21–29We utilize these results in our calcula
tion as well.

II. THE MODEL

We consider a single nuclear spin coupled to a tw
dimensional electron gas in a strong magnetic fieldB along
thez axis that is perpendicular to the two-dimensional stru
ture. Assuming nuclear spin-1/2, for simplicity, we write th
Hamiltonian as

H5Hn1He1Hne1H imp . ~1!
©2001 The American Physical Society13-1
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Here, the first term is the nuclear-spin interaction with t
external magnetic field,Hn521/2gnBsz , where gn in-
cludes\ and the nuclearg factor, andsz is a Pauli matrix.

The second term is the electronic component of the t
Hamiltonian~1!. Within the free-electron nomenclature, th
Fermi level lies in between the two Zeeman sublevels of
lowest Landau level. The spin-up sublevel is then comple
occupied, so the filling factor isn51, while the spin-down
sublevel is completely empty; note that the relevant effec
electronicg factor in typically negative. In fact, the calcula
tion need not be limited to the lowest Landau level. He
however, to avoid unilluminating mathematical complic
tions, we restrict our attention to the lowest level, as has b
uniformly done in the literature.24,25

The last two terms in Eq.~1! correspond to the nuclear
spin electron interactions and to the effects of impuriti
These will be addressed shortly. The magnetic sublevels
actually broadened by impurities. At low temperatures,
n51 system is in the quantum Hall state. The interactions
the two-dimensional electron gas with the underlying ma
rial are not shown in Eq.~1!. They are accounted for phe
nomenologically, as described later.

The electron-electron interactions are treated within
approximate quasiparticle theory that only retains transit
amplitudes between Zeeman sublevels. The elementary e
tations of the electron gas are then well described as m
netic spin excitons, or spin waves.24–27The spin excitons are
quasiparticles arising as a result of the interplay between
Coulomb repulsion of the electrons and their exchange in
action. A creation operator of a spin exciton with a tw
dimensional wave vectork can be written in terms of the
electronic creation operatorsa† in the spin-down Zeeman
sublevel and annihilation operatorsb in the spin-up subleve
as

Ak
†5A2p l 2

LxLy
(

p
eil 2kxpap1ky/2

† bp2ky/2 . ~2!

Here, l 5Ac\/eB is the magnetic length, and thep summa-
tion is taken in such a way that the wave number subscr
are quantized in multiples of 2p/Ly . Note that expression
~2! assumes the Landau gauge, which is not symmetric un
x↔y.

For our purposes, the following parabolic approximati
for the dispersion relation of the excitons24–27 provides an
adequate approximation,

Ek5D1S p

2 D 1/2S e2

e l D l 2k2

2
. ~3!

Here,D5ugumBB, wheremB is the Bohr magneton, andg is
the electronicg factor, ande is the dielectric constant of th
material. It has been pointed out6,23 that the gapD in the
excitonic spectrum suppresses nuclear-spin relaxation at
temperatures. The dispersion relation for spin excitons a
ally levels out at large wave vectors. However, its prec
form is only known within a single-Landau-leve
approximation,24,25 which is not valid, for instance, for Si, a
material that is a likely candidate for quantum computer
08531
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alizations. Calculations beyond this approximation27 are not
definitive. Therefore, in order to avoid introduction of a
arbitrary cutoff parameter, we stick with the parabolic for
which allows an analytical calculation, even though some
our expressions require the dispersion relation for wa
vector values that are not technically small.

The electronic Hamiltonian can be written in terms of t
spin exciton operators as

He5E01(
k

EkAk
†Ak , ~4!

where thec-numberE0 is the spin-independent ground-sta
energy of the electron gas. This description of the electro
gas is appropriate only for low density of excitons, which
the case in our calculation, as will be seen later.

We now turn to the third term in Eq.~1!, the interaction
between the electrons and nuclear spins. It can be adequ
approximated by the hyperfine Fermi contact term

Hne5
8p

3
gngmBIn•(

e
Sed

~3!~re2Rn!. ~5!

Here,\In and\Se are nuclear- and electronic spin operato
respectively, andre are the electron coordinates. The nucle
coordinateRn can be put equal to zero. Such an interacti
can be split into two parts

Hne5Hdiag1Hoffdiag, ~6!

whereHdiag corresponds to the coupling of the electrons
the diagonal part of nuclear-spin operatorI n , and
Hoffdiag—to its off-diagonal part.

The diagonal and off-diagonal contributions can be
written in terms of electronic creation and annihilation o
erators as

Hdiag5
~8p/3!gngmBuw0~0!u2

ApLyld

3(
k,q

e2 l 2/2~k21q2!sz~ak
†aq2bk

†bq!, ~7!

Hoffdiag5
~8p/3!gngmBuw0~0!u2

ApLyld

3(
k,q

e2 l 2/2~k21q2!~s1bk
†aq1s2ak

†bq!. ~8!

Here, s651/2(sx6 isy). The interactions of the electron
of the two-dimensional gas with the underlying material a
incorporated phenomenologically through the dielectric c
stant andg factor, see Eq.~3!, et seq., and viauw0(0)u2 and
d in Eq. ~8! above. The latter is the transverse dimension
the effectively two-dimensional region~heterojunction,
quantum well! in which the electrons are confined. Th
quantityw0(0) represents phenomenologically the enhan
ment of the amplitude of the electron wave function at t
nuclear position owing to the effective potential it expe
3-2
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ences as it moves in the solid-state material. It is loos
related5,6 to the zero-momentum lattice Bloch wave functio
at the origin.

For the purposes of the calculations performed here, w
the relevant states being the ground state and the sin
exciton states of the electron gas, one can show that
terms in Eq.~7! that correspond to differentk andq do not
contribute, while the remaining sum overk becomes ac
number, representing the Knight shift of the polarized el
trons. Thus,Hdiag can be incorporated into the nuclear-sp
energy splitting, redefining the Hamiltonian of the nucle
spin asHn51/2Gsz , whereG5gn(B1BKnight). Note that
the Knight shift can be used to estimate the value of
phenomenological parameteruw0(0)u from experimental
data. The off-diagonal coupling~8! can be expressed i
terms of the excitonic operators~2! as follows:5,6,23

Hoffdiag5
C

ALxLy
(

k
e2 l 2k2/4~Ak

†s21Aks
1!, ~9!

where

C5
~8p/3!gngmBuw0~0!u2

A2p ld
. ~10!

The summations overkx andky are taken over all the intege
multiples of 2p/Lx and 2p/Ly , respectively.

The last term in Eq.~1! describes the interaction of th
electrons with impurities and plays a crucial role in nucle
relaxation in the systems of interest. This interaction can
written in the spin-exciton representation as23,26

H imp5~2i /LxLy!(
k,q

U~q!sin@ l 2~kxqy2kyqx!/2#Ak
†Ak1q ,

~11!

whereU(q)5*U imp(r )eiq•r d2r is the Fourier component o
the impurity potential for electrons in the two-dimension
plane. We will assume23,26 that the impurity potential has
zero average and can be modeled by the Gaussian w
noise completely described by its correlato
^U imp(r )U imp(r 8)&5Qd (2)(r2r 8).

In summary, the relevant terms in the full Hamiltonian~1!
can be expressed solely in terms of the nuclear-spin op
tors and spin-exciton operators as

H52
1

2
Gsz1(

k
EkAk

†Ak1(
k

gk~Ak
†s21Aks

1!

1(
k,q

fk,qAk
†Ak1q , ~12!

where the explicit expressions forEk , gk and fk,q can be
read off Eqs.~3!, ~9!, and~10!, respectively, and the quantit
G was introduced in the text preceding Eq.~9!.

III. ENERGY RELAXATION

In order to set the stage for the calculation ofT2 , let us
first briefly summarize in this section aspects of the calcu
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tion of the nuclear-spin relaxation timeT1 , along the lines
of.22,23 The dominant mechanism for both processes at
temperatures is the interactions with impurities. Thus, b
calculations are effectively zero temperature, single sp
these assumptions will be further discussed in Sec. V.

We assume that initially at timet50 the nuclear spin is
polarized, while the excitons are in the ground sta
uC(0)&5u2& ^ u0&, where u2& is the polarized-down~ex-
cited! state of the nuclear spin andu0& is the ground state o
spin excitons. Since the Hamiltonian~12! conserves thez
component of the total spin in the system, the most gen
wave function evolving fromuC(0)& can be written as

uC~ t !&5a~ t !u2& ^ u0&1(
k

bk~ t !u1& ^ u1k&, ~13!

with u1& corresponding to the nuclear spin in the grou
state andu1k& describing the single-exciton state with th
wave vectork. Equations of motion for the coefficientsa
andbk can be easily derived from the Schro¨dinger equation:

i\ȧ5
1

2
Ga1(

k
gkbk , ~14!

i\ḃk52
1

2
Gbk1Ekbk1(

q
fk,qbq1gka. ~15!

In order to solve the system of Eqs.~14! and~15!, we intro-
duce Laplace transforms,f̃ (S)5*0

` f (t)e2Stdt, which satisfy

iS\ã2 i\5
1

2
Gã1(

k
gkb̃k , ~16!

iS\b̃k52
1

2
Gb̃k1Ekb̃k1(

q
fkqb̃q1gkã. ~17!

Let us first solve Eqs.~16! and~17! for the case when the
interaction of spin excitons with impurities is switched o
i.e., fk,q50. After some algebra we obtain

1

ã~s!
5s1

i

\ (
k

gk
2

is\1G2Ek
, ~18!

where we have shifted the variable:s5S1 iG/(2\), which
only introduces an noninteresting phase factor.

In the absence of the hyperfine interaction, i.e., forgk
50, ã(s) in Eq. ~18! has only the pole ats50. When the
interaction is switched on, the pole shifts from zero. Th
shift can be calculated in a standard way, within the lead
order perturbative approach, by taking the limits→0, so that
1/(i\s11G2Ek)→P@1/(G2Ek)#2 ipd(G2Ek), whereP
denotes the principal value. This type of approximation
encountered in quantum optics.30 The relaxation rate and th
added phase shift of the nuclear-spin excited-state proba
ity amplitudea(t) are given by the real and imaginary par
of the pole, 1/T15(2p/\)Skgk

2d(G2Ek) and v
5PSk@gk

2/(G2Ek)#, respectively, so that a(t)
}e2t/2(T1)1 ivt. It is obvious that due to the large gap in th
spin-exciton spectrum~3! G!D the energy conservation re
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quired by the delta function above can never be satisfied,
so in the absence of interaction with impurities,T15`. It
also transpires thatT2 is infinite,30 as will become apparen
later.

Interactions with impurities, described by the last term
Eq. ~12!, will modify the solution of Eqs.~16! and~17!, and,
as a consequence, the energy conservation condition. In
ticular, if the impurity potential is strong enough, it can pr
vide additional energy to spin excitons, so that their ene
can fluctuate on the scale of orderG, thus making nuclear-
spin relaxation possible. This mechanism22,23 corresponds to
large fluctuations of the impurity potentialU(r ), which usu-
ally occur with a rather small probability, soT1 is very large
for such systems.

In order to carry out the above program quantitative
one has to solve the system of Eqs.~16! and ~17! with non-
zero fk,q . Such a solution is only possible within an a
proximation. One can introduce the effective spin-excit
self-energy Sk in Eq. ~18!, so that 1/(i\s1G2Ek)
→1/(i\s1G2Ek1Sk). An integral equation forSk can
then be derived, taking the continuum limit in Eqs.~16! and
~17!. Solving this equation would allow one to calculate t
relaxation rate from Eq.~18!. However, in order to satisfy
the energy conservation, we requireG2Ek1Sk50, so the
self-energy should be rather large, of orderEk . Therefore, as
a result of the spectral gap of the excitons, the perturba
approach is inadequate as it automatically assumes
uSku!uEku. Instead, a certain variational approach23,31,32has
been adapted to evaluateT1 , consistent with the experimen
tal values33,34 of order 103 sec; for further discussion, se
Sec. V.

IV. DEPHASING MECHANISM

We argue that in order to calculate the phase shift du
the impurity potential, one can indeed use the perturba
solution of Eqs.~16! and ~17!. Indeed, phase shifts result i
virtual processes that do not require energy conservation
therefore are dominated by relatively small fluctuations
the impurity potential simply because large fluctuations
very rare. Moreover, the terms of the sum in Eq.~18! that
contribute to the relaxation rate do not contribute to
phase shift, see the discussion above. This consideration
applies when the self-energy is introduced.

One can show that the contribution to dephasing linea
fk,p vanishes due to symmetry. Thus, let us solve Eqs.~16!
and ~17! perturbatively up to the second order infk,p and
perform the inverse Laplace transform ofã(s). Within this
approximation, the pole ofã(s) in the complex-s plane is
imaginary, so thatua(t)u51. We conclude thata(t)}eivUt

and bk(t)50, where the part of the phase shift responsi
for dephasing is

vU52
1

\ (
k

gk

Ek
(

q

fk,q

Ek2q
(

p

fk2q,pgk2q2p

Ek2q2p
. ~19!

The zeroth-order term in Eq.~19! was dropped as irrelevan
for our calculation of the dephasing time. SinceG is much
smaller thanEk , it was also omitted.
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As expected, the perturbative solution does not desc
the energy relaxation (T1), but it does yield the additiona
phase shift due to the impurity potential. We will see shor
that this phase shift, when averaged over configurations
the impurity potential, produces a finite dephasing time,T2 .

Let us consider the reduced density matrix of the nucl
spin, given by

rn~ t !5@TreuC~ t !&^C~ t !u#U , ~20!

recall Eq.~13!. Here the trace is partial, taken over the sta
of the spin excitons, while the outer brackets denote ave
ing over the impurity potential. The trace over the spin e
citons can be carried out straightforwardly because, wit
the leading-order perturbative approximation used here, t
remain in the ground state; all excitations are virtual a
contribute only to the phase shift. The diagonal elements
rn(t) are not influenced by virtual excitations and rema
constant.

The off-diagonal elements ofrn(t) contain the factors
e6 ivUt. It is the averaging of these quantities over the whi
noise impurity potentialU(r ) that yields dephasing of the
nuclear spin. In order to proceed, let us rewrite Eq.~19! more
explicitly. From Eqs.~9!–~11!, after changing the summatio
index „k→k2(q1p)/2… in the first sum in Eq.~19! we ob-
tain

vU5
4C2

\~LxLy!3 (
q,p

U~q!U~p!e2~ l 2/8!~p1q!2

3(
k

e2~ l 2/2!k2
sin

l 2

2 Fk1
p

2
,qG

z

sin
l 2

2 Fk2
q

2
,pG

z

Ek1q1p/2Ek1q2p/2Ek2q1p/2
.

~21!

Here we use the following shorthand notation for thez com-
ponent of a vector product

@k,q#z5kxqy2kyqx .

It is appropriate to assume that impurity potentials are sh
ranged, i.e.,a! l , where a is the scale of variation of
U imp(r ). This assumption and the white-noise property of t
impurity potentials, are required to make the problem am
nable to analytical calculation. Thus, the main contributi
to the Fourier transformU(p), dominating the summation in
Eq. ~21!, comes from large wave vectorsp ~and q!, of the
order a21@ l 21. Therefore, one can replace the expone
e2( l 2/8)(p1q)2

by the Kronecker symboldq,2p , to obtain a
simplified expression forvU

vU5
4C2

\~LxLy!3 (
p

U~p!U~2p!(
k

e2~ l 2/2!k2
sin2

l 2

2
@k,p#z

Ek
2Ek1p

.

~22!

Now the sum overk can be carried out because forp@k, we
can assume that Ek1p.Ep.Ec( l

2/2)p2, where Ec
5(p/2)1/2@e2/(e l )#.
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Moreover, for largep, the factor sin2$(l2/2)@k,p#z% can be
replaced by its average, 1/2. Finally, we get

1

LxLy
(

k

e2~ l 2/8!k2
sin2

l 2

2
@k,p#z

Ek
2Ek1p

.
1

Ecl
2p2

1

2p E kdk
e2 l 2/8k2

S D1Ec

l 2

2
k2D 2 . ~23!

The integral can be evaluated explicitly; specifically, f
D/Ec!1 we get

E
0

`

kdk
e2 l 2/8k2

S D1Ec

l 2

2
k2D 2 .

1

l 2EcD
, ~24!

so that

vU5
2C2

\pEc
2l 4D

1

~LxLy!2 (
p

U~p!U~2p!

p2 . ~25!

Recall that we have assumed the white-noise distribu
for the impurity potential, ^U imp(r )U imp(r 8)&5Qd (2)(r
2r 8). This corresponds to the following probability distr
bution functional for the Fourier transformed potential:

P@U~p!#5N expF2
1

2QLxLy
(

p
U~p!U~2p!G . ~26!

The latter expression, and other approximations assu
earlier, allow us to reduce the averaging ofeivUt to a product
of Gaussian integrations. The off-diagonal elements of
nuclear-spin density matrix are, thus,

r01;)
p

S 12
i t

LxLyp
2D 21/2

5expF2
1

2 (
p

lnS 12
i t

LxLyp
2D G , ~27!

wheret54QC2t/(\pEc
2l 4D).

We are interested in the real part of the sum in Eq.~27!,
which represents decoherence/dephasing of the nuclear
The off-diagonal elements decay exponentially as

r01;expF2
1

4 (
p

lnS 11
t2

~LxLy!2p4D G . ~28!

The summation overp can be converted into integration

(
p

lnS 11
t2

~LxLy!2p4D5
LxLy

~2p!2 E d2p lnS 11
t2

~LxLy!2p4D .

~29!

Explicit calculation then yields the result thatr01;e2t/16 or
r01;e2t/T2, where
08531
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T25
2\ l 2D

U2C2 ~30!

with U25Q/(2p l 2Ec
2).

V. RESULTS AND DISCUSSION

The quantityU2 characterizes the strength of the impuri
potential with respect to the Coulomb interactions.26 Let us
summarize typical parameter values26 for a GaAs heterojunc-
tion, which is the system best studied in the literature. F
magnetic field valueB510 T, we have the following values
of parameters:l 50.831028 m, Ec53310221J, C52.5
310236Jm, D54.6310223J. From the experimental dat
for electronic mobility, one then estimates26 U2.0.0025,
yielding T2.40 sec. We emphasize that this is an order
magnitude estimate only, because of the uncertainty in v
ous parameter values assumed and the fact that the pa
eters, especially the strength of the disorder, may vary
nificantly from sample to sample. For instance, there
another estimate of the disorder strengthQ available in the
literature,23 obtained by fitting the value ofT1 to the experi-
mentally measured 103 sec,33,34 as cited earlier. This yields
an estimate forT2 that is smaller,T2.0.5 sec. Generally, we
expect that with typical-quality samples,T2 may be a frac-
tion of a second or somewhat larger.

In ordinary semiconductors, even at low temperatures,
decoherence times would be expected to be 2–3 order
magnitude shorter than our values. The reason that the d
herence is that slow here is that we consider the case w
the spectrum of the electron-gas excitations has a gap, w
slows down both relaxation and decoherence. The main
dication that there are no other mechanisms operatio
comes from the success of the relaxation timeT1
calculations,21–23 which were confronted with
experiment.33,34 However, we emphasize that at clos
nuclear-spin separations, their direct dipolar interaction d
provide an alternative, at least as an effective mechanis35

Thus, our results are limited to the case of large nuclear s
separations, appropriate for quantum computing archi
tures, for which the host material will have to be isoto
engineered with zero nuclear spins, e.g., Si.2 To date, there
are no direct experimental probes of dephasing by
disorder-dominated mechanism identified here for dil
nuclear-spin positioning. For those materials whose ato
have nonzero nuclear-spin-isotope nuclei, specifically,
GaAs ~spins 3/2!, we are aware only of one experiment35

where indirect information on dephasing can be obtain
from the linewidth. Indeed, in that case the dipolar intera
tion likely provides the dominant dephasing mechanism.
also point out that the assumption of low temperature ass
that indirect decoherence and relaxation mechanisms via
electrons are not operational.

Let us now compare various time scales relevant
quantum computing applications. The relaxation timeT1 is
of order 103 sec.23,33,34 For the spin-spin interaction time
scale Tint , values as short as 10211sec have been
proposed.1,5 These estimates are definitely overly optimis
and require further work. Since such calculations requ
3-5
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considerations beyond the single spin interactions, they
outside the scope of the present paper. ForText, modern
experiments have used NMR field intensities correspond
to the spin-flip times of 1025 sec. This can be reduced t
1027 sec, and with substantial experimental effort, perh
even shorter times, the main limitation being heating up
the sample by the radiation.

Thus, the present information on the relevant time sca
does not show a violation of the conditionT1 , T2@Text,
Tint , stated in the introduction, required for quantum co
puting. To firmly establish the feasibility of quantum com
puting, reliable theoretical evaluation ofTint is needed, as
well as experimental realizations of few-qubit systems en
neered with nuclear spins positioned as separations of o
30–100 Å.

We also note that typical lab samples, for which the p
rameter values used were estimated, have been prepar
.

-
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,
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observe the quantum Hall effect plateaus in the resista
The latter requires a finite density of impurities. Howev
for the quantum-computer applications, a much clea
sample would suffice. Indeed, as suggested by our calc
tions, T2 is mostly due to dephasing owing to virtual spi
exciton scattering from impurities. Therefore, the value ofT2

can be increased by using cleaner samples.
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Initial Decoherence of Open Quantum Systems

Vladimir Privman

Center for Quantum Device Technology, Clarkson University

Potsdam, New York 13699–5820, USA

Abstract

We present a new short-time approximation scheme for evaluation of decoherence.

At low temperatures, the approximation is argued to apply at intermediate times as

well. It then provides a tractable approach complementary to Markovian-type approx-

imations, and appropriate for evaluation of deviations from pure states in quantum

computing models.

Key Words: decoherence, thermalization, relaxation, open quantum systems
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1. Introduction

Consider a microscopic quantum system with the Hamiltonian HS . We will refer

to the quantum-computing single quantum bit (qubit) or multi-qubit paradigm to help

define the questions and set up the challenges, in describing how the system, S, interacts

with the surrounding macroscopic world. However, in principle S can be any quantum

system.

Interactions with the surroundings can be quite different depending on the setting.

For example, in quantum measurement, which is presently not fully understood, the

wavefunction of the system is probed, so part of the process would involve a strong

interaction with the measuring device, such that the system’s own Hamiltonian plays

no role in the process. However, in most applications, the external interactions are

actually quite weak. Furthermore, the aim is to minimize their effect, especially in

quantum computing.

Traditionally, interactions with the surrounding world have been modeled by the

modes of a bath, B, with each mode described by its Hamiltonian MK , so that the bath

of modes is represented by

HB =
∑

K

MK . (1.1)

The interaction, I, of the bath modes with the system S, will be modeled by

HI = ΛSPB = ΛS

∑

K

JK , (1.2)

where ΛS is some Hermitean operator of S, coupled to the operator PB of the bath.

The bath, or “heat bath”, can be a collection of modes, such as photons, phonons,

spins, excitons, etc. For a bosonic bath of oscillators, [1-6], which we use for derivation
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of specific results, we take

MK = ωKa
†
KaK , (1.3)

JK = g∗KaK + gKa
†
K . (1.4)

Here we have assumed that the energy of the ground state is shifted to zero for each

oscillator, and we work in units such that h̄ = 1.

The total Hamiltonian of the system and bath is

H = HS +HB +HI . (1.5)

More generally, the interaction, (1.2), can involve several system operators, each cou-

pling differently to the bath modes, or even to different baths. The bath modes, in turn,

can be coupled to specified external objects, such as impurities.

Let ρ(t) represent the reduced density matrix of the system at time t ≥ 0, after

the bath modes have been traced over. For large times, the effect of the environment

on a quantum system that is not otherwise externally controlled, is expected to be

thermalization: the density matrix should approach

ρ(t→ ∞) =
exp (−βHS)

Tr S [exp (−βHS)]
, (1.6)

where β ≡ 1/kT . At all times, we can consider the degree to which the system has

departed from coherent pure-quantum-state evolution. This departure is due to the

interactions and entanglement with the bath. We also expect that the temperature, T ,

and other external parameters that might be needed to characterize the system’s density

– 3 –



matrix, are determined by the properties of the bath, which in turn might interact with

the rest of the universe.

Let us introduce the eigenstates of HS ,

HS |n〉 = En|n〉 , (1.7)

and have ∆E denote the characteristic energy gap values of S. We also consider the

matrix elements of ρ(t),

ρmn(t) = 〈m|ρ(t)|n〉 . (1.8)

For large times, we expect the diagonal elements ρnn to approach values proportional to

e−βEn , while the off-diagonal elements, ρm6=n, to vanish. These properties are referred

to as thermalization and decoherence in the energy basis.

To establish these thermalization and decoherence properties, several assumptions

are made regarding the system and bath dynamics [1-11]. At time t = 0, it is usually

assumed that the bath modes, K, are thermalized, i.e., have density matrices

θK = e−βMK

/
Tr K

(
e−βMK

)
. (1.9)

The density matrix R of the system plus bath at time t = 0 is then the direct product

R(0) = ρ(0)
∏

K

θK , (1.10)

and the system and bath modes are not entangled with each other.

Now, a series of assumptions are made, e.g., the Markovian and secular approxi-

mations. The most important is the Markovian approximation, which, even though it
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can be stated and introduced in various ways, essentially assumes that the density ma-

trices of the bath modes are reset externally to the thermal ones, on time scales shorter

than any dynamical times of the system interacting with the bath. This is a natural

assumption, because each bath mode is coupled only weakly to the system, whereas it

is “monitored” by the rest of the universe and kept at temperature T . In its straightfor-

ward version, this amounts to using (1.10) for times t > 0. Ultimately, such approaches

aim at master equations for the evolution of ρmn(t) at large times, consistent with the

Golden Rule and with the expected thermalization and decoherence properties.

In variants of these formalisms, several time scales are identified. One is the inverse

of the upper cutoff, Debye frequency of the bath modes, 1/ωD. Another is the thermal

time h̄/kT = β (in units of h̄ = 1). The system S has its own characteristic time,

1/∆E, as well as the system-bath dynamical times of thermalization and decoherence,

etc., T1,2,..., corresponding to the “intrinsic” NMR/ESR times T1, T2, etc. Heuristically,

bath modes of frequencies ω comparable to ∆E are needed to drive thermalization and

decoherence. Initial decoherence can be also mediated by the modes near ω = 0. At

low temperatures, we can assume that 1/ωD < 1/∆E < β.

There is evidence [7,11,12] that at low temperatures, the Markovian-type and other

approximations used in the derivation of equations for thermalization and decoherence,

are only valid for times larger than the thermal time scale β. For quantum comput-

ing applications, in solid-state semiconductor-heterostructure architectures [13-19], we

expect temperatures of several tens of µK. The thermal time scale then becomes dan-

gerously close to the external single-qubit control, Rabi-flip time even for slower qubits,

those based on nuclear spins. We emphasize that not all the approximation schemes

have this problem [11].

In Section 2, we offer additional comments on decoherence and quantum comput-

ing. Then, in Section 3, we develop a short-time-decoherence approximation. In a
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discussion at the end of Section 3, we offer arguments that, at low temperatures, our

approximation is actually valid for intermediate times, larger than 1/ωD, hopefully up

to times comparable or larger than 1/∆E. Specific results for the bosonic heat bath are

presented in Section 4. Section 5 comments on the case of adiabatic decoherence, when

the short-time approximation becomes exact.
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2. Decoherence and quantum computing

Quantum computing architectures usually emphasize systems, both the qubits and

the modes that couple them (and at the same time act as a bath mediating unwanted

coupling to the rest of the universe), that have large spectral gaps. It is believed that,

especially at low temperatures, spectral gaps slow down relaxation processes. Therefore,

quantum computing architectures usually assume [13-19] qubits in quantum dots, or in

atoms, or subject to large magnetic fields, and coupled by highly nondissipative quantum

media [14,19].

The spectral gaps are expected to slow down exponentially, by the Boltzmann

factor, the processes of thermalization, involving energy exchange. Off-shell virtual

exchanges, will be also slowed down, but less profoundly. The latter processes contribute

to decoherence. Therefore, at low temperatures, we might expect separation of time

scales of the initial decoherence vs. later-stage thermalization and further decoherence.

The latter two processes are described by the traditional NMR/ESR intrinsic T1 and

T2, respectively.

Since only thermalization is clearly associated with the energy eigenbasis, one can

also ask whether the energy basis is the appropriate one to describe decoherence for

short and intermediate times, before the thermalizing processes, that also further drive

decoherence, take over. The issue of the appropriate basis for studying decoherence, has

also come up in models of quantum measurement. It has been argued [20-24] that the

eigenbasis of the interaction operator, ΛS , may be more appropriate for intermediate

times than the energy eigenbasis.

Yet another aspect of decoherence in quantum computing, involves the observation

that we really want to retain a pure state in the quantum computation process [25-

30]. Decay of off-diagonal matrix elements, in whatever basis, might not be the best
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measure of deviations from the pure-state density matrix. For instance, the deviation

of Tr S

[
ρ2(t)

]
from 1, may be more appropriate. Therefore, it is desirable to have

basis-independent expressions for the reduced density operator ρ(t).

Recently, several groups have reported [12,19,24,31-41] results for spin decoherence

in solid state systems appropriate for quantum computing architectures. Some of these

works have not invoked the full battery of the traditional approximations, Markovian

and secular, etc., or have utilized the spectral gap of the bath modes, to achieve better

reliability of the short-time results. In [41], interaction of the spin-exciton bath modes

with impurities was accounted for, as the main mechanism of decoherence. In the

present work, we limit ourselves to the bath modes only interacting with the system.

Experimental efforts are picking up momentum, with the first limited results available

[42,43] by traditional NMR/ESR techniques, with the quantum-computing emphasis.

An approach, termed adiabatic decoherence, have been developed by us [24], ex-

panding the earlier works [12,31-33], with the goal of avoiding the ambiguity of the basis

selection and achieving exact solvability. The price paid was the assumption that HS

is conserved (a particular version of the quantum nondemolition processes), which is

equivalent to requiring that

[HS ,H] = [HS ,ΛS ] = 0 (adiabatic case) . (2.1)

This makes the eigenbasis of HS and ΛS the same, but precludes energy relaxation,

thus artificially leaving only energy-conserving relaxation pathways that contribute to

decoherence. We will comment on the results of this approach in Section 5.

Most of the results referred to earlier, have involved approximations of one sort or

another. The most popular and widely used approximation has been the second-order

perturbative expansion in the interaction strength, HI , though some nonperturbative
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results have also been reported. In Section 3, we describe a novel approximation scheme

[44] that is valid for short times. It has several advantages, such as becoming exact in

the adiabatic case, allowing derivation of several explicit results, and, at least in princi-

ple, permitting derivation of higher-order approximations. Certain models of quantum

measurement evaluate decoherence by effectively setting HS = 0. Our approximation

then becomes exact, and our results are consistent with these studies [45,46].

Our formulation in Section 3, will be quite general, and we will not use the specific

bath or thermalization assumptions. However, we do utilize the factorization property

(1.10) at time t = 0. Thus, we do have to assume that, at least initially, the system and

the bath modes are not entangled. In fact, the present formulation also relies on that

the Hamiltonians at hand are all time-independent. Therefore, we have excluded the

possibility of controlled dynamics, in the quantum computing sense, when gate functions

are accomplished by external couplings to individual qubits and by external control of

their pairwise interactions. Our formulation, therefore, applies to “idling” qubits or

systems of (possibly interacting) qubits. It is reasonable to assume that a lower limit

on decoherence rate can be evaluated in such an idling state, even though for quantum

error correction, qubits otherwise idling, might be frequently probed (measured) and

entangled with ancillary qubits [25-30].

The t = 0 factorization assumption (1.10), shared by all the recent spin-decoherence

studies, then represents the expectation that external control by short-duration but large

externally applied potentials, measurement, etc., will “reset” the qubits, disentangling

them from the environment modes to which the affected qubits are only weakly coupled.

Thus, we assert that it is the qubit system that gets approximately reset and disentan-

gled from the bath towards time t = 0, rather than the bath is thermalized by the rest

of the universe, as assumed in Markovian approximation schemes.
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3. Short-time decoherence

In addition to the energy basis, (1.7), we also define the eigenstates of the interaction

operator ΛS , by

ΛS |γ〉 = λγ |γ〉 , (3.1)

where the Greek index labels the eigenstates of ΛS , with eigenvalues λγ , while the

Roman indices will be used for the energy basis, and, when capitalized, for the bath

modes, (1.2)-(1.4).

The time dependence of the density matrix R(t) of the system and bath, is formally

given by

R(t) = e−i(HS+HB+HI )tR(0) ei(HS+HB+HI )t . (3.2)

We will utilize the following approximate relation for the exponential factors, as our

short-time approximation,

ei(HS+HB+HI)t+O(t3) = eiHSt/2 ei(HB+HI )t eiHSt/2 . (3.3)

This relation has the following appealing properties. It becomes exact for the adiabatic

case, (2.1). Furthermore, if we use the right-hand side and its inverse to replace e±iHt,

then we are imposing three time-evolution-type transformations on R(0). Therefore,

the approximate expression for R(t) will have all the desired properties of a density

operator. Finally, extensions to higher-order approximations in powers of t are possible,

by using relations derived in [47], where various expressions valid to O(t4) and O(t5)

were considered.
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Our goal is to evaluate the resulting approximation to the matrix element,

ρmn(t) = Tr B〈m|e−iHSt/2 e−i(HB+HI )t e−iHSt/2R(0) eiHSt/2 ei(HB+HI )t eiHSt/2|n〉 .

(3.4)

First, we apply the operators HS in the outer exponentials, acting to the left on 〈m| ,

and to the right on |n〉, replacing HS by, respectively, Em and En. We then note that

the second exponential operator in (3.4) contains ΛS , see (1.2). Therefore, we insert the

decomposition of the unit operator in the system space, in terms of the eigenbasis of ΛS ,

before the second exponential, and one in terms of the eigenbasis of HS after it. This

allows us to apply ΛS in the second exponential and also HS in the third exponential.

The same substitution is carried out on the other side of R(0), with the result

ρmn(t) =
∑

γ p q δ

Tr B

[
e−iEmt/2〈m|γ〉〈γ|p〉e−i(HB+λγPB)t e−iEpt/2ρpq(0)

×
( ∏

K

θK

)
eiEqt/2 ei(HB+λδPB)t〈q|δ〉〈δ|n〉eiEnt/2

]
. (3.5)

The next step is to collect all the terms, and also identify that the trace over the

bath can be now carried out for each mode separately. We use (1.1)-(1.2) to write

ρmn(t) =
∑

γ p q δ

{
ei(Eq+En−Ep−Em)t/2〈m|γ〉〈γ|p〉 ρpq(0) 〈q|δ〉〈δ|n〉

×
∏

K

Tr K

[
e−i(MK+λγJK)t θK ei(MK+λδJK)t

]}
. (3.6)

While this expression looks formidable, it actually allows rather straightforward calcula-

tions in some cases. Specifically, the simplest quantum-computing applications involve
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two-state systems. Therefore, the sums in (3.6) are over two terms each. The calcula-

tions involving the overlap Dirac brackets between the eigenstates of HS (labeled by m,

n, p and q) and of ΛS (labeled by γ and δ), as well as the energy-basis matrix elements

of ρ(0), cf. (1.8), involve at most diagonalization of two-by-two Hermitean matrices.

Of course, the approximation (3.6) can be used for evaluation of short-time density

matrices for systems more general than two-state.

The challenging part of the calculation involves the trace over each mode of the

bath. Since these modes have identical structure, e.g., (1.3)-(1.4) for the bosonic bath

case, but with K-dependent coupling constants, the calculation needs only be done

once, in the space of one mode. Furthermore, results for the bath models ordinarily

used, such as the bosonic and spin baths, are either already available in the literature

or can be calculated without much difficulty. For the thermalized initial bath-mode

density matrix θK , we give the exact bosonic-model expression in the next section.

In the remainder of this section, we first further analyze the trace over one bath

mode entering (3.6). We then comment on the limits of validity of the present approx-

imation.

In an obvious shorthand notation, we write the single-mode trace in (3.6) as

Tr
[
e−i(M+γJ)t θ ei(M+δJ)t

]
= Tr

[
θ ei(M+δJ)t e−i(M+γJ)t

]
. (3.7)

Now, to the same order of approximation as used in (3.3), we can write

ei(M+δJ)t+O(t3) = eiMt/2 eiδJt eiMt/2 . (3.8)

The resulting approximation for the trace (3.7) reads
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Tr
[(
e−iMt/2 θ eiMt/2

)
ei(δ−γ)Jt

]
, (3.9)

which illustrates that, within this approximation, the product of traces in (3.6) is a

function of the difference λγ − λδ. In fact, this product is exactly 1 for λγ = λδ and, in

most applications, the following form is likely to emerge,

∏

K

Tr K [. . .] = e− const (λγ−λδ)2t2+O(t3) , (3.10)

though we caution the reader that (3.10) is somewhat speculative and suggested by the

exact result for the bosonic heat bath, reported in the next section.

Finally, we point out that in most cases of interest, the initial single-mode density

matrix θ will commute with the bath-mode energy operator M . In fact, the thermalized

θ is a function of M . Therefore, (3.9) can be further simplified to

Tr
[
θ ei(δ−γ)Jt

]
. (3.11)

However, let us emphasize that the approximate relations (3.9)-(3.11) are likely of

value only as far as they help to derive basis-independent (operator) approximations to

ρ(t), by a technique illustrated in the next section. Indeed, for most bath models it is

advisable to calculate the single-mode trace exactly first, according to (3.6), and then

attempt various approximations.

The latter statement reflects our expectation that the approximation developed

here is valid, for low temperatures, not only for short times, defined by t < 1/ωD,

but also for intermediate times, exceeding 1/ωD. This is suggested by the result of

an illustrative calculation in the next section, but mainly by the fact that (3.11) only

includes the bath-mode energy scales via θ, and, therefore, at low temperatures, is
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dominated by the lowest bath-mode excitations, and is not sensitive to frequencies

of order ωD. Thus, we expect our approximation to be applicable complementary to

the Markovian-type approximations and definitely break down in the regime of fully

developed thermalization, for t ≥ O(β). Additional supporting observations are offered

in Section 5, when we consider the adiabatic case (2.1).
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4. The bosonic heat bath

In this section, we consider the bosonic heat bath [6], see (1.3)-(1.4), in the initially

thermalized state,

θK = e−βMK/Tr K

(
e−βMK

)
=

(
1 − e−βωK

)
e−βωKa†

K
aK . (4.1)

The product of the single-mode traces in (3.6), is then available in the literature

[12,24,31],

ρmn(t) =
∑

γ p q δ

{
ei(Eq+En−Ep−Em)t/2〈m|γ〉〈γ|p〉〈q|δ〉〈δ|n〉ρpq(0)

× exp
(
−

∑

K

|gK |2

ω2
K

[
2 (λγ − λδ)

2 sin2 ωKt

2
coth

βωK

2
+ i

(
λ2

γ − λ2
δ

)
(sinωKt− ωKt)

])}
.

(4.2)

The last term in the exponent, linear in t, is usually viewed as “renormalization” of the

system energy levels due to its interaction with the bath modes. It can be removed by

adding the term,

HR = Λ2
S

∑

K

|gK |2/ωK , (4.3)

to the total Hamiltonian. However, the usefulness of this identification for short times

is not clear, and we will not use it. One can check that, unmodified, (4.2) is consistent

with the expectation (3.10).

Let us now define two non-negative real spectral sums, B(t) and C(t), over the

bath modes,
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B2(t) = 8
∑

K

|gK |2

ω2
K

sin2 ωKt

2
coth

βωK

2
, (4.4)

C(t) =
∑

K

|gK |2

ω2
K

(ωKt− sinωKt) . (4.5)

When converted to integrals over the bath mode frequencies, with the cutoff at ωD,

these sums have been discussed extensively in the literature [6,12,31], for several choices

of the bath mode density of states and coupling strength g as functions of the mode

frequency.

The final expression is,

ρmn(t) =
∑

γ p q δ

{
ei(Eq+En−Ep−Em)t/2〈m|γ〉〈γ|p〉〈q|δ〉〈δ|n〉ρpq(0)

× exp
[
−1

4
B2(t) (λγ − λδ)

2 − iC(t)
(
λ2

γ − λ2
δ

)]
}
. (4.6)

When the spectral functions are expanded in powers of t, this result confirms all the

conclusions and conjectures discussed in Section 3, in connection with relations (3.9)-

(3.11).

Let us now turn to the derivation of the basis-independent representation for ρ(t),

by utilizing the integral identity

√
π exp[−B2(∆λ)2/4] =

∫ ∞

−∞
dy e−y2

exp[iyB(∆λ)] . (4.7)

Exponential factors in (4.6) can then be reproduced by applying operators on the wave-

functions entering the overlap Dirac brackets, with the result
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√
π ρ(t) =

∫
dy e−y2

e−iHSt/2 ei[yB(t)ΛS−C(t)Λ2
S ] e−iHSt/2 ρ(0) eiHSt/2 e−i[yB(t)ΛS−C(t)Λ2

S ] eiHSt/2 .

(4.8)

Within the O(t2) approximation (3.3), given that B and C are of order linear or

higher in t, we can combine the exponential operators to get an alternative approxima-

tion,

√
π ρ(t) =

∫
dy e−y2

e−i[tHS−yB(t)ΛS+C(t)Λ2
S ] ρ(0) ei[tHS−yB(t)ΛS+C(t)Λ2

S ] , (4.9)

though (4.6) and (4.8) are in fact easier to handle in actual calculations.

As an application, let us consider the case of HS proportional to the Pauli matrix

σz, e.g., a spin-1/2 particle in magnetic field, and ΛS = σx, with the proportionality

constant in the latter relation absorbed in the definition of the coupling constants gK

in (1.4). Let us study the deviation of the state of a spin-1/2 qubit, initially in the

energy eigenstate | ↑ 〉 or | ↓ 〉, from pure state, by calculating Tr S [ρ2(t)] according to

(4.8). We note that for a two-by-two density matrix, this trace can vary from 1 for pure

quantum states to the lowest value of 1/2 for maximally mixed states.

A straightforward calculation with ρ(0) = | ↑ 〉〈 ↑ | or | ↓ 〉〈 ↓ |, yields

Tr S [ρ2(t)] =
1
2

[
1 + e−2B2(t)

]
. (4.10)

As the time increases, the function B2(t) grows monotonically from zero [6,12,24,31].

Specifically, for Ohmic dissipation, B2(t) increases quadratically for short times t <

O(1/ωD), then logarithmically for O(1/ωD) < t < O(h̄/kT ), and linearly for t >

O(h̄/kT ). (For other bath models, it need not diverge to infinity at large times.) This
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calculation thus illustrates the fact that the present approximation can yield reasonable

results for short and even intermediate times.

Both approximations, (4.8)-(4.9), make the deviation from a pure state ρ(0) =

|ψ0〉〈ψ0| apparent: ρ(t > 0) is obviously a mixture (integral over y) of pure-state pro-

jectors |ψ(y, t)〉〈ψ(y, t)|, where, for instance for (4.9),

ψ(y, t) = e−i[tHS−yB(t)ΛS+C(t)Λ2
S ] ψ0 , (4.11)

with a somewhat different expression for (4.8).
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5. The adiabatic case

Relation (2.1) corresponds to the system’s energy conservation. Therefore, energy

flow in and out of the system is not possible, and normal thermalization mechanisms are

blocked. The fact that our approximation becomes exact in this case, provides support

to the expectation that, at low temperatures, it is generally valid beyond the cutoff time

scale 1/ωD, providing a reasonable evaluation of decoherence and deviation from a pure

state, as exemplified by the calculation yielding (4.10), in Section 4.

With (2.1), we can select a common eigenbasis for HS and ΛS . Then the distinction

between the lower-case Roman and Greek indices in (3.6) becomes irrelevant, and the

sums can all be evaluated to yield

ρmn(t) = ei(En−Em)t ρmn(0)
∏

K

Tr K

[
e−i(MK+λmJK)t θK ei(MK+λnJK)t

]
. (5.1)

This expression was discussed in detail in our work on adiabatic decoherence [24]. Specif-

ically, for the initially thermalized bosonic heat bath case, we have, for the absolute

values of the density matrix elements,

∣∣ρmn(t)
∣∣ =

∣∣ρmn(0)
∣∣ e−B2(t)(λm−λn)2/4 . (5.2)

The decay of the off-diagonal matrix elements thus depends of the properties of the

spectral functionB2(t) as the time increases. Such explicit results [12,24,31-33] illustrate

that for true irreversibility, the number of bath modes must be infinite, with the spectral

function evaluated in the continuum limit.

In summary, we have derived short-time approximations for the density matrix and

its energy-basis matrix elements. Our expressions are quite easy to work with, because

– 19 –



for few-qubit systems they only involve manipulation of finite-dimensional matrices, and

they will be useful in estimating decoherence and deviation from pure states in quantum

computing models, including results for low temperatures.
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We present an exact derivation of a process in which a microscopic measured system
interacts with the heat-bath and pointer modes of a measuring device, via a coupling
involving a general Hermitian operator Λ of the system. In the limit of strong interaction
with these modes, over a small time interval, we derive the exact effective many-body
density matrix of the measured system plus pointer. We then discuss the interpretation
of the dynamics considered as the first stage in the process of quantum measurement,
eventually involving the wave-function collapse due to interactions with “the rest of
the universe”. We establish that the effective density matrix represents the required
framework for the measured system and the pointer part of the measuring device to
evolve into a statistical mixture described by direct-product states such that the system
is in each eigenstate of Λ with the correct quantum-mechanical probability, whereas the
expectation values of the pointer-space operators retain amplified information of the
system’s eigenstate.

1. Introduction

The problem of quantum measurement has fascinated scientists for a long time.1,2

It has been argued that a large “bath” is an essential ingredient of the measure-

ment process. Interaction with the bath, which might be a heat-bath in thermal

equilibrium, causes decoherence which is needed to form a statistical mixture of

eigenstates out of the initially fully or partially coherent quantum state of the mea-

sured system. An “external” bath (“the rest of the universe”) may also play a role

in the selection of those quantum states of the pointer that manifest themselves

in classical observations.2–7 In this work, we propose a model in which the pointer

retains information on the measurement result because of its coupling to the mea-

sured system, without the need to also couple it to the internal bath. The measured

system is still coupled to the internal bath.

In an exactly solvable model of a quantum oscillator coupled to a heat bath of

oscillators, it has been shown4 that the reduced density matrix of the system, with

the bath traced over, decoheres, i.e. it loses its off-diagonal elements in the eigen-

basis of the interaction Hamiltonian. Recent work on decoherence8–11 has explored

the latter effect for rather general cases, for bosonic (oscillator) and spin baths.

303
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Applications for various physical systems have been reported.12–18 Fermionic heat

bath has also been used in the literature.19

It is clear, however, that the full function of a large, multimode measuring

device, interacting with a small (microscopic) quantum system, must be different

from thermal equilibration or similar averaging effect. The device must store and

amplify the measurement outcome information. In this work, we propose a solvable

model that shows how this is accomplished.

It must be stressed that for a complete description of the measurement process,

one needs to interpret the transfer of the information stored after the system-pointer

and system-internal bath interaction to the macroscopic level.2 Our attention here

is not the process which corresponds to the first stage of the measurement, in which

the pointer acquires amplified information by entanglement with the state of the

system. Thus, we do not claim to resolve the foundation-of-quantum mechanics issue

of how that information is passed on to the classical world, involving the collapse of

the wave functions of the system and each pointer mode. Indeed, it is unlikely that

the wave-function collapse can be fully described within the quantum-mechanical

description of the three subsystems involved. Presumably, it would require consid-

eration of an external bath with which the pointer and the internal bath interact.

This problem is not presently solved,1–3 and we first sidestep it by assuming sepa-

ration of time scales (see below). However, we later argue that our results provide

useful hints on how to view the larger problem of quantum measurement.

We now identify the three quantum systems involved. First, the measured sys-

tem, S, is a microscopic system with the Hamiltonian which will also be denoted

by S. Second, the measuring device must have the “bath” or “body” part, B, con-

taining many individual modes. The kth mode will have the Hamiltonian Bk. The

bath part of the device is not observed, i.e. it can be traced over. Finally, the de-

vice must also have modes that are not traced over. These modes constitute the

pointer, P , that amplifies the information obtained in the measurement process and

can later pass it on for further amplification or directly to macroscopic (classical)

systems. The mth pointer mode has the Hamiltonian Pm. It is expected that ex-

pectation values of some quantities in the pointer undergo a large change during

the measurement process.

It turns out, a posteriori, that the device modes involved in the measurement

process can be quite simple and they need not interact with each other. This as-

sumption allows us to focus on the evolution of the system S and its effect on the

pointer P . However, it is the pointer’s interaction with the external bath (some ex-

ternal modes, “the rest of the universe”) that is presumed to select those quantum

states of P that manifest themselves classically. For now, let us avoid the discussion

of this matter, see Refs. 2–6, by assuming that the added evolution of the pointer

due to such external interactions occurs on time scales larger than the measurement

time, t. Similarly, when we state that the internal bath modes can be “traced over”,

we really mean that their interactions with the rest of the universe are such that

Vladimir Privman

Vladimir Privman
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these modes play no role in the wave-function-collapse stage of the measurement

process.

Furthermore, the measurement process probes the wave function of the mea-

sured system at the initial time, t = 0, rather than its time evolution under S

alone. It is ideally instantaneous. In practice, it is faster than the time scales asso-

ciated with the dynamics under S. Such a process can be obtained as the limit of

a system in which very strong interactions between S and B, and also between S

and P , are switched on at t = 0 and switched off at t > 0, with small time interval

t. At later times, the pointer can interact with other external systems to pass on

the result of the measurement.

Thus, we assume that the Hamiltonian of the system itself, S, can be ignored

in the process. The total Hamiltonian of the system plus device will be taken as

H =
∑
k

Bk +
∑
m

Pm + bΛ
∑
k

Lk + pΛ
∑
m

Cm . (1)

Here, Λ is some Hermitian operator of the system that couples to certain operators

of the modes, Lk and Cm. The parameters b and p are introduced to measure the

coupling strength for the bath and pointer modes, respectively. They are assumed

to be very large; the ideal measurement process corresponds to b, p→∞.

We note that the modes of P and B can be similar. The only difference between

the bath and pointer modes is in how they interact with the “rest of the universe”:

the bath is traced over (unobserved), whereas the pointer modes have their wave

functions collapsed in a later step of the measurement process. Thus, we actually

took the same coupling operator Λ for the bath and pointer. In fact, all the exact

calculations reported in this work can also be carried out for different coupling

operators Λb and Λp, for the bath and pointer modes, provided they commute,

[Λb,Λp] = 0, so that they share a common set of eigenfunctions. The final wave

function of the measured system, after the measurement, is in this set. Analytical

calculation can even be extended to the case when the system’s Hamiltonian S

is retained in (1), provided all three operators, S,Λb,Λp, commute pairwise. The

essential physical ingredients of the model are captured by the simpler choice (1).

We will later specify all the operators in (1) as the modes of the bosonic heat

bath of the Caldeira–Leggett type.17,19–26 For now, however, let us keep our dis-

cussion general. We will assume that the system operator Λ has nondegenerate,

discrete spectrum of eigenstates:

Λ|λ〉 = λ|λ〉 . (2)

Some additional assumptions on the spectrum of Λ and S will be encountered later.

We also note that the requirement that the coupling parameters b and p are large

may in practice be satisfied because, at the time of the measurement, the system’s

Hamiltonian S corresponds to slow or trivial dynamics.

Initially, at t = 0, the quantum systems (S,B, P ) and their modes are not

correlated with each other. We assume that ρ is the initial density matrix of the
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measured system. The initial state of each bath and pointer mode will be assumed

thermalized, with β = 1/(kT ) and the density matrices

θk =
e−βBk

Trk(e−βBk)
σm =

e−βPm

Trm(e−βPm)
. (3)

We cannot offer any fundamental physical reason for having the initial bath and

pointer mode states thermalized, especially for the pointer; this choice is made to

allow exact solvability.

The density matrix of the system at time t is

R = e−iHt/~ρ

(∏
k

etak

)(∏
m

σm

)
eiHt/~ . (4)

The bath is not probed and it can be traced over. The resulting reduced density

matrix r of the combined system S + P will be represented by its matrix elements

in the eigenbasis of Λ. These quantities are each an operator in the space of P :

rλλ′ = 〈λ|TrB(R)|λ′〉 . (5)

We now assume that operators in different spaces and of different modes com-

mute. Then, one can show that

rλλ′ = ρλλ′

[∏
m

e−it(Pm+pλCm)/~σme
it(Pm+pλ′Cm)/~

]

×
[∏
k

Trk

{
e−it(Bk+bλLk)/~θke

it(Bk+bλ′Lk)/~
}]

(6)

where ρλλ′ = 〈λ|ρ|λ′〉. This result involves products of P -space operators and traces

over B-space operators which are all single mode. Therefore, analytical calculations

are possible for some choices of the Hamiltonian (1). The observable Λ can be kept

general.

The role of the product of traces over the modes of the bath in (6) is to in-

duce decoherence which is recognized as essential for the measurement process,

e.g. Refs. 1 and 2. At time t, the absolute value of this product should approach

δλλ′ in the limit of large b. Let us now assume that the bath is bosonic. The Hamil-

tonian of each mode is then ~ωka†kak, where for simplicity, we shifted the zero of the

oscillator energy to the ground state. The coupling operator Lk is usually selected

as Lk = g∗kak + gka
†
k. For simplicity, though, we will assume that the coefficients gk

are real:

Bk = ~ωka†kak Lk = gk(ak + a†k). (7)

For example, for radiation field in a unit volume, coupled to an atom,27 the coupling

is via a linear combination of the operators (ak+a†k)/
√
ωk and i(ak−a†k)/

√
ωk. For

a spatial oscillator, these are proportional to position and momentum, respectively.

Our calculations can be extended to have an imaginary part of gk which adds

interaction with momentum.

Vladimir Privman


Vladimir Privman
 

Vladimir Privman
 

Vladimir Privman
0

Vladimir Privman
-



July 19, 2000 10:10 WSPC/147-MPLB 00040

Quantum System Coupled to Heat-Bath and Pointer Modes 307

The product of traces in (6) can be calculated by coherent-state or operator-

identity techniques.8–10 Here and below, we only list the results of such calculations

which are usually quite cumbersome:∏
k

Trk{· · ·} = exp
{
−2b2(λ− λ′)2Γ(t) + ib2[λ2 − (λ′)2]γ(t)

}
(8)

Γ(t) =
∑
k

(~ωk)−2g2
k sin2 ωkt

2
coth

~βωk
2

. (9)

The explicit form of γ(t) is also known.8

In the continuum limit of many modes, the density of the bosonic bath states

in unit volume, D(ω), and the Debye cutoff with frequency, ωD, are introduced22

to get

Γ(t) =

∫ ∞
0

dω
D(ω)g2(ω)

(~ω)2
e−ω/ωD sin2 ωt

2
coth

~βω
2

. (10)

Let us consider the popular choice termed Ohmic dissipation,22 motivated by

atomic-physics27 and solid-state applications,22 corresponding to

D(ω)g2(ω) = Ωω , (11)

where Ω is a constant. Other powers of ω have also been considered, e.g. Ref. 11.

In studies of decoherence8–11 for large times t, for models without strong coupling,

not all the choices of D(ω)g2(ω) lead to complete decoherence11 because Γ(t) must

actually diverge to +∞ for t� ~β, as it happens for the choice (11).

Let us assume that the energy gaps of S are bounded so that there exists a

well-defined time scale ~/∆S of the evolution of the system under S. There is also

the time scale 1/ωD set by the frequency cutoff assumed for the interactions. The

thermal time scale is ~β. The only real limitation on the duration of measurement

is that t must be less then ~/∆S. In applications, typically22 one can assume that

1/ωD � ~/∆S. Furthermore, it is customary to assume that the temperature is

low,22

t and 1/ωD � ~/∆S � ~β . (12)

In the limit of large ~β, the absolute value of (8) reduces to

Abs

(∏
k

Trk{· · ·}
)
' exp

{
− Ω

2~2
b2(λ− λ′)2 ln[1 + (ωDt)

2]

}
. (13)

In order to achieve effective decoherence, the product (∆λ)2 b2 ln[1 + (ωDt)
2] must

be large. The present approach only applies to operators Λ with nonzero scale of

the smallest spectral gaps, ∆λ.

We note that the decoherence property needed for the measurement process will

be obtained for nearly any well-behaved choice of D(ω)g2(ω) because we can rely

on the value of b being large rather than on the properties of the function Γ(t). If b

can be large enough, very short measurement times are possible. However, it may
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be advisable to use measurement times 1/ωD � t � ~/∆S to get the extra am-

plification factor ∼ ln(ωDt) and allow for fuller decoherence and less sensitivity to

the value of t in the pointer part of the dynamics, which is to be addressed shortly.

We notice, furthermore, that the assumption of a large number of modes is impor-

tant for monotonic decay of the absolute value of (8) in decoherence studies,8–11

where irreversibility is obtained only in the limit of infinite number of modes. In our

case, it can be shown that such a continuum limit allows us to extend the possible

measurement times from t� 1/ωD to 1/ωD � t� ~/∆S.

For consideration of the reduced density matrix r of S + P , see (6). It becomes

diagonal in |λ〉, at time t, because all the nondiagonal elements are small,

r =
∑
λ

|λ〉〈λ| ρλλ
∏
m

e−it(Pm+pλCm)/~σme
it(Pm+pλCm)/~ . (14)

Thus, the described stage of the measurement process yields the density matrix that

can be interpreted as describing a statistically distributed system, without quantum

correlations. This, however, is only meaningful within the ensemble interpretation

of quantum mechanics.

For a single system plus device, coupling to the rest of the universe is presumably

needed (this problem is not fully understood in our opinion, see Ref. 2) for that

system to be left in one of the eigenstates |λ〉, with probability ρλλ. After the

measurement interaction is switched off at t, the pointer coupled to that system

will carry information on the value of λ. This information is “amplified”, owing to

the large parameter p in the interaction.

We note that one of the roles of the pointer having many modes, many of which

can be identical and noninteracting, is to allow it (the pointer only) to be still

treated in the ensemble, density matrix description, even if we focus on the later

stages of the measurement when the wave functions of a single measured system

and of each pointer mode are already collapsed. This pointer density matrix can be

read off (14). This aspect is new and it may provide a useful hint on how to set up

the treatment of the full quantum-measurement process description.

Another such hint is provided by the fact that, as will be shown shortly, the

changes in the expectation values of some observables of the pointer retain amplified

information on the system’s eigenstate. So, coupling to the rest of the universe

that leads to the completion of the measurement process should involve such an

observable of the pointer. Eventually, the information in the pointer, perhaps after

several steps of amplification, should be available for probe by interactions with

classical devices.

At time t = 0, expectation values of various operators of the pointer will have

their initial values. These values will be different at time t of the measurement

owing to the interaction with the measured system. It is expected that the large

coupling parameter p will yield large changes in the expectation values of the pointer
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quantities. This does not apply equally to all operators in the P -space. Let us begin

with the simplest choice: the Hamiltonian
∑
m Pm of the pointer.

We will assume that the pointer is described by the bosonic heat bath and,

for simplicity, use the same notation for the pointer modes as that used for the

bath modes. The assumption that the pointer modes are initially thermalized, see

(3), was not used thus far. While it allows exact analytical calculations, it is not

essential: the effective density matrix describing the pointer modes at time t, for

the system’s state λ, will retain amplified information on the value of λ for general

initial states of the pointer.

This effective density matrix is the product over the P modes in (14). For the

“thermal” σm from (3), the expectation value of the pointer energy EP can be

calculated from

〈EP 〉λTrP (e−~β
∑
s ωsa

†
sas)

= TrP

{(∑
m

~ωma†mam

)∏
n

[
e−it[ωna

†
nan+pλgn(an+a†n)]/~(e−~β

∑
k ωka

†
kak)

× eit[ωna
†
nan+pλgn(an+a†n)]/~

]}
. (15)

The right-hand side can be reduced to calculations for individual modes. Operator

identities can then be utilized to obtain the results

〈EP 〉λ(t) = 〈EP 〉(0) + 〈∆EP 〉λ(t) (16)

〈EP 〉(0) = ~
∑
m

ωme
−~βωm(1− e−~βωm)−2 (17)

〈∆EP 〉λ(t) =
4p2λ2

~
∑
m

g2
m

ωm
sin2

(
ωmt

2

)
. (18)

For a model with Ohmic dissipation, the resulting integral in the continuum limit

can be calculated to yield

〈∆EP 〉λ(t) =
2 ΩωDλ

2p2

~
(ωDt)

2

1 + (ωDt)2
(19)

which should be compared to the exponent in (13). The energy will be an indicator

of the amplified value of the square of λ, provided p is large. Furthermore, we see

here the advantage of larger measurement times, t � 1/ωD. The change in the

energy then reaches saturation. After the time t, when the interaction is switched

off, the energy of the pointer will be conserved.

Let us consider the expectation value of the following Hermitian operator of the

pointer:

X =
∑
m

Cm =
∑
m

gm(am + a†m) . (20)
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For an atom in a field, X is related to the electromagnetic field operators.24 One

can show that 〈XP 〉(0) = 0 and

〈∆XP 〉λ(t) = 〈XP 〉λ(t) = −4pλ

~
∑
m

g2
m

ωm
sin2

(
ωmt

2

)

= −2 ΩωDλp

~
(ωDt)

2

1 + (ωDt)2
. (21)

The change in the expectation value of X is linear in λ. However, this operator is

not conserved. One can show that after the time t, its expectation value decays to

zero for times t+O(1/ωD).

We note that by referring to “unit volume”, we have avoided the discussion of

the “extensivity” of various quantities. For example, the initial energy 〈EP 〉(0) is

obviously proportional to the system volume, V . However, the change 〈∆EP 〉λ(t)
will not be extensive; typically, g2(ω) ∝ 1/V , D(ω) ∝ V . Thus, while the amplifica-

tion in our measurement process can involve a numerically large factor, the changes

in the quantities of the pointer will be multiples of microscopic values. Multistage

amplification, or huge coupling parameter p, would be needed for the information

in the pointer to become truly “extensive” macroscopically.

In practice, there will probably be two types of pointer involved in a multistage

measurement process. Some pointers will consist of many noninteracting modes.

These pointers carry the information stored in a density matrix rather than a

wave function of a single system. The latter transference hopefully makes the wave

function collapse and transfer of the stored information to the macroscopic level

less “mysterious and traumatic”. The second type of pointer will involve strongly

interacting modes and play the role of an amplifier by utilizing the many-body

collective behavior of the coupled modes (phase-transition style). Its role will be to

alleviate the artificial requirement for large mode-to-system coupling parameters

encountered in our model.

In summary, we described the first stage of a measurement process. It involves

decoherence due to a bath and transfer of information to a large system (pointer)

via strong interaction over a short period of time. The pointer itself need not be

coupled to the internal bath. While we do not offer a solution to the foundation-

of-quantum-mechanics wave-function collapse problem,2 our results do provide two

interesting observations.

Firstly, the pointer operator “probed” by the rest of the universe during the

wave-function collapse stage may in part be determined not only by how the pointer

modes are coupled to the external bath,3–7 but also by the amplification capacity

of that operator in the first stage of the process, as illustrated by our calculations.

Secondly, for a single system (rather than an ensemble), the multiplicity of

the (noninteracting) pointer modes might allow the pointer to be treated within

the density matrix formalism even after the system and each pointer-mode wave

functions were collapsed. Since it is the information in the pointer that is passed on,
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this observation might seem to resolve part of the measurement puzzle. Specifically,

it might suggest why only those density matrices entering (14) are selected for

the pointer: they carry classical (large, different from other values) information

in expectation values, rather than quantum-mechanical superposition. However,

presumably2 only a full description of the interaction of the external world with

the system S + P can explain the wave-function collapse of S.
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V

+DPLOWRQLDQ�

^ � ^



�� ,QWURGXFWLRQ

4XDQWXP GHFRKHUHQFH� GLVVLSDWLRQ� DQG WKHUPDOL]DWLRQ GXH WR LQWHU�

DFWLRQV ZLWK HQYLURQPHQW KDYH ORQJ EHHQ LPSRUWDQW IXQGDPHQWDO LVVXHV

WKHRUHWLFDOO\ DQG H[SHULPHQWDOO\���b��� 'HFRKHUHQFH DQG UHODWHG WRSLFV

KDYH DWWUDFWHG PXFK LQWHUHVW UHFHQWO\ GXH WR UDSLG GHYHORSPHQW RI QHZ

nHOGV VXFK DV TXDQWXP FRPSXWLQJ DQG TXDQWXP LQIRUPDWLRQ WKHRU\����b���

'HFRKHUHQFH GXH WR H[WHUQDO LQWHUDFWLRQV LV D PDMRU REVWDFOH LQ WKH ZD\ RI

LPSOHPHQWDWLRQ RI GHYLFHV VXFK DV TXDQWXP FRPSXWHUV� 7KXV LQ DGGLWLRQ

WR VWXGLHV RI WKH SK\VLFV RI GHFRKHUHQFH SURFHVVHV WKHUH HPHUJHG D QHZ

nHOG RI TXDQWXP HUURU FRUUHFWLRQ���b��� DLPLQJ DW HmHFWLYH VWDELOL]DWLRQ

RI TXDQWXP VWDWHV DJDLQVW GHFRKHUHQFH HVVHQWLDOO\ E\ LQYROYLQJ PDQ\ DG�

GLWLRQDO TXDQWXP V\VWHPV DQG XWLOL]LQJ UHGXQGDQF\� 7KH SUHVHQW ZRUN

FRQWULEXWHV WR WKH IRUPHU WRSLF� WKH SK\VLFV RI GHFRKHUHQFH�

'HFRKHUHQFH LV D UHVXOW RI WKH FRXSOLQJ RI WKH TXDQWXP V\VWHP XQGHU

FRQVLGHUDWLRQ WR WKH HQYLURQPHQW ZKLFK� JHQHUDOO\� LV WKH UHVW RI WKH XQL�

YHUVH� ,Q YDULRXV H[SHULPHQWDOO\ UHOHYDQW VLWXDWLRQV WKH LQWHUDFWLRQ RI WKH

TXDQWXP V\VWHP ZLWK HQYLURQPHQW LV GRPLQDWHG E\ WKH V\VWHP
V PLFUR�

VFRSLF VXUURXQGLQJV� )RU H[DPSOH� WKH GRPLQDQW VRXUFH RI VXFK LQWHUDF�

WLRQ IRU DQ DWRP LQ DQ HOHFWURPDJQHWLF FDYLW\ LV WKH HOHFWURPDJQHWLF nHOG

LWVHOI FRXSOHG WR WKH GLSROH PRPHQW RI WKH DWRP����� ,Q FDVH RI -RVHSKVRQ

^ � ^



MXQFWLRQ LQ D PDJQHWLF oX[���� RU GHIHFW SURSDJDWLRQ LQ VROLGV� WKH LQWHUDF�

WLRQ FDQ EH GRPLQDWHG E\ DFRXVWLF SKRQRQV RU GHORFDOL]HG HOHFWURQV�����

0DJQHWLF PDFURPROHFXOHV LQWHUDFW ZLWK WKH VXUURXQGLQJ VSLQ HQYLURQ�

PHQW VXFK DV QXFOHDU VSLQV����� 1XPHURXV RWKHU VSHFLnF H[DPSOHV FRXOG

EH FLWHG�

,Q WKLV ZRUN ZH DLP DW D JHQHUDO SKHQRPHQRORJLFDO GHVFULSWLRQ WKDW

PRGHOV WKH SK\VLFDOO\ LPSRUWDQW HmHFWV RI H[WHUQDO LQWHUDFWLRQV DV IDU DV

DGLDEDWLF GHFRKHUHQFH� WR EH GHnQHG ODWHU� LV FRQFHUQHG� :H QRWH WKDW

JHQHUDOO\ WKHUPDOL]DWLRQ DQG GHFRKHUHQFH DUH DVVRFLDWHG ZLWK WKH LQWHU�

DFWLRQ RI WKH TXDQWXP V\VWHP� GHVFULEHG LQ LVRODWLRQ E\ WKH +DPLOWRQLDQ

+6 � ZLWK DQRWKHU� ODUJH V\VWHP ZKLFK ZH ZLOO WHUP WKH ?EDWK� DQG ZKLFK

LQWHUQDOO\ KDV WKH +DPLOWRQLDQ +% � 7KH DFWXDO LQWHUDFWLRQ ZLOO EH UHS�

UHVHQWHG E\ WKH +DPLOWRQLDQ +, VR WKDW WKH WRWDO +DPLOWRQLDQ RI WKH

V\VWHP� +� LV

+  +6 �+% �+, � �����

,W LV LPSRUWDQW WR UHDOL]H WKDW W\SLFDOO\ WKH EDWK LV D ODUJH� PDFURVFRSLF

V\VWHP� 7UXO\ LUUHYHUVLEOH LQWHUDFWLRQV RI D TXDQWXP V\VWHP ZLWK LWV HQ�

YLURQPHQW� VXFK DV WKHUPDO HTXLOLEUDWLRQ RU GHFRKHUHQFH DVVRFLDWHG ZLWK

PHDVXUHPHQW SURFHVVHV� FDQ RQO\ EH REWDLQHG LQ WKH +DPLOWRQLDQ GHVFULS�

WLRQ ����� ZKHQ LW LV VXSSOHPHQWHG E\ WDNLQJ WKH OLPLW RI WKH QXPEHU RI

^ � ^



SDUWLFOHV RU GHJUHHV RU IUHHGRP RI WKH EDWK JRLQJ WR LQnQLW\�

,QWHUDFWLRQV RI D TXDQWXP V\VWHP ZLWK PDFURVFRSLF V\VWHPV FDQ OHDG

WR GLmHUHQW RXWFRPHV� )RU LQVWDQFH� LQWHUDFWLRQ ZLWK D WUXH ?KHDW EDWK�

OHDGV WR WKHUPDOL]DWLRQ� WKH UHGXFHG GHQVLW\ PDWUL[ RI WKH V\VWHP DS�

SURDFKHV H[S �bn+6� IRU ODUJH WLPHV� +HUH

n  � �N7 � �����

DV XVXDO� DQG E\ ?UHGXFHG� ZH PHDQ WKH GHQVLW\ PDWUL[ WUDFHG RYHU

WKH VWDWHV RI WKH EDWK� 2Q WKH RWKHU KDQG IRU GHFRKHUHQFH ZH H[SHFW

WKH UHGXFHG GHQVLW\ PDWUL[ WR DSSURDFK D GLDJRQDO IRUP LQ WKH ?SUH�

IHUUHG EDVLV� VRPHKRZ VHOHFWHG E\ WKH ?SRLQWHU REVHUYDEOH� +HUPLWLDQ

RSHUDWRU��b�������� ZKLFK LV WKHUHE\ ?PHDVXUHG� E\ WKH PDFURVFRSLF V\V�

WHP �EDWK��

,W LV LPSRUWDQW WR UHDOL]H WKDW VWXG\ RI GHFRKHUHQFH LQ WKH SUHVHQW

FRQWH[W GRHV QRW IXOO\ UHVROYH WKH SUREOHP RI XQGHUVWDQGLQJ TXDQWXP

PHDVXUHPHQW DQG RWKHU IXQGDPHQWDO LVVXHV DW WKH ERUGHUOLQH RI TXDQWXP

DQG FODVVLFDO EHKDYLRUV� VXFK DV� IRU LQVWDQFH� WKH DEVHQFH RI PDFURVFRSLF

PDQLIHVWDWLRQV RI 6FKU�RGLQJHU�FDW W\SH TXDQWXP VXSHUSRVLWLRQ RI VWDWHV�

7KH PRUH RSWLPLVWLF UHFHQW OLWHUDWXUH��b�� FRQVLGHUV GHVFULSWLRQ RI HQWDQ�

JOHPHQW DQG GHFRKHUHQFH WKH NH\ WR VXFK XQGHUVWDQGLQJ� +RZHYHU� WKHVH

IXQGDPHQWDO SUREOHPV KDYH UHPDLQHG RSHQ WKXV IDU�

^ � ^



7KH PRVW H[SORUHG DQG SUREDEO\ PRVW WUDFWDEOH DSSURDFK WR PRGHO�

LQJ WKH HQYLURQPHQWDO LQWHUDFWLRQV KDV LQYROYHG UHSUHVHQWLQJ WKHLU HmHFWV

E\ FRXSOLQJ WKH RULJLQDO TXDQWXP V\VWHP WR D VHW RI QRQLQWHUDFWLQJ KDU�

PRQLF RVFLOODWRUV �ERVRQLF KHDW EDWK��������b��������b��� )HUPLRQLF KHDW

EDWK FDQ EH DOVR FRQVLGHUHG� H�J�� 5HI� ��� :H ZLOO XVH WKH WHUP ?KHDW

EDWK� IRU VXFK V\VWHPV HYHQ ZKHQ WKH\ DUH XVHG IRU RWKHU WKDQ WKHUPDO�

L]DWLRQ VWXGLHV EHFDXVH WKH\ KDYH WKH WHPSHUDWXUH SDUDPHWHU GHnQHG YLD

LQLWLDO FRQGLWLRQV� DV GHVFULEHG ODWHU�

5LJRURXV IRUPXODWLRQ RI WKH ERVRQLF KHDW EDWK DSSURDFK ZDV LQLWL�

DWHG E\ )RUG� .DF DQG 0D]XU���� DQG PRUH UHFHQWO\ E\ &DOGHLUD DQG

/HJJHWW�������� ,W KDV EHHQ HVWDEOLVKHG� IRU KDUPRQLF TXDQWXP V\VWHPV�

WKDW WKH LQoXHQFH RI WKH KHDW EDWK GHVFULEHG E\ WKH RVFLOODWRUV LV HmHF�

WLYHO\ LGHQWLFDO WR WKH H[WHUQDO XQFRUUHODWHG UDQGRP IRUFH DFWLQJ RQ D

TXDQWXP V\VWHP XQGHU FRQVLGHUDWLRQ� ,Q RUGHU IRU WKH V\VWHP WR VDWLVI\

HTXDWLRQ RI PRWLRQ ZLWK D OLQHDU GLVVLSDWLRQ WHUP LQ WKH FODVVLFDO OLPLW

WKH FRXSOLQJ ZDV FKRVHQ WR EH OLQHDU LQ FRRUGLQDWHV ZKLOH WKH FRXSOLQJ

FRQVWDQWV HQWHUHG OXPSHG LQ D VSHFWUDO IXQFWLRQ ZKLFK ZDV DVVXPHG WR

EH RI D SRZHU�ODZ IRUP LQ WKH RVFLOODWRU IUHTXHQF\� ZLWK WKH DSSURSULDWH

'HE\H FXWRm� :H ZLOO PDNH WKLV FRQFHSW PRUH H[SOLFLW ODWHU�

7KLV PRGHO RI D KHDW EDWK ZDV DSSOLHG WR VWXG\LQJ HmHFWV RI GLV�

VLSDWLRQ RQ WKH SUREDELOLW\ RI TXDQWXP WXQQHOLQJ IURP D PHWDVWDEOH

^ � ^



VWDWH������� ,W ZDV IRXQG WKDW FRXSOLQJ D TXDQWXP V\VWHP WR WKH KHDW EDWK

DFWXDOO\ GHFUHDVHV WKH TXDQWXP WXQQHOLQJ UDWH� 7KH SUREOHP RI D SDUWL�

FOH LQ D GRXEOH ZHOO SRWHQWLDO ZDV DOVR FRQVLGHUHG������� ,Q WKLV FDVH WKH

LQWHUDFWLRQ ZLWK WKH EDWK OHDGV WR TXDQWXP FRKHUHQFH ORVV DQG FRPSOHWH

ORFDOL]DWLRQ DW ]HUR WHPSHUDWXUH� 7KLV VWXG\ KDV OHDG WR WKH VSLQ�ERVRQ

+DPLOWRQLDQ������ ZKLFK IRXQG QXPHURXV RWKHU DSSOLFDWLRQV� 7KH +LOEHUW

VSDFH RI WKH TXDQWXP V\VWHPV VWXGLHG ZDV HmHFWLYHO\ UHVWULFWHG WR WKH

WZR�GLPHQVLRQDO VSDFH FRUUHVSRQGLQJ WR WKH WZR ORZHVW HQHUJ\ OHYHOV�

$QRWKHU SRVVLEOH DSSOLFDWLRQ RI WKH ERVRQLF KHDW EDWK PRGHO FRQ�

FHUQV DVSHFWV RI TXDQWXP PHDVXUHPHQW� ,W LV EHOLHYHG WKDW WKH EDWK LV

DQ LQWULQVLF SDUW RI D PHDVXULQJ GHYLFH� ,Q RWKHU ZRUGV� LW FRQWLQXRXVO\

PRQLWRUV WKH SK\VLFDO TXDQWLW\ ZKRVH RSHUDWRU LV FRXSOHG WR LW���b�� ,W

KDV EHHQ VKRZQ LQ WKH H[DFWO\ VROYDEOH PRGHO RI WKH TXDQWXP RVFLOODWRU

FRXSOHG WR D KHDW EDWK��� WKDW WKH UHGXFHG GHQVLW\ PDWUL[ RI WKH TXDQ�

WXP V\VWHP GHFRKHUHV� L�H�� ORRVHV LWV Rm�GLDJRQDO HOHPHQWV UHSUHVHQWLQJ

WKH TXDQWXP FRUUHODWLRQV LQ WKH V\VWHP� LQ WKH HLJHQEDVLV RI WKH LQWHUDF�

WLRQ +DPLOWRQLDQ� ,W KDV DOVR EHHQ DUJXHG WKDW WKH WLPH VFDOH RQ ZKLFK

WKLV ?PHDVXUHPHQW� RFFXUV LV PXFK OHVV WKDQ WKH FKDUDFWHULVWLF WLPH IRU

WKHUPDO UHOD[DWLRQ RI WKH V\VWHP�

,W LV QDWXUDO WR DVVXPH WKDW LI VXFK D ?EDWK� GHVFULSWLRQ RI WKH SUR�

FHVV RI PHDVXUHPHQW RI D +HUPLWLDQ RSHUDWRU e6 H[LVWV� WKHQ WKH LQWHU�

^ � ^



DFWLRQ +DPLOWRQLDQ +, LQ ����� ZLOO LQYROYH e6 DV ZHOO DV VRPH EDWK�

+LOEHUW�VSDFH RSHUDWRUV� 1R JHQHUDO GHVFULSWLRQ RI WKLV SURFHVV H[LVWV�

)XUWKHUPRUH� ZKHQ ZH DUH OLPLWHG WR VSHFLnF PRGHOV LQ RUGHU WR REWDLQ

WUDFWDEOH� H�J�� DQDO\WLFDOO\ VROYDEOH� H[DPSOHV� WKHQ WKHUH LV QR JHQHUDO

ZD\ WR VHSDUDWH GHFRKHUHQFH DQG WKHUPDOL]DWLRQ HmHFWV� :H QRWH WKDW

WKHUPDOL]DWLRQ LV QDWXUDOO\ DVVRFLDWHG ZLWK H[FKDQJH RI HQHUJ\ EHWZHHQ

WKH TXDQWXP V\VWHP DQG KHDW EDWK� 0RGHO V\VWHP UHVXOWV DQG JHQHUDO

H[SHFWDWLRQV PHQWLRQHG HDUOLHU VXJJHVW WKDW DW OHDVW LQ VRPH FDVHV GH�

FRKHUHQFH LQYROYHV LWV RZQ WLPH VFDOHV ZKLFK DUH VKRUWHU WKDQ WKRVH RI

DSSURDFK WR WKHUPDO HTXLOLEULXP�

,Q WKLV ZRUN ZH SURSRVH WR VWXG\ DGLDEDWLF GHFRKHUHQFH� L�H�� D VSHFLDO

FDVH RI QR HQHUJ\ H[FKDQJH EHWZHHQ WKH V\VWHP DQG EDWK� 7KXV ZH DVVXPH

WKDW +6 LV FRQVHUYHG� L�H�� >+6 �+ @  �� 7KLV DVVXPSWLRQ LV D VSHFLDO

FDVH RI ?TXDQWXP QRQGHPROLWLRQ PHDVXUHPHQW� FRQFHSW������ H[HPSOLnHG

E\ WKH .HUU HmHFW� IRU LQVWDQFH� 6LQFH +6 DQG +% LV ����� RSHUDWH LQ

GLmHUHQW +LOEHUW VSDFHV� WKLV LV HTXLYDOHQW WR UHTXLULQJ

>+6 � +, @  � � �����

)XUWKHUPRUH� ZH ZLOO DVVXPH WKDW +, LV OLQHDU LQ e6 �

+,  e63% � �����
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ZKHUH 3% DFWV LQ WKH +LOEHUW VSDFH RI WKH EDWK� 7KHQ ZH KDYH

>e6 �+6 @  � � �����

7KXV� ZH FRQVLGHU FDVHV LQ ZKLFK WKH PHDVXUHG� ?SRLQWHU� REVHUYDEOH e6 LV

RQH RI WKH FRQVHUYHG TXDQWLWLHV RI WKH TXDQWXP V\VWHP ZKHQ LW LV LVRODWHG�

,QWHUDFWLRQ ZLWK WKH EDWK ZLOO WKHQ FRUUHVSRQG WR PHDVXUHPHQW RI VXFK

DQ REVHUYDEOH� ZKLFK FDQ EH WKH HQHUJ\ LWVHOI� 6SHFLnFDOO\� WKH PRGHO

RI 5HI� �� FRUUHVSRQGV WR e6  +6 IRU WKH FDVH RI WKH VSLQ�
�
�
WZR�VWDWH

V\VWHP� PRWLYDWHG E\ TXDQWXP�FRPSXWLQJ DSSOLFDWLRQV� VHH DOVR 5HIV� ��

������ 7KH PRGHOV RI 5HIV� � DQG � FRUUHVSRQG WR WKH FKRLFHV RI e6  +6

DQG e6  I�+6�� UHVSHFWLYHO\� IRU D V\VWHP FRXSOHG WR D ERVRQLF VSLQ

EDWK� ZKHUH I LV DQ DUELWUDU\ ZHOO�EHKDYHG IXQFWLRQ�

+HUH ZH GHULYH H[DFW UHVXOWV IRU DGLDEDWLF GHFRKHUHQFH GXH WR FRX�

SOLQJ WR WKH ERVRQLF KHDW EDWK� DVVXPLQJ JHQHUDO e6 WKDW FRPPXWHV ZLWK

+6 � :KLOH WHFKQLFDOO\ WKLV UHSUHVHQWV DQ H[WHQVLRQ RI WKH UHVXOWV RI 5HIV� �

DQG �� ZH GHPRQVWUDWH WKDW WKH JHQHUDO FDVH UHYHDOV FHUWDLQ QHZ DVSHFWV RI

WKH GHFRKHUHQFH SURFHVV� 2XU QHZ H[DFW�VROXWLRQ PHWKRG XWLOL]HV FRKHU�

HQW VWDWHV DQG PD\ EH RI LQWHUHVW LQ RWKHU DSSOLFDWLRQV DV ZHOO� ,Q 6HFWLRQ

�� ZH GHnQH WKH V\VWHP� 6SHFLnFDOO\� ZH FKRRVH WKH ERVRQLF KHDW EDWK

IRUP IRU +% DQG 3% LQ ����� DQG ������ EXW ZH NHHS +6 DQG e6 JHQHUDO�

+RZHYHU� ZH DOVR DQDO\]H WKH PHFKDQLVP OHDGLQJ WR H[DFW VROYDELOLW\ RI

^ � ^



JHQHUDO PRGHOV RI WKLV W\SH� 6HFWLRQ � UHSRUWV RXU GHULYDWLRQ RI WKH H[DFW

H[SUHVVLRQ IRU WKH UHGXFHG GHQVLW\ PDWUL[ RI WKH V\VWHP� 'LVFXVVLRQ RI

WKH UHVXOWV DQG GHnQLWLRQ RI WKH FRQWLQXXP OLPLW DUH JLYHQ LQ 6HFWLRQ ��
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�� 0RGHOV RI $GLDEDWLF 'HFRKHUHQFH

:H ZLOO EH PDLQO\ LQWHUHVWHG LQ WKH IROORZLQJ +DPLOWRQLDQ IRU WKH

TXDQWXP V\VWHP FRXSOHG WR D EDWK RI ERVRQV �KDUPRQLF RVFLOODWRUV� OD�

EHOHG E\ WKH VXEVFULSW N�

+  +6 �
;
N

�ND
\
NDN � e6

;
N

r
JeNDN � JND

\
N

s
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+HUH D
\
N DQG DN DUH ERVRQLF FUHDWLRQ DQG DQQLKLODWLRQ RSHUDWRUV� UHVSHF�

WLYHO\� VR WKDW WKHLU FRPPXWDWLRQ UHODWLRQ LV >DN� D
\
N@  �� 7KH VHFRQG WHUP

LQ ����� UHSUHVHQWV WKH IUHH nHOG RU +DPLOWRQLDQ RI WKH KHDW EDWK +% � 7KH

ODVW WHUP LV WKH LQWHUDFWLRQ +DPLOWRQLDQ +, � 7KH FRXSOLQJ FRQVWDQWV ZLOO

EH VSHFLnHG ODWHU� H[DFW UHVXOWV REWDLQHG LQ 6HFWLRQ � DSSO\ IRU JHQHUDO

�N DQG JN � +HUH DQG LQ WKH IROORZLQJ ZH XVH WKH FRQYHQWLRQ

xK  � �����

DQG ZH DOVR DVVXPH WKDW WKH HQHUJ\ OHYHOV RI HDFK RVFLOODWRU DUH VKLIWHG

E\ �
�
�N VR WKDW WKH JURXQG VWDWH RI HDFK RVFLOODWRU KDV ]HUR HQHUJ\�

6LQFH ZH DVVXPH WKDW +6 DQG e6 FRPPXWH� ZH FDQ VHOHFW D FRPPRQ

VHW MLL RI HLJHQVWDWHV�

^ �� ^



+6 MLL  (LMLL � �����

e6 MLL  wLMLL � �����

2QH RI WKH VLPSOLnFDWLRQV KHUH� GXH WR WKH IDFW WKDW +6 DQG e6 FRPPXWH�

LV WKDW WKHVH HLJHQVWDWHV DXWRPDWLFDOO\ FRQVWLWXWH WKH ?SUHIHUUHG EDVLV�

PHQWLRQHG HDUOLHU�

:H ZLOO DVVXPH WKDW LQLWLDOO\ WKH TXDQWXP V\VWHP LV LQ D SXUH RU

PL[HG VWDWH GHVFULEHG E\ WKH GHQVLW\ PDWUL[ |���� QRW HQWDQJOHG ZLWK WKH

EDWK� )RU WKH EDWK� ZH DVVXPH WKDW HDFK RVFLOODWRU LV LQGHSHQGHQWO\ WKHU�

PDOL]HG �SRVVLEO\ E\ SULRU FRQWDFW ZLWK D ?WUXH� KHDW EDWK� DW WHPSHUD�

WXUH 7 � ZLWK WKH GHQVLW\ PDWUL[ tN� 7KH WRWDO V\VWHP�SOXV�EDWK GHQVLW\

PDWUL[ ZLOO WKHQ EH WKH SURGXFW

|���
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tN  =b�
N Hbn�ND

\
N
DN � �����
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=N s ��b Hbn�N�b� � �����

ZKHUH =N LV WKH SDUWLWLRQ IXQFWLRQ IRU WKH RVFLOODWRU N� 7KH TXDQWLW\ n

ZDV GHnQHG LQ ������ ,QWURGXFWLRQ RI WKH WHPSHUDWXUH SDUDPHWHU YLD WKH

LQLWLDO VWDWH RI WKH EDWK LV FRPPRQ LQ WKH OLWHUDWXUH�������b�����b������������

:KLOH LW PD\ VHHP DUWLnFLDO� ZH UHFDOO WKDW WKH EDWK LV VXSSRVHG WR EH

D ODUJH V\VWHP SUHVXPDEO\ UHPDLQLQJ WKHUPDOL]HG RQ WKH WLPH VFDOHV RI

LQWHUHVW� 6SHFLnF UHVXOWV LQGLFDWLQJ WKDW WKH ERVRQLF KHDW EDWK FDQ EH

YLHZHG DV D VRXUFH RI WKHUPDOL]LQJ QRLVH KDYH EHHQ PHQWLRQHG HDUOLHU� VHH

DOVR 5HI� ���

2XU REMHFWLYH LV WR VWXG\ WKH UHGXFHG GHQVLW\ PDWUL[ RI WKH V\VWHP

DW WLPH W w �� LW KDV WKH IROORZLQJ PDWUL[ HOHPHQWV LQ WKH SUHIHUUHG EDVLV�

|PQ�W�  7U%
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+HUH WKH RXWHU WUDFH LV WDNHQ RYHU WKH VWDWHV RI WKH KHDW EDWK� L�H�� WKH

ERVRQLF PRGHV� 7KH LQQHU PDWUL[ HOHPHQW LV LQ WKH VSDFH RI WKH TXDQWXP

V\VWHP� 1RWH WKDW IRU QR FRXSOLQJ WR WKH EDWK� L�H�� IRU JN  �� WKH GHQVLW\

PDWUL[ RI WKH V\VWHP LV VLPSO\

>|PQ�W�@JN �  |PQ���H
L�(Qb(P�W � �����
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)RU WKH LQWHUDFWLQJ V\VWHP� WKH KHDW�EDWK VWDWHV PXVW EH VXPPHG

RYHU LQ WKH WUDFH LQ ������ ,W LV LQVWUXFWLYH WR FRQVLGHU D PRUH JHQHUDO FDVH

ZLWK WKH EDWK FRQVLVWLQJ RI LQGHSHQGHQW ?PRGHV� ZLWK WKH +DPLOWRQLDQV

0N� VR WKDW

+%  
;
N

0N � ������

ZKHUH IRU WKH ERVRQLF EDWK ZH KDYH 0N  �ND
\
NDN � 6LPLODUO\� IRU WKH

LQWHUDFWLRQ WHUP ZH DVVXPH FRXSOLQJ WR HDFK PRGH LQGHSHQGHQWO\�

+,  e6

;
N

-N � ������

ZKHUH IRU WKH ERVRQLF EDWK ZH KDYH -N  JeNDN � JD
\
N � 5HODWLRQ �����

UHPDLQV XQFKDQJHG� ZLWK WKH GHnQLWLRQV ����� DQG ����� UHSODFHG E\
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=N  7UN
d
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ZKHUH WKH WUDFH LV RYHU D VLQJOH PRGH N�

2ZLQJ WR WKH IDFW WKDW +6 DQG e6 VKDUH FRPPRQ HLJHQIXQFWLRQV�
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WKH LQQHU PDWUL[ HOHPHQW FDOFXODWLRQ LQ ������ LQ WKH V\VWHP VSDFH� FDQ EH

H[SUHVVHG LQ WHUPV RI WKH HLJHQYDOXHV GHnQHG LQ ������������ 6SHFLnFDOO\�

ZH GHnQH WKH EDWK�VSDFH RSHUDWRUV

KL  (L �
;
N

0N � wL

;
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ZKLFK IROORZ IURP WKH IRUP RI WKH +DPLOWRQLDQ� 7KH FDOFXODWLRQ LQ �����

WKHQ UHGXFHV WR
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:H ZLOO QRZ DVVXPH WKDW WKH RSHUDWRUV RI GLmHUHQW PRGHV N FRP�

PXWH� 7KLV LV REYLRXV IRU WKH ERVRQLF RU VSLQ EDWKV DQG PXVW EH FKHFNHG

H[SOLFLWO\ LI RQH XVHV WKH SUHVHQW IRUPXODWLRQ IRU D IHUPLRQLF EDWK� 7KHQ

ZH FDQ IDFWRU WKH H[SUHVVLRQ ������ DV IROORZV�
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7KLV H[SUHVVLRQ� RU YDULDQWV GHULYHG LQ HDUOLHU ZRUNV������� VXJJHVWV WKDW

WKH SUREOHP LV H[DFWO\ VROYDEOH LQ VRPH FDVHV� ,QGHHG� WKH LQQHU WUDFH LQ

RYHU D VLQJOH PRGH RI WKH EDWK� )RU D VSLQ EDWK RI VSLQ� �� ?PRGHV� WKH

FDOFXODWLRQ LQYROYHV RQO\ �� d ���PDWUL[ PDQLSXODWLRQV DQG LV WKHUHIRUH

VWUDLJKWIRUZDUG����� +RZHYHU� LQ WKLV FDVH WKH RQO\ QRQWULYLDO FKRLFH RI

WKH ?SRLQWHU REVHUYDEOH� FRUUHVSRQGV� LQ RXU QRWDWLRQ� WR e6  +6 � ZLWK

ERWK RSHUDWRUV XVXDOO\ FKRVHQ HTXDO WR WKH 3DXOL PDWUL[ }] � 7KHUH LV DOVR

KRSH IRU REWDLQLQJ DQDO\WLFDO UHVXOWV IRU RWKHU EDWKV ZLWK PRGHV LQ nQLWH�

GLPHQVLRQDO VSDFHV� VXFK DV VSLQV RWKHU WKDQ �
�
� ZH KDYH QRW H[SORUHG WKLV

SRVVLELOLW\�

)RU WKH ERVRQLF VSLQ EDWK� WKH FDOFXODWLRQ LV LQ WKH VSDFH RI D VLQJOH

KDUPRQLF RVFLOODWRU� ,W FDQ EH FDUULHG RXW E\ XVLQJ RSHUDWRU LGHQWLWLHV����

:H KDYH XVHG LQVWHDG D PHWKRG EDVHG RQ WKH FRKHUHQW�VWDWH IRUPDOLVP

ZKLFK LV GHWDLOHG LQ WKH QH[W VHFWLRQ�
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�� ([DFW 6ROXWLRQ IRU WKH 'HQVLW\ 0DWUL[

:H XWLOL]H WKH FRKHUHQW�VWDWH IRUPDOLVP� H�J�� 5HIV� ��� ��� 7KH FR�

KHUHQW VWDWHV M]L DUH WKH HLJHQVWDWHV RI WKH DQQLKLODWLRQ RSHUDWRU D ZLWK

FRPSOH[ HLJHQYDOXHV ]� 1RWH WKDW IURP QRZ RQ ZH RPLW WKH RVFLOODWRU

LQGH[ N ZKHQHYHU WKLV OHDGV WR QR FRQIXVLRQ� 7KHVH VWDWHV DUH QRW RUWKRJ�

RQDO�
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7KH\ IRUP DQ RYHU�FRPSOHWH VHW� DQG RQH FDQ VKRZ WKDW WKH LGHQWLW\

RSHUDWRU LQ D VLQJOH�RVFLOODWRU VSDFH FDQ EH REWDLQHG DV WKH LQWHJUDO
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+HUH WKH LQWHJUDWLRQ E\ GHnQLWLRQ FRUUHVSRQGV WR
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)XUWKHUPRUH� IRU DQ DUELWUDU\ RSHUDWRU $� ZH KDYH� LQ D VLQJOH�RVFLOODWRU

VSDFH�
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)LQDOO\� ZH QRWH WKH IROORZLQJ LGHQWLW\����� ZKLFK ZLOO EH XVHG ODWHU�
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,Q WKLV UHODWLRQ l LV DQ DUELWUDU\ F�QXPEHU� ZKLOH 1 GHQRWHV QRUPDO

RUGHULQJ�

7KH UHVXOW ������ IRU WKH UHGXFHG GHQVLW\ PDWUL[� DVVXPLQJ WKH ERVRQLF

VSLQ EDWK� FDQ EH ZULWWHQ DV
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ZKHUH ZH XVHG ������ 2PLWWLQJ WKH PRGH LQGH[ N IRU VLPSOLFLW\� WKH

H[SUHVVLRQ IRU 6PQ IRU HDFK PRGH LQ WKH SURGXFW LV

6PQ  =b�7U

�
HbLWoPHbn�D\DHLWoQ

w
� �����

ZKHUH WKH WUDFH LV LQ WKH VSDFH RI WKDW PRGH� DQG ZH GHnQHG
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7KH SDUWLWLRQ IXQFWLRQ = LV JLYHQ LQ ������ 5HODWLRQV ����������� DOUHDG\

LOOXVWUDWH RQH RI RXU PDLQ UHVXOWV� DSDUW IURP WKH SKDVH IDFWRU ZKLFK

ZRXOG EH SUHVHQW LQ WKH QRQLQWHUDFWLQJ FDVH DQ\ZD\� WKH V\VWHP HQHUJ\

HLJHQYDOXHV (Q GR QRW HQWHU LQ WKH H[SUHVVLRQ IRU |PQ�W�� 7KH LQWHUHVW�

LQJ WLPH GHSHQGHQFH LV FRQWUROOHG E\ WKH HLJHQYDOXHV wQ RI WKH ?SRLQWHU

REVHUYDEOH� RSHUDWRU e6 �DQG E\ WKH KHDW�EDWK FRXSOLQJ SDUDPHWHUV �N

DQG JN��

,Q RUGHU WR HYDOXDWH WKH WUDFH LQ ������ ZH XVH WKH FRKHUHQW�VWDWH

DSSURDFK� :H KDYH
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,Q RUGHU WR HYDOXDWH WKH nUVW DQG ODVW IDFWRUV LQ ����� ZH GHnQH VKLIWHG

RSHUDWRUV
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LQ WHUPV RI ZKLFK ZH KDYH
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6LQFH s DQG s\ VWLOO VDWLVI\ WKH ERVRQLF FRPPXWDWLRQ UHODWLRQ >s� s\@  ��

WKH QRUPDO�RUGHULQJ IRUPXOD DSSOLHV� 7KXV� IRU WKH nUVW IDFWRU LQ ������

IRU LQVWDQFH� ZH JHW
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&ROOHFWLQJ DOO WKHVH H[SUHVVLRQV� RQH FRQFOXGHV WKDW WKH FDOFXODWLRQ RI

6PQ LQYROYHV VL[ *DXVVLDQ LQWHJUDWLRQV RYHU WKH UHDO DQG LPDJLQDU\ SDUWV

RI WKH YDULDEOHV ]�� ]�� ]�� 7KLV LV D UDWKHU OHQJWK\ FDOFXODWLRQ EXW LW FDQ

EH FDUULHG RXW LQ FORVHG IRUP� 7KH UHVXOW� ZLWK LQGLFHV N UHVWRUHG� LV
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7KH H[SUHVVLRQ ������� ZLWK ������� ZKHQ LQVHUWHG LQ ������ LV WKH SULQ�

FLSDO UHVXOW RI WKLV VHFWLRQ� ,W ZLOO EH GLVFXVVHG LQ WKH QH[W VHFWLRQ� +HUH

ZH QRWH WKDW LQ WKH VWXGLHV RI V\VWHPV LQYROYLQJ WKH ERVRQLF KHDW EDWK

RQH IUHTXHQWO\ DGGV WKH ?UHQRUPDOL]DWLRQ� WHUP���� LQ WKH +DPLOWRQLDQ�
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ZKHUH LQ RXU FDVH
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7KH UROH RI WKLV UHQRUPDOL]DWLRQ KDV EHHQ UHYLHZHG LQ 5HI� ��� +HUH ZH

RQO\ QRWLFH WKDW WKH VROH HmHFW RI DGGLQJ WKLV WHUP LQ RXU FDOFXODWLRQ LV WR

PRGLI\ WKH LPDJLQDU\ SDUW RI 3PQ�N ZKLFK SOD\V QR UROH LQ RXU VXEVHTXHQW

GLVFXVVLRQ� 7KH PRGLnHG H[SUHVVLRQ LV
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�� &RQWLQXXP /LPLW DQG 'LVFXVVLRQ

7KH UHVXOWV RI WKH SUHFHGLQJ VHFWLRQ� ������ ������� ������� FDQ EH

FRQYHQLHQWO\ GLVFXVVHG LI ZH FRQVLGHU PDJQLWXGHV RI WKH PDWUL[ HOHPHQWV

RI WKH UHGXFHG GHQVLW\ PDWUL[ |�W�� :H KDYH

M|PQ�W�M  M|PQ���M H[S

�
b
�

�
�wP b wQ�

�
b�W�

w
� �����
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7KHVH UHVXOWV VXJJHVW VHYHUDO LQWHUHVWLQJ FRQFOXVLRQV� )LUVW� WKH GHFRKHU�

HQFH LV FOHDUO\ FRQWUROOHG E\ WKH LQWHUDFWLRQ ZLWK WKH KHDW EDWK UDWKHU

WKDQ E\ WKH V\VWHP
V +DPLOWRQLDQ� 7KH HLJHQYDOXHV RI WKH ?SRLQWHU RE�

VHUYDEOH� e6 GHWHUPLQH WKH UDWH RI GHFRKHUHQFH� ZKLOH WKH W\SH RI WKH

EDWK DQG FRXSOLQJ FRQWUROV WKH IRUP RI WKH IXQFWLRQ b�W�� ,W LV LQWHUHVWLQJ

WR QRWH WKDW VWDWHV ZLWK HTXDO HLJHQYDOXHV wP ZLOO UHPDLQ HQWDQJOHG HYHQ

LI WKHLU HQHUJLHV (P DUH GLmHUHQW� $V H[SHFWHG� WKH PDJQLWXGH RI WKH

GLDJRQDO PDWUL[ HOHPHQWV UHPDLQV XQFKDQJHG�

6HFRQGO\� ZH QRWH WKDW b�W� LV D VXP RI SRVLWLYH WHUPV� +RZHYHU� IRU
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WUXH GHFRKHUHQFH� L�H�� LQ RUGHU IRU WKLV VXP WR GLYHUJH IRU ODUJH WLPHV� RQH

QHHGV D FRQWLQXXP RI IUHTXHQFLHV DQG LQWHUDFWLRQV ZLWK WKH EDWK PRGHV

WKDW DUH VWURQJ HQRXJK DW ORZ IUHTXHQFLHV� VHH EHORZ� )URP WKLV SRLQW RQ�

RXU GLVFXVVLRQ RI WKH IXQFWLRQ b�W� LV EDVLFDOO\ LGHQWLFDO WR WKDW LQ 5HI� ��

�VHH DOVR 5HI� ��� ZH RQO\ RXWOLQH WKH PDLQ SRLQWV� ,Q WKH FRQWLQXXP OLPLW�

H[HPSOLnHG IRU LQVWDQFH E\ SKRQRQ PRGHV LQ VROLG VWDWH� ZH LQWURGXFH

WKH GHQVLW\ RI VWDWHV *��� DQG VXP RYHU IUHTXHQFLHV UDWKHU WKDQ PRGHV

FKDUDFWHUL]HG E\ WKHLU ZDYH YHFWRUV� 7KH ODWWHU FKDQJH RI WKH LQWHJUDWLRQ

YDULDEOH LQWURGXFHV WKH IDFWRU ZKLFK ZH ZLOO ORRVHO\ ZULWH DV GN
G�
� LW PXVW

EH FDOFXODWHG IURP WKH GLVSHUVLRQ UHODWLRQ RI WKH ERVRQLF PRGHV� 7KXV ZH

KDYH

b�W� �

=
G�

GN

G�
*���MJ���M� �b� VLQ�

�W

�
FRWK

n�

�
� �����

,Q 5HI� ��� WKH IROORZLQJ FKRLFH ZDV FRQVLGHUHG� PRWLYDWHG E\ SURSHUWLHV

RI WKH SKRQRQ nHOG LQ VROLGV� VHH DOVR 5HIV� ����� ������ ���
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7KLV FRPELQDWLRQ RI WKH FRXSOLQJ FRQVWDQWV DQG IUHTXHQFLHV KDV EHHQ

WHUPHG WKH VSHFWUDO IXQFWLRQ� +HUH �F LV WKH 'HE\H FXWRm IUHTXHQF\�

6SHFLnFDOO\� WKH DXWKRUV RI 5HI� �� KDYH DQDO\]HG WKH FDVHV Q  � DQG
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Q  �� )RU Q  �� WKUHH UHJLPHV ZHUH LGHQWLnHG� GHnQHG E\ WKH WLPH VFDOH

IRU WKHUPDO GHFRKHUHQFH� n� ZKLFK LV ODUJH IRU ORZ WHPSHUDWXUHV� VHH ������

DQG WKH WLPH VFDOH IRU TXDQWXP�oXFWXDWLRQ HmHFWV� �b�
F � 5HFDOO WKDW ZH

XVH WKH XQLWV xK  �� 7KH SUHVHQW WUHDWPHQW RQO\ PDNHV VHQVH SURYLGHG

�b�
F ~ n� $FFRUGLQJ WR 5HI� ��� WKH nUVW� ?TXLHW� UHJLPH W ~ �b�

F

FRUUHVSRQGV WR QR VLJQLnFDQW GHFRKHUHQFH DQG b � ��FW�
�� 7KH QH[W�

?TXDQWXP� UHJLPH� �b�
F ~ W ~ n� FRUUHVSRQGV WR GHFRKHUHQFH GULYHQ

E\ TXDQWXP oXFWXDWLRQV DQG b � OQ��FW�� )LQDOO\� IRU W � n� LQ WKH

?WKHUPDO� UHJLPH� WKHUPDO oXFWXDWLRQV SOD\ PDMRU UROH LQ GHFRKHUHQFH

DQG b � W n�

)RU Q  �� GHFRKHUHQFH LV LQFRPSOHWH����� ,QGHHG� ZKLOH Q PXVW EH

SRVLWLYH IRU WKH LQWHJUDO LQ ����� WR FRQYHUJH� RQO\ IRU Q � � ZH KDYH

GLYHUJHQW b�W� JURZLQJ DFFRUGLQJ WR D SRZHU ODZ IRU ODUJH WLPHV �LQ IDFW�

� W�bQ� LQ WKH ?WKHUPDO� UHJLPH� 7KXV� VWURQJ HQRXJK FRXSOLQJ MJ���M WR

WKH ORZ�IUHTXHQF\ PRGHV RI WKH KHDW EDWK LV FUXFLDO IRU IXOO GHFRKHUHQFH�

,Q VXPPDU\� ZH GHULYHG H[DFW UHVXOWV IRU WKH PRGHO RI GHFRKHUHQFH

GXH WR HQHUJ\�FRQVHUYLQJ LQWHUDFWLRQV ZLWK WKH ERVRQLF KHDW EDWK� :H nQG

WKDW WKH VSHFWUXP RI WKH ?SRLQWHU REVHUYDEOH� WKDW HQWHUV WKH LQWHUDFWLRQ

ZLWK WKH EDWK FRQWUROV WKH UDWH RI GHFRKHUHQFH� 7KH SUHFLVH IXQFWLRQDO

IRUP RI WKH WLPH GHSHQGHQFH LV GHWHUPLQHG ERWK E\ WKH FKRLFH RI KHDW�EDWK

DQG V\VWHP�EDWK FRXSOLQJ� +RZHYHU� IRU WKH FDVH VWXGLHG� LW LV XQLYHUVDO
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IRU DOO SRLQWHU REVHUYDEOHV DQG IRU DOO WKH PDWUL[ HOHPHQWV RI WKH UHGXFHG

GHQVLW\ PDWUL[�

7KH DXWKRUV ZRXOG OLNH WR WKDQN 3URIHVVRU /� 6� 6FKXOPDQ IRU XVHIXO

GLVFXVVLRQV� 7KLV ZRUN KDV EHHQ VXSSRUWHG LQ SDUW E\ 86 $LU )RUFH

JUDQWV� FRQWUDFW QXPEHUV )��������������� DQG )���������������� 7KLV

nQDQFLDO DVVLVWDQFH LV JUDWHIXOO\ DFNQRZOHGJHG�
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