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Abstract
Most mathematical models for the spread of disease use differential equations 
based on uniform mixing assumptions or ad hoc models for the contact process. 
Here we explore the use of dynamic bipartite graphs to model the physical contact 
patterns that result from movements of individuals between specific locations. 
The graphs are generated by large-scale individual-based urban traffic simulations 
built on actual census, land-use and population-mobility data. We find that the 
contact network among people is a strongly connected small-world-like graph 
with a well-defined scale for the degree distribution. However, the locations graph 
is scale-free, which allows highly efficient outbreak detection by placing sensors 
in the hubs of the locations network. Within this large-scale simulation 
framework, we then analyze the relative merits of several proposed mitigation 
strategies for smallpox spread. Our results suggest that outbreaks can be contained 
by a strategy of targeted vaccination combined with early detection without 
resorting to mass vaccination of a population.
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Summary
Assessments of how best to respond to bio-terrorist attack have come 
up with conflicting results in the matter of smallpox vaccination. Is 

mass vaccination vital? Or can targeted vaccination of mobile at-risk 
individuals be effective? Our work suggests that, if the smallpox 

release is detected promptly and the population retreats home quickly, 
targeted vaccination can do the job in an urban situation. This work 

involved the EpiSims epidemiological simulation system, a derivative 
of the TRANSIMS system produced at the Los Alamos National 

Laboratory to simulate regional traffic movements. The traffic grid is a 
good proxy for a social network as it is transport infrastructure that 

constrains people's choices about where to go, and when to go there.
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Introduction
The dense social-contact networks characteristic of urban areas form a perfect 
fabric for fast, uncontrolled disease propagation. How can an outbreak be 
contained before it becomes an epidemic, and what disease surveillance 
strategies should be implemented? Recent studies, under the assumption of 
homogeneous mixing, make the case for mass vaccination in response to a 
smallpox outbreak. With different assumptions, it has been shown that mass 
vaccination is not required. Here we present a highly resolved agent-based 
simulation tool (EpiSims), which combines realistic estimates of population 
mobility, based on census and land-use data, with parameterized models for 
simulating the progress of a disease within a host and of transmission between 
hosts. EpiSims is based on the Transportation Analysis and Simulation System 
(TRANSIMS) developed at Los Alamos National Laboratory, which produces 
estimates of social networks based on the assumption that the transportation 
infrastructure constrains people's choices about where and when to perform 
activities. The case study we present is a model of Portland, Oregon, USA, but 
the approach is broadly applicable. People, in the course of carrying out their 
daily activities (such as work, study or shopping), move between several 
locations, both exposing themselves to infectious agents within these locations 
and transporting those agents between locations. We represent these processes 
by a social contact network, which can be represented as a bipartite graph, GPL, 
as shown by the example in Fig. 1a. For Portland, GPL has about 1.6 million 
vertices, with a giant component of about 1.5 million people and 180,000 
locations. The degree distribution of the people vertices in GPL, that is, the 
number of people Qj

PL who visited j different locations, is shown in Fig. 2a. It 
has a sharp peak near the average value of about four different locations, 
followed by a fast, exponentially decaying tail. The degree distribution for the 
location vertices in GPL is very different, as shown in Fig. 2b. This is the 
number of locations Mi

PL having i different visitors during the day. The 
distribution has a power-law tail with an exponent of about -2.8. 

Figure 1 An example of a small 
social contact network. a, A bipartite 
graph GPL with two types of vertex 
representing four people (P) and 
four locations (L). If person p visited 
location l, there is an edge in this 
graph between p and l. Vertices are 
labeled with appropriate 
demographic or geographic 
information, edges with arrival and 
departure times. b, c, The two 
disconnected graphs GP and GL
induced by connecting vertices that 
were separated by exactly two edges 
in GPL. d, The static projections ĜP
and ĜL resulting from ignoring time 
labels in GP and GL. People are 
represented by filled circles, and 
locations by open squares. 

Figure 2 Degree distributions for the estimated Portland social network. a, The number of 
people Qj

PL who visited j different locations in the bipartite people�locations graph GPL. b, 
The number of locations Mi

PL in GPL that are visited by exactly i different people. The slope 
of the straight-line graph is -2.8. c, The number of people who have k neighbors in the static 
people�contact graph ĜP on log�log scale. d, The in and out degree distributions of the 
locations network GL. The slope of the straight-line graph is -2.8.

The Model
For many infectious diseases, transmission occurs mainly between people 
who are collocated (simultaneously in the same location), and spread is due 
mainly to people's movement. Hence we look at two natural projections of 
GPL obtained by drawing an edge between all pairs of vertices distance two 
from each other on the bipartite graph, as illustrated in Fig. 1b, c. The result 
is two disconnected graphs: GP, containing only people vertices, and GL, 
containing only locations. In GP, the edges are labeled with the sets of time 
intervals during which the people were collocated. For simplicity, however, 
we consider ĜP, a static projection of the time-resolved GP, obtained by 
discarding time labels, as shown in Fig. 1d. Figure 2c shows the degree 
distribution of ĜP for the Portland network. The other important projection 
of the bipartite graph is the locations network GL. If there is at least one 
person traveling from location l1 directly to l2 during the day, the two 
vertices corresponding to locations l1 and l2 are connected by a directed 
edge in GL from l1 to l2 that indicates whether the person is traveling in or 
out of the location. The in and out degree distributions for the locations 
network are superimposed in Fig. 2d. The power-law decay evident there 
shows that ĜL is a scale-free network with an exponent of  -2.8. 

Results
Measurements of the average clustering coefficient for ĜP yield CP ≈ 0.48, 
and for ĜL, CL ≈ 0.04, both much larger than the roughly 10-6 of an Erdös�
Rényi random graph with the same number of vertices and average degree. 
This, together with the degree distribution and its small diameter (about 6), 
suggests that the people-contact graph is more like a small-world graph than 
a random graph. The clustering coefficient versus degree shown in Fig. 3 
indicate that the locations network ĜL is an empirical example of a 
hierarchical scale-free structure. It is natural to consider estimation schemes 
for global topological measures, such as expansion. Informally, the higher 
the expansion, the quicker is the spread of any phenomenon (such as disease, 
gossip or data). We estimated an expansion value of about 2 for ĜP by 
random sampling, indicating that the people-contact graph is extremely 
connected. An immediate consequence is that, as for an assortatively mixed 
network, ĜP cannot be shattered by removing (by means of vaccination or 
quarantine) a small number of high-degree vertices. To verify this, we have 
computed the size of the giant component�the maximum number of people 
at risk for disease introduced by a single person�when all vertices of degree 
more than k are removed. A unique giant component persists even when all 
vertices of degree 11 and higher are removed, as shown in Fig. 4a. Thus, 
attempting to shatter the contact graph by vaccinating the most gregarious 
people in a population would essentially be equivalent to mass vaccination. 
Similarly, we show in Fig. 4b, c that closing the most-visited locations�or 
vaccinating everyone who visits them�does not shatter the induced people-
contact graph until large fractions of the population have been affected. 

Figure 4 Shattering and covering the people�contact graph. In a we remove (by vaccination 
or quarantine) all people with degree k and higher from the bipartite graph GPL. In b and c we 
remove all locations with degree k or higher from GPL and monitor the size of the largest 
connected component in the static people�contact graph induced by the remaining bipartite 
graph. d, Overlap ratios by degree. The lower curve shows the cumulative overlap ratio by 
degree, which is the overlap ratio for locations having degree k or less. The upper curve 
shows the overlap ratio for locations having degree exactly k. 

Figure 5 Cumulative number of 
deaths per number of initial 
infected, for the case of a 
smallpox outbreak in downtown 
Portland, under a number of 
different response strategies: 
squares, no vaccine; stars, 10-
day delay; multiplication signs, 
7-day delay; plus signs, 4-day 
delay. 

Can epidemics be stopped without resorting to mass vaccination? Alternatives 
rely on early detection and efficient targeting. Here we introduce the overlap 
ratio, another non-local property of the graph that is crucial to early detection. 
Consider an idealized situation in which sensors at a location can detect 
whether any person there is infected. The feasibility of early detection 
depends on the number of sensors required to cover the population. This 
problem is equivalent to finding the minimum dominating set. The overlap 
ratio by degree is shown in Fig. 4d. Clearly, not many people visit more than 
one high-degree location, which implies that the high-degree location vertices 
form a near-optimal dominating set. With high probability, early identification 
could be accomplished by using sensors placed at locations with the highest 
degree.
There is not yet a consensus on models of smallpox. We have designed a 
model that captures many features on which there is widespread agreement 
and allows us to vary poorly understood properties through reasonable ranges. 
We studied the sensitivity of the number of casualties to three factors: 
mitigation efforts, delay in implementing mitigation efforts, and whether 
people move about while infectious. We simulated a passive (do nothing) 
'baseline' and three active responses: mass vaccination covering 100% of the 
population in 4 days ('mass'); targeted vaccination and quarantine with 
unlimited resources ('targeted'); and the same targeted response, using only 
half as many contact tracers and vaccinators ('limited'). For a movie showing 
the spatial spread of disease under two different response strategies, see [*]. 
Figure 5 compares the efficacy of these strategies. For each strategy we plot 
(on a logarithmic scale) the ratio of the cumulative number of deaths by day 
100 to the number initially infected. The absolute numbers are less important 
than the rank and relative sizes of gaps between the points. Also shown are 
the effects of delays of 4, 7 or 10 days in implementing the response. For each 
of the responses including the baseline, we allowed infected people to isolate 
themselves by withdrawing to the home. This could be due either to the 
natural history of the disease, which incapacitates its victims, or to actions 
taken by public health officials encouraging people to stay home. The results 
are grouped according to time of withdrawal to the home: (1) early, in which 
everyone withdraws before becoming infectious; (2) late, in which everyone 
withdraws about 24 h after becoming infectious; and (3) never, in which 
everyone carries on their daily activities unless they die. The extreme cases 
are unrealistic but are shown here because they demonstrate the existence of a 
clear transition. In this study, time of withdrawal to the home is by far the 
most important factor, followed by delay in response. This indicates that 
targeted vaccination is feasible when combined with fast detection. Ironically, 
the actual strategy used is much less important than either of these factors.

Figure 3 Clustering coefficients by degree for a) the people contact network, and b) 
the locations network (after discarding the direction of edges in the latter)


