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We consider a simple stochastic growth model on a small-world network. The 
same process on a regular lattice exhibits kinetic roughening governed by the 
Kardar-Parisi-Zhang equation. In contrast, when the interaction topology is 
extended to include a finite number of random links for each site, the surface 
becomes macroscopically smooth. The correlation length of the surface 
fluctuations becomes finite and the surface grows in a mean-field fashion. Our 
finding provides a possible way to establish control without global intervention 
in non-frustrated agent-based systems. A recent application is the construction 
of a fully scalable algorithm for parallel discrete-event simulation. 
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Phase transitions in Small-World (SW) Networks
! Watts&Strogatz (1998): �� enhanced signal-propagation speed,  
computational power, and synchronizability�.
! Finite number of random links per site (average degree is not 
extensive)
! Phase transition or phase ordering is possible even when random links 
are added to an originally one-dimensional substrate:
! Barrat&Weight (2000), Gitterman (2000), Kim et al. (2001), Herrero
(2002), Jeong et al. (2003), Novotny and Wheeler (2004): Ising model on 
SW network
! Hong et al. (2002): XY-model and Kuramoto oscillators on SW ntwk.
! Hastings (2003): general criterion for mean-field-like phase transitions 
for interacting systems on SW networks. 

Synchronization in Parallel Discrete-Event 
Simulations

Parallelization for asynchronous dynamics

Paradoxical task:
! (algorithmically) parallelize (physically) non-parallel dynamics  

Difficulties:
! Discrete events (updates) are not synchronized by  a

global clock
!Traditional algorithms appear inherently serial (e.g.,  Glauber
attempt one site/spin  update at a time)

However, these algorithms are not inherently serial (Lubachevsky �87)

Two Approaches for Synchronization

"Conservative
! PE �idles� if causality is not guaranteed
! Utilization, 〈〈〈〈u〉〉〉〉: fraction of non-idling PEs

τi

(site index) i

d=1

"Optimistic (or speculative)
! PEs assume no causality violations
! Rollbacks to previous states once causality violation is

found (extensive state saving or reverse simulation)
! Rollbacks can cascade (�avalanches�)

Basic Conservative Approach

(nn: nearest neighbors)

� one-site-per PE, NPE=Ld

� t=0,1,2,� parallel steps
� τi(t) local simulated time
� local time increments are

iid exponential random variables
� advance only if

"Scalability modeling
!utilization (efficiency) 〈u(t)〉

(fraction of non-idling PEs)
density of local minima

!width (spread) of time surface:
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Simulating the Parallel Simulations
"Universality/roughness (d=1)
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G.K. et al., 
PRL 84, 1351 
(2000)

Utilization (Efficiency)
Finite-size effects for the density of local minima/average 
growth rate (steady state):

/~ /L L Lu u Lσ = 〈 〉 − 〈 〉2 2 1 21

2464.0≈〉〈 ∞u

.
L

constu u
L∞〈 〉 ≅ 〈 〉 +(d=1)

Implications for Scalability
Simulation reaches steady state for
(arbitrary d)

zLt >>

"Simulation phase: scalable 

"Measurement (data management) phase: not scalable 
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〈u〉∞ asymptotic average growth rate (simulation speed or 
utilization ) is non-zero

αLw ~w
measurement at τmeas:
(e.g., simple averages)

small-world-like
connections: (used with 

probability p>0)

αLw ~ )(. 1−+= Lconstw ο

steady-state structure factor:
(Fourier transform)

0.0=p 1.0=p

Synchronization/Time-Horizon Control Via Small-
World Communication Network Design

Roughness (Width)
Utilization (fraction 
of non-idling PEs)

Utilization Trade-off/Scalable Data Management

Speedup 
(utilization × NPE )

G.K. et al., Science 299, 677 (2003)

Edwards-Wilkinson Model on a Small-World Network 
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for a single realization of 
the random network

Impurity-averaged perturbation theory

[see also Monasson, EPJB 12, 555 (1999)
in the context of diffusion on SWN]

Comparison of exact numerical diagonalization of Γij
with the results of the impurity-averaged perturbation theory
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Summary
� Synchronizability of large-scale non-frustrated agent-based systems with SW 

network: application to construct fully scalable parallel simulations without global 
synchronizations

� Spectrum of the coupling matrix exhibits a gap/pseudo-gap, yielding a finite 
width for stochastic growth on a small-world network for all p>0

Foltin et.al., �94

Krug and Meakin, �90
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self-energy (effective interaction due to random links)

[ ]Nw 〉〈 2 averaged over network realizations (�disorder-averaged� width) 

finite correlation length finite widthfor any p>0

(hard and soft SWN)
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:or0 pJij =
N/2 random links are selected,
such that each site has exactly 
one random link of strength p
(in addition to n.n.)

�soft� SW network (Erdős-Rényi network on top of the ring):

�hard� SW network:

Width from exact numerical diagonalization:
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synchronization landscape
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Kozma et al. PRL 92, 108701 (2004).


