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Abstract Simulating the Parallel Simulations Utilization Trade-off/Scalable Data Management
«»Universality/roughness  (d=1) 2t
We consider a simple stochastic growth model on a small-world network. The . 07T==3 T+ +...+noise
same process on a regular lattice exhibits kinetic roughening governed by the (WA@Y, ~ P r<<t, (~L, z=alf g (p ) T
Kardar-Parisi-Zhang equation. In contrast, when the interaction topology is 3 e, if t>> tx’ * ’ ) N effective relaxation to the mean
extended to include a finite number of random links for each site, the surface : Foltin et.al., *94 GK. etal., Science 299, 677 (2003) facilitated by the SW links
becomes macroscopically smooth. The correlation length of the surface _ o
fluctuations becomes finite and the surface grows in a mean-field fashion. Our =033, a=05 POW) =) (D(WZ KWZ)) . Utilization (fraction _Speedup
finding provides a possible way to establish control without global intervention exact KPZ: - N = Roughness (Width) of non-idling PEs) (utilization X Npz)
in non-frustrated agent-based systems. A recent application is the construction p=1/3 . o o
of a fully scalable algorithm for parallel discrete-event simulation. a=1/2 . e ©
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] I ] .
Phase transitions in Small-World (SW) Networks o gl £ o 5
GK.etal, i o “
= Watts&Strogatz (1998):  “... enhanced signal-propagation speed, PRL 84,1351 0z I
I power, and synchronizability”. (2000) ) ‘
- Fmtte number of random lmks per site (average degree is not e G oy o R
extensive)
= Phase transmarf or phase orde.nng is possible even when random links Utilization (Efficiency) Edwards-Wilkinson Model on a Small-World Network
are added to an originally one-dimensional substrate: L . . N
= Barrat&Weight (2000), Gitterman (2000), Kim et al. (2001), Herrero Flmte;lslze effect(si for the density of local minima/average Qh = —(2]’!. —h  —h )— ZJ“(h‘ —h N+11.(0)
(2002), Jeong et al. (2003), Novotny and Wheeler (2004): Ising model on growtl ra_te (steady state): const ! it g J !
SW network @ (), =) +
= Hong et al. (2002): XY-model and Kuramoto oscillators on SW ntwk. 5 5 1o Z +17.(¢)
= Hastings (2003): general criterion for mean-field-like phase transitions o, =u), —u); /L K = 2(5 -6,.,-0.
for interacting systems on SW networks. [y — o 1= B Y
o 47 IR I=I"+V V,=6,3J,
Synchronization in Parallel Discrete-Event om0 ~ e v 2,:
Simulations ™ ~ w e “soft” SW network (Erdds-Rényi network on top of the ring):
Parallelization for asynchronous dynamics (u).. =0.2464 e“ g
Paradoxical task: - _ { 1 with probability  p/N
= (algorithmically) parallelize (physically) non-parallel dynamics osir "0 with probability 1-p/N
Difficulties: oxe o
= Discrete events (updates) are not synchronized by a hard S?X,"e‘w"fk: .
global clock I licati for Scalabili & 'N/2 random links are selected,
=Traditional algorithms appear inherently serial (e.g., Glauber mplications for Scalability J,=0orp such that eac}_x site has exactly
) . R . . z one random link of strength p
attempt one site/spin update at a time) Simulation reaches steady state for — § >> [ . L
(arbitrary d) (in addition to n.n.)
However, these algorithms are not inherently serial (Lubac! » ) wy, =y + const.
«+Simulation phase: scalable uy, =\u),, ysa) Width from exact numerical diagonalization:
. . (1), asymptotic average growth rate (simulation speed or N-1 . —
Two Approaches for Synchronization atiization ) i soncrs P {4} cigenvalues of T (4 =0)
rug and Meakin, ‘90
=1 oM ¢ (dat 0 ph ¢ scalabl Wy, = Li(h By )= Lﬁl for a single realization of
) ES . = , =
T, easurement (data management) phase: not scalable iy N& the random network
measurement at Ty, '
(e.g., simple averz’:gﬂes) w~I% [( w) NJ averaged over network realizations (“disorder-averaged” width)
w
. " rough (self-affine) - . .
(site index) i synehronization landscape E~L Impurity-averaged perturbation theory ’
o PN . Kozma et al. PRL 92, 108701 (2004).
< Optimistic (or speculative) i
= PEs assume no causality violations [G]’l =T+ G= ]"’1 G’ =T"
= Rollbacks to previous states once causality violation is Synchronization/Time-Horizon Control Via Small- lf.energy (effective nteraction due to randorm links)
e ey Simulaton) World Communication Network Design oy = [)
- NIT i
. - X ) [see also Monasson, EPJB 12, 555 (1999)
*Conservative o ~— small-worldlke soft” network: - X~ p+.. in the context of diffusion on SWN]
= PE “idles” if causality is not guaranteed £ I 3] (used with 1
= Utilization, u): fraction of non-idling PEs 1 probability p>0) “hard” network: ¥ ~ p—— PJ/ 24,
2
. . p=0.0 p=01
Basic Conservative Approach
-1
W~ I w=const.+0o(L")
« one-site-per PE, Npp=L¢ ( '
+t=0,1,2,... parallel steps finite correlation length for any p>0 finite width
* 1(#) local simulated time
« local time increments are X steady-state structure factor: Comparison of exact numerical diagonalization of I';
iid exponential random variables 1d (ring) h . : SW network with the results of the impurity-averaged perturbation theory
«advance only if 7, <min{7, } (Fourier transform)
1 =T o S(kye< (t,7.,)=( 7,
————- B =(zr0=(7 1) [(W?) ] (ardSWN) (hard and soft SWN)
= =10"
o <+Scalability modeling ::104
Lo =utilization (efficiency) (u(r)) e p=10"
e (fraction of non-idling PEs) po10®
et density of local minima S o
=width (spread) of time surface: ::1
] 1 Ny *
2 =+ \12 -
s s w()=——> [7()T(1)] 0 - -
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