



# Stochastic Growth in a Small World and Applications to Scalable Parallel Discrete-Event Simulations

H. Guclu<sup>1</sup>, B. Kozma<sup>1</sup>, G. Korniss<sup>1</sup>, M.A. Novotny<sup>2</sup>, Z. Toroczkai<sup>3</sup>, M.B. Hastings<sup>3</sup>, P.A. Rikvold<sup>4</sup>

Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, U.S.A.

<sup>2</sup>Department of Physics and Astronomy, and Engineering Research Center, Mississippi State University, P.O. Box 5167, Mississippi State, MS, 39762-5167, U.S.A.

<sup>3</sup>Center for Non-linear Studies and Theoretical Division, Los Alamos National Laboratory, MS B-258 Los Alamos, NM 87545, U.S.A.

Department of Physics, Center for Materials Research and Technology and School of Computational Science and Information Technology, Florida State University, Tallahassee, FL 32306 U.S.A.

#### Abstract

We consider a simple stochastic growth model on a small-world network. The same process on a regular lattice exhibits kinetic roughening governed by the Kardar-Parisi-Zhang equation. In contrast, when the interaction topology is extended to include a finite number of random links for each site, the surface becomes macroscopically smooth. The correlation length of the surface fluctuations becomes finite and the surface grows in a mean-field fashion. Our finding provides a possible way to establish control *without* global intervention in non-frustrated agent-based systems. A recent application is the construction of a fully scalable algorithm for parallel discrete-event simulation.

### Phase transitions in Small-World (SW) Networks

- Watts&Strogatz (1998): "... enhanced signal-propagation speed, computational power, and synchronizability"
- Finite number of random links per site (average degree is not extensive)
- Phase transition or phase ordering is possible even when random links are added to an originally one-dimensional substrate:
- Barrat&Weight (2000), Gitterman (2000), Kim et al. (2001), Herrero (2002) Jeong et al. (2003). Novotny and Wheeler (2004): Ising model on
- Hong et al. (2002): XY-model and Kuramoto oscillators on SW ntwk.
- Hastings (2003): general criterion for mean-field-like phase transitions for interacting systems on SW networks.

#### **Synchronization in Parallel Discrete-Event** Simulations

Parallelization for asynchronous dynamics

• (algorithmically) parallelize (physically) non-parallel dynamics

#### Difficulties

- Discrete events (updates) are not synchronized by a
- \*Traditional algorithms appear inherently serial (e.g., Glauber attempt one site/spin update at a time)

However, these algorithms are not inherently serial (Lubachevsky '87)

#### Two Approaches for Synchronization





#### Optimistic (or speculative)

- PEs assume no causality violations
- Rollbacks to previous states once causality violation is found (extensive state saving or reverse simulation)
- Rollbacks can cascade ("avalanches")

- **♦ Conservative** PE "idles" if causality is not guaranteed
  - Utilization, (u): fraction of non-idling PEs

#### **Basic Conservative Approach**



- one-site-per PE, N<sub>DE</sub>=Ld
- t=0,1,2,... parallel steps τ<sub>i</sub>(t) local simulated time
- local time increments are
- iid exponential random variables advance only if  $\tau_i \le \min\{\tau_{nn}\}$



#### **♦** Scalability modeling

•utilization (efficiency)  $\langle u(t) \rangle$ (fraction of non-idling PEs) density of local minima •width (spread) of time surface

 $w^{2}(t) = \frac{1}{N} \sum_{i=1}^{N_{PE}} \left[ \tau_{i}(t) - \overline{\tau}(t) \right]^{2}$ 

# Acknowledgment

We thank B.D. Lubachevsky, G. Istrate, Z. Rácz and G. Győrgyi for discussions. We acknowledge the financial support of NSF through DMR-0113049 and DMR-9981815, the Research Corporation through RI0761, and (Z.T.) DOE through W-7405-ENG-36.

### **Simulating the Parallel Simulations**

❖Universality/roughness (d=1)

$$\langle w^2(t) \rangle_L \sim \begin{cases} t^{2\beta}, & \text{if} \quad t << t_{\times} \\ L^{2\alpha}, & \text{if} \quad t >> t_{\times} \end{cases}$$
 Foltin et al., '9





#### **Utilization (Efficiency)**

Finite-size effects for the density of local minima/average growth rate (steady state):  $\langle u \rangle_L \cong \langle u \rangle_{\infty} + \frac{const.}{}$ 



#### Implications for Scalability

Simulation reaches steady state for  $t >> L^z$ 

Simulation phase: scalable  $\langle u \rangle_L \cong \langle u \rangle_{\infty} + \frac{const.}{L^{2(1-\alpha)}}$ ⟨u⟩<sub>∞</sub> asymptotic average growth rate (simulation speed or

Krug and Meakin, '90 Measurement (data management) phase: not scalable







#### Synchronization/Time-Horizon Control Via Small-World Communication Network Design









steady-state structure factor: (Fourier transform)  $S(k) \propto \langle \tau_k \tau_{-k} \rangle = \langle |\tau_k|^2 \rangle$ 



SW network

#### References and Contact

- B. Kozma, M.B. Hastings, and G. Korniss, *Phys. Rev. Lett.* **92**, 108701 (2004).
   G. Korniss, M.A. Novotny, H. Guclu, Z. Toroczkai, and P.A. Rikvold, *Science*. **299**, 677 (2003).
   H. Guclu and G. Korniss, *Phys. Rev. E* **69**, 065104(R) (2004).
   G. Korniss, Z. Toroczkai, M.A. Novotny, and P.A. Rikvold, *Phys. Rev. Lett.* **84**, 1351 (2000).
   Contact: korniss@rpi.edu, http://www.rpi.edu/~korniss

# **Utilization Trade-off/Scalable Data Management**

$$\partial_t \tau = -\Sigma(p)\tau + \frac{\partial^2 \tau}{\partial x^2} + \dots + noise$$

effective relaxation to the mean facilitated by the SW links



### Edwards-Wilkinson Model on a Small-World Network

$$\partial_t h_i = -(2h_i - h_{i+1} - h_{i-1}) - \sum_{j=1}^N J_{ij}(h_i - h_j) + \eta_i(t)$$

$$h_i h_i = -\sum_{j=1} \Gamma_{ij} h_j + \eta_i(t)$$







N/2 random links are selected, such that each site has exactly one random link of strength p
(in addition to n.n.)

#### Width from exact numerical diagonalization:

 $\{\lambda_l\}_{l=0}^{N-1}$  eigenvalues of  $\Gamma_{ij}$ 

 $(\lambda_0 = 0)$ for a single realization of

averaged over network realizations ("disorder-averaged" width)

### Impurity-averaged perturbation theory

 $\left[G\right]^{\!-1} = \Gamma^o + \Sigma \qquad \qquad G = \Gamma^{\!-1} \qquad G^o = \Gamma^{o^{\!-1}}$  self-energy (effective interaction due to random links)

"soft" network:  $\Sigma \sim p^2 + \dots$ 

[see also Monasson, EPJB 12, 555 (1999) in the context of diffusion on SWN] "hard" network:  $\Sigma \sim p - \frac{1}{2} p^{3/2} + \dots$ 





Comparison of exact numerical diagonalization of  $\Gamma_{II}$ with the results of the impurity-averaged perturbation theory





## Summary

- Synchronizability of large-scale non-frustrated agent-based systems with SW network: application to construct fully scalable parallel simulations without global synchronizations
- Spectrum of the coupling matrix exhibits a gap/pseudo-gap, yielding a *finite* width for stochastic growth on a small-world network *for all* p>0